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We discuss how quarkonium production, in particular ηc production in proton-proton colli-
sions, can be used to access gluon transverse-momentum-dependent parton distribution functions
(TMDPDFs). To do so, we apply the effective field theory machinery to factorize the process in
terms of gluon TMDPDFs at low transverse momentum, and match this result with the collinear
framework to obtain the full transverse-momentum spectrum. This matching is performed by
applying the newly devised inverse-error weighting method, based on an estimation of the un-
certainties coming from power corrections to construct a weighted average of both factorization
theorems.
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1. Introduction

Quarkonium production is an interesting class of processes potentially useful to access gluon
TMDPDFs (see e.g. Refs. [1–19]), which encode the rich three-dimensional inner structure of the
hadrons in momentum space (see e.g. Ref. [20]). Below we consider one of them: ηc production
in proton-proton collisions at the LHC, for which the hard scale Q = Mηc = 2.98 GeV [21]. Since
the hard scale is so low, there is no a clear separation between the regions in transverse momentum
where either the TMD or the collinear frameworks can be applied, which makes this process very
sensitive to the applied matching scheme, and which can affect the future extraction of the gluon
TMDPDFs from experimental data.

2. TMD and collinear frameworks

At low transverse momentum the cross-section is factorized in terms of gluon TMDPDFs [22–
24] (see also Refs. [25–27]), whereas at high transverse momentum the cross-section is factorized
in terms of collinear integrated PDFs. Below we present the relevant results for both frameworks.

The formalism for the production of a pseudo-scalar quarkonioum ηc at low transverse mo-
mentum has been presented in Refs. [3,14,28]. Following an effective theory approach [14,28,29]
based on a combination of soft-collinear effective theory and non-relativistic QCD (NRQCD), and
considering unpolarized protons only, we derive the needed TMD factorization theorem.

The most common approach to calculate quarkonium production is the NRQCD formalism
[30], where we can write the cross-section for ηc production in proton-proton collisions as:

dσ [p p→ ηc X ] = ∑
n

dσ [p p→ cc̄(n)X ]
〈
Oηc(n)

〉
, (2.1)

where dσ [p p→ cc̄(n)X ] is the short-distance cross-section for producing the cc̄ pair in a state
n with definite color and angular momentum quantum numbers and

〈
Oηc(n)

〉
is a long distance

matrix element (LDME) that describes the non-perturbative formation of the bound-state ηc from
the cc̄ pair in the state n. X denotes other possible particles in the final state which are integrated
over. The quantum numbers n will be denoted by 2S+1L[i]J , where the notation for angular momen-
tum is standard and i = 1(8) for color-singlet (color-octet) states. The short distance cross-sections
are perturbatively calculable (apart from the parton distribution functions) in a power series in αs,
while the LDMEs are nonperturbative and must be extracted from data. The LDMEs scale with
definite powers of the quark-pair relative velocity v, so the NRQCD factorization formalism orga-
nizes the calculation of quarkonium production (and decay) into a systematic double expansion in
αs and v.

Given that the color singlet state 1S0 dominates this process, we can argue that it is analogous
to Higgs boson production in proton-proton collisions, in the sense that we have a glue-glue fusion
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into a color-singlet state, and then make use of the following TMD factorization ansatz:

dσ

dyd2qT

=
2π3α2

s

9sM3
ηc

H(µ2,M2
ηc
)
〈
Oηc(1S0)

〉∫ d2bT

(2π)2 eibT ·qT

×
[

f̃1g/A(xA,bT ; µ,ζA) f̃1g/B(xB,bT ; µ,ζB)− h̃⊥(2)1g/A(xA,bT ; µ,ζA)h̃
⊥(2)
1g/B(xB,bT ; µ,ζB)

]
+
[
O(qT/Mηc)

a
]
σ . (2.2)

The NRQCD matrix element is [30]
〈
Oηc(1S0)

〉
= Nc

2π
|Rn(0)|2 [1+O(v4)], where Rn is the radial

wave-function of the qq̄ pair with quantum number n, and v is the relative velocity of the quarks in
the pair. According to Ref. [31] (see Table I) we choose |Rn(0)|2 = 0.921533 GeV−3.

The gluon TMDPDFs f̃ g
1 and h̃⊥g(2)

1 provide the distribution of the initial state gluons [22–24]
as a function of their collinear momentum fraction xh, at given values for the UV-renormalization
and rapidity-renormalization scales (e.g. µ2 = ζh = M2

ηc
). The function f̃ g

1 (x,kT) is the TMDPDF

for unpolarized gluons in unpolarized hadrons whereas the h̃⊥g(2)
1 (x,kT) TMDPDF accounts for

linearly polarized gluons in unpolarized protons [23]. The Fourier transforms of the functions and
their moments f̃ g

1 (x,bT), h̃⊥g(2)
1 (x,bT) are defined in [23].

A necessary condition for the factorization theorem to hold is that the structure of the infrared
poles at a specific perturbative order in αs is the same for the cross-section in full QCD and in
the factorized form (the hard part H should be free from infrared divergences) This argument
can be used backwards, to establish a factorization theorem ansatz at a given perturbative order
by checking if the obtained hard part (by subtraction) is actually free from divergences. For ηq

production this has been verified at O(αs) [28, 29], where the hard part H is 1

H(1) = σ
(1)
virt−

[
f̃ g/A
1 f̃ g/B

1

](1)
virt =

αs

2π

[
−CAln2 µ2

M2
ηc

+2CA

(
1+

π2

3

)
+2CF

(
−5+

π2

4

)]
, (2.3)

with H(0) = 1. This result, together with the known gluon TMDPDFs, allows us to perform the
resummation of large logarithms at NNLL accuracy.

At large transverse momentum (qT ∼ Mηc � m ∼ 1 GeV) the cross-section is described by
collinear factorization. For the unpolarized case, consistently with the αs accuracy at low qT ,
we describe the cross-section at fixed O(α3

s ) order. At qT ≥ Mηc the hard scale is given by the

transverse mass mT =
√

M2
ηc
+q2

T and the cross-section is given by [32] 2

dσ

dyd2qT

= ∑
a,b

∫
dxadxb f a/A

1 (xa; µ) f b/B
1 (xb; µ) δ (ŝ+ t̂ + û−M2

h)
ŝ
π

dσ

dt̂
(ab→ hd)

+
[
O(m/qT)

b
]
σ , (2.4)

where a,b are partons in the initial state, h is the produced hadron and d a parton radiated in the
final state. ŝ, t̂, û are the partonic Mandelstram variables [33] and the partonic cross-section dσ/dt̂
is given at O(α3

s ) in Refs. [34–36] for different channels.
1We notice that only the virtual contributions are necessary to obtain the hard part of the TMD factorization theorem,

since real-gluon emission diagrams live at a lower scale and match exactly between the full and the factorized theories.
2Note that we generalize the result in [32] to the massive case.
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Figure 1: The TMD resummed term W (yellow curve), the collinear fixed-order term Z (green curve), and the
matched cross section with the inverse-error weighting (InEW) method (blue band) for ηc production in proton-proton
collisions at

√
s = 8 TeV.

3. Phenomenology: the complete transverse-momentum spectrum

In Fig. 1 we show the matched cross-section for ηc production in proton-proton collisions at
the LHC at

√
s = 8 TeV. To do so, we apply the recently devised inverse-error weighting method

(InEW ) [37], which makes use of estimations of the power-corrections to both TMD and collinear
factorization theorems to construct their weighted average. As can be seen, the matched cross-
section overlaps with the TMD result (W ) at low qT and with the collinear result (Z ) at large qT , as
expected. The values of a and b are related to the strength of the power corrections, and varied here
between 1 and 2 to show their impact. Notice that the uncertainty on the matched cross section
is only due to the matching scheme, i.e. including power-correction uncertainties, and no other
effects are added, such as the perturbative-scale variations and the non-perturbative contributions.
All these effects should be properly included in an actual comparison to experimental data.
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