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Evaluation of Borelized QCD sum rules in the so-called local-duality limit of infinitely large Borel

mass parameter provides an alternate route for extraction of the dependence of the decay constants

of heavy–light mesons on the massmq of the involved light quarkq: For appropriate choices of the

two-point correlation functions of currents interpolating the hadrons under study, the local-duality

limit forces all nonperturbative contributions parametrized by vacuum condensates to such kind of

correlator to vanish. As a consequence, the soughtmq dependence of the heavy–light meson decay

constants proves to be controlledprimarily by the correlator contributions from perturbative QCD.

Our knowledge of the analytic behaviour of the latter as functions ofmq enables us to derive themq

dependence of the decay constants of both pseudoscalar and vector heavy–light mesons, for which

we estimate strong isospin breaking to be of the order of 1 MeVfor both charm and beauty sectors.
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1. Local-Duality Limit of QCD Sum Rules for Heavy–Light Meson Decay Constants

QCD sum rules [1] constitute a nonperturbative approach to bound states of quarks and gluons,
the degrees of freedom of quantum chromodynamics (QCD), thequantum field theory governing all
strong interactions. This kind of relations may be constructed by evaluating, at the level of QCD and
at the hadronic level, correlation functions of operators appropriately defined in terms of quarks and
gluons but interpolating the hadron of interest. Application of Borel transformations from momenta
to new variables, the Borel parametersτ , suppresses (unwanted) hadronic-continuum contributions.
For heavy–light mesonsHq of massMHq composed of a heavy quarkQ= c,b of massmQ and a light
quarkq= u,d,sof massmq, the Borel QCD sum rules for their decay constantsfHq generically read

f 2
Hq

(

M2
Hq

)N
exp(−M2

Hq
τ)=

s(N)
eff (τ ,mQ,mq,αs)

∫

(mQ+mq)2

dsexp(−sτ)sN ρ(s,mQ,mq,αs)+Π(N)(τ ,mQ,mq,αs,〈q̄q〉, . . . ) ,

with a positive integer exponentN= 0,1, . . . fixed by the detailed formulation of the QCD sum rule.
The spectral densitiesρ(s,mQ,mq,αs) can be found in form of expansions in the strong couplingαs.

Theτ-dependent effective thresholds(N)
eff (τ ,mQ,mq,αs) forms the lower boundary of that region ofs

(extending to infinity) over which, by the postulate of quark–hadron duality, mutual cancellations of
the contributions of perturbative QCD and of hadronic excitations and continuum should take place.
Basically, nonperturbative effects manifest in QCD sum rules in two places: as vacuum condensates
in power correctionsΠ(N)(τ ,mQ,mq,αs,〈q̄q〉, . . . ), power series inτ , and ins(N)

eff . Depending on that
(in fact, chosen) numberN, their relative fractions in power corrections and effective threshold vary.

The conventional procedure of deriving, from such QCD sum rule, the sought relation between
the hadron characteristics of interest and the fundamentalparameters of QCD starts by identifying a
suitable interval of (thus inevitably almost everywhere nonzero) values ofτ , defined such that, at the
hadron side, the ground-state contribution is reasonably large and, at the QCD side, nonperturbative
corrections stay sufficiently small. Equipped with the increase of the accuracy [2] of the predictions
gained by taking seriously theτ dependence [3] of the effective threshold, and determiningthe latter
by minimizing the discrepancy between theoretical hadron masses and their true values known from
experiment, we managed to extract precise decay-constant predictions [4,5] from the required set of
QCD quantities, such as quark masses, strong coupling, spectral densities and vacuum condensates.

The — compared to typical hadron masses tiny — difference(md−mu)(2 GeV)≈ 2.5 MeV [6]
of the down-quark massmd and the up-quark massmu generates strong-isospin breakdown reflected
by the differencefHd − fHu of the decay constants of heavy–light mesonsHd andHu involving, apart
from a given heavy quark, a lightd andu quark, respectively. Our QCD sum-rule version relying on
τ-dependent thresholds proves to be a tool so sharp that we canreliably treat such phenomena [7,8].

We may look at this manifestation of isospin breaking from a related but slightly different angle
[9], namely, by applying the QCD sum-rule formalism sketched above in the so-called local-duality
limit,1 realized by the Borel variable approaching its lower boundary, that is, byτ → 0, to Borelized
correlation functions of mass dimension two, corresponding to exponentN= 0. In thiswell-defined
limit, the power correctionsΠ(N) vanish, the QCD sides of the emerging QCD sum rules simplify to
dispersion integrals of the spectral densitiesρ(s,mQ,mq,αs |msea) (indicating also their dependence

1This limit of QCD sum rules has been applied to pion and nucleon elastic and meson transition form factors [10,11].

1



P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
1
7
5

Isospin Breaking in Heavy-Meson Decay Constants Dmitri Melikhov

on the massesmseaof all sea quarks showing up in higher-order corrections), and all nonperturbative
effects are incorporated by their upper limits of integration, the effective thresholdsseff(mQ,mq,αs):

f 2
Hq

=

seff(mQ,mq,αs)
∫

(mQ+mq)2

dsρ(s,mQ,mq,αs | msea)≡̥(seff(mq, ·),mq | msea) . (1.1)

For simplicity of notation, we denote the QCD side by̥(seff(mq, ·),mq |msea) and highlight only its
dependence on the light-quark masses. At the hadron side, inthe local-duality limit any dependence
on the mass of the ground state disappears, whose footprint is reduced to its decay constant squared.
In the spectral densities’ perturbative expansions (Fig. 1), sea quarks begin to contribute at orderα2

s :

ρ(s,mQ,mq,αs | msea) = ρ0(s,mQ,mq)+
αs(µ)

π ρ1(s,mQ,mq,µ)+ α2
s (µ)
π2 ρ2(s,mQ,mq,µ |msea)+ · · · .

Truncations of such perturbative series lead to unphysicaldependences on renormalization scalesµ .

Q

q q

Q

q

Q QQ

u,d,su,d,s

q q

(a) (b) (c)

Figure 1: Two-point(Qq̄) correlator: leading (a), next-to-leading (b), next-to-next-to-leading(c) order inαs.

The heavy–light spectral densities required as input have been computed up to orderα2
s [12]; at

orderα2
s , however, only for the case of massless light quarks:ρ2(s,mQ,mq |msea)≈ ρ2(s,mQ,0 | 0).

It is easy to convince oneself that adopting this local-duality limit τ → 0 is both mathematically
well-defined and physically well-grounded: Traditional Borel QCD sum rules identify constantsseff

such that within chosen Borel windows the predicted hadron observables exhibit the least sensitivity
to the value ofτ . However, Fig. 2 illustrates that these regions can safely be extended down toτ = 0;
the effective thresholds found by requiring Borel stability guarantee the latter to hold also forτ → 0.
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Figure 2: Predictions of Borel QCD sum rules for theB- andB∗-meson decay constants [9] vs. Borel variable
τ, for one and the same effective thresholdseff within (solid line) and beyond (dotted line) the Borel windows.
For both pseudoscalar and vector mesons, demanding Borel stability over the windows fixes the values ofseff.
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2. Leptonic Decay Constant of Heavy–Light Meson: Light-Quark Mass Dependence

We study the leptonic decay constants,fPq and fVq, of pseudoscalar (Pq) and vector (Vq) mesons
with massesMPq andMVq, four-momentump andVq polarization vectorεµ(p), defined according to

〈0| q̄(0)γµ γ5Q(0) |Pq(p)〉= i fPq pµ , 〈0| q̄(0)γµ Q(0) |Vq(p)〉= fVq MVq εµ(p) .

The decay-constant discrepancy in the focus of our interest, fHd − fHu, betraying isospin breaking, is
proportional to the difference of the spectral integral̥(seff(mq, ·),mq |msea) in Eq. (1.1) if evaluated
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Figure 3: Decay-constant ratiofHq(mq)/ fHq(mud), mud ≡ 1
2 (mu+md), as a function of the light-quark-mass

variable(mq−mud)/(ms−mud) for three different ansätze (constant, linear, and linear plus chiral logarithms)
for redefined effective thresholdzeff ≡

√
seff−mQ−mq [9], compared with the findings (squares) of Ref. [8].
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at the light-quark massesmq=md andmq =mu; in that difference, all dependence on the strange sea
quarks cancels, reducing greatly the uncertainties induced by neglect ofmseain ρ2(s,mQ,mq |msea):

δ̥≡̥(seff(md),md | msea)−̥(seff(mu),mu | msea)

=̥(seff(md),md | msea= 0)−̥(seff(mu),mu | msea= 0)+O

(

α2
s

π2 (md −mu)

)

.

The dependence of̥(seff(mq, ·),mq |msea) onmq originates basically in two quantities therein: The
one of the spectral densities we easily extract by adapting results available in the literature [12]. The
one of the effective thresholdsseff(mq)= s0+s1 mq+ · · · we derive by allowing the light-quark mass
mq to vary continuously between chiral limit,mq = 0, and strange-quark mass,mq =ms, defining an
Hq-meson decay constant functionfH(mq) by the emerging outcomes of the local-duality QCD sum
rule (1.1) formq∈ [0,ms], and matching (cf. Fig. 3) the behaviour offH(mq) to lattice-QCD findings
[13] for fH((mu+md)/2) and fH(ms). From the hence fully determinedmq dependence of the QCD
sum-rule outcome and numerical values of all QCD parametersin the modified minimal-subtraction
renormalization scheme, we predict, for theD, D∗, BandB∗ mesons, the decay-constant differences

fD± − fD0 = (0.96±0.09) MeV , fD∗± − fD∗0 = (1.18±0.35) MeV ,

fB0 − fB± = (1.01±0.10) MeV , fB∗0 − fB∗± = (0.89±0.30) MeV .

The proximity of thefH(mq) curves resulting from constant (i.e., mq-independent) and non-constant
(i.e., mq-dependent) parametrizations ofzeff ≡

√
seff−mQ−mq in Fig. 3 shows that roughly 70–80%

of the strong isospin breaking in decay constants is due to our spectral densities’ — analytically and
rigorously derivable —mq behaviour enabling us to retain control over the accuracy ofour findings.
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