
P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
2
0
3

Eta-mesic nuclei
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In this contribution we report on theoretical studies of η nuclear quasi-bound states in few- and
many-body systems performed recently by the Jerusalem-Prague Collaboration [1, 2, 3, 4, 5].
Underlying energy-dependent ηN interactions are derived from coupled-channel models that in-
corporate the N∗(1535) resonance. The role of self-consistent treatment of the strong energy
dependence of subthreshold ηN amplitudes is discussed. Quite large downward energy shift to-
gether with rapid decrease of the ηN amplitudes below threshold result in relatively small binding
energies and widths of the calculated η nuclear bound states. We argue that the subthreshold be-
havior of ηN scattering amplitudes is crucial to conclude whether η nuclear states exist, in which
nuclei the η meson could be bound and if the corresponding widths are small enough to allow
detection of these η nuclear states in experiment.
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1. Energy and model dependence of ηN scattering amplitudes

Calculations of η nuclear quasi-bound states presented in this contribution are based on the
ηN scattering amplitudes derived from coupled-channel models that incorporate the N∗(1535) res-
onance. The amplitudes near threshold are both attractive and strongly energy dependent, as illus-
trated in Fig. 1 for three selected meson-baryon interaction models, GW [6], CS [7], and GR [8].
Moreover, the ηN scattering amplitudes are highly model dependent; they differ considerably from
each other below as well as above the ηN threshold (except common value ImFηN ≈ 0.2−0.3 fm
at threshold). This suggests that the predictions for the η nuclear states would be model depen-
dent and that the strong energy dependence of the ηN scattering amplitudes has to be treated
self-consistently.
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Figure 1: Real (left panel) and imaginary (right panel) parts of the free ηN c.m. scattering amplitude
FηN(
√

s) as a function of energy in three meson–baryon interaction models: dashed, GW [6]; solid, CS [7];
dotted, GR [8]. The vertical line denotes the ηN threshold.

The crucial point is that in the nuclear medium the energy argument
√

s is given by

√
s =

√
(
√

sth−Bη −BN)2− (~pη +~pN)2 ≤
√

sth, (1.1)

where
√

sth ≡ mh +mN and Bη and BN are meson and nucleon binding energies, and the momen-
tum dependent term generates additional substantial downward energy shift, since (~pη +~pN)

2 6= 0
unlike the case of the two-body c.m. system. This has significant consequences for the calculated
binding energies and widths as will be shown below.

2. The η meson in few-body systems

Few-body calculations of η nuclear clusters have been performed within standard few-body
techniques: Faddeev-Yakubovsky equations [9] or variational methods. In ref. [3] the η nuclear
cluster wave functions were expanded in a hyperspherical basis. More recent calculations [4, 5]
were based on the Stochastic Variational Method (SVM) with a correlated Gaussian basis [10].
Both variational approaches showed sufficient accuracy in the description of η nuclear quasi-bound
states and provided almost identical results for ηd, η3He and η4He systems.
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In our calculations, the nuclear part is described by the Minnesota central NN potential [11]
or the Argonne AV4’ potential [12]. The interaction of η with nucleons of the core is given by a
complex two-body energy dependent potential derived from a full chiral coupled-channels model:

vηN(δ
√

s,r) =− 4π

2µηN
b(δ
√

s)ρΛ(r), (2.1)

where δ
√

s =
√

s−√sth, ρΛ(r) = ( Λ

2
√

π
)3exp

(
−Λ2r2

4

)
, and the amplitude b(δ

√
s) is fitted to

phase shifts derived from the ηN scattering amplitude FηN(δ
√

s) in the GW and CS models. The
scale parameter Λ is inversely proportional to the range of VηN potential. We consider two different
values of the scale parameter, Λ = 2 and 4 fm−1 (the choice of the value of Λ is discussed in
ref. [3]). It is to be noted that in ref. [5], the NN and ηN potentials were constructed within a
pionless EFT approach.

The energy argument δ
√

s relevant for calculations of η nuclear few-body clusters is expressed
in the form [3]:

δ
√

s =−B
A
− A−1

A
Bη −ξN

A−1
A
〈TNN〉−ξη

(
A−1

A

)2

〈Tη〉 , (2.2)

where B is the total binding energy of the system, ξN(η) = mN(η)/(mN +mη), Tη is the η kinetic
energy in the total c.m. frame and TNN is the pairwise NN kinetic energy operator in the NN pair
c.m. system [3]. The conversion widths are calculated using the expression

Γη =−2 < Ψg.s.|ImVηN |Ψg.s. > (2.3)

where |Ψg.s. > stands for the ground state obtained after variation. As was stated already in [3],
this approximation is reasonable due to small imaginary contribution |ImVηN | � |ReVηN |.

The results of calculations of η nuclei with A = 3 and 4 were discussed in detail in refs. [3,
4, 5]. To summarize, no bound ηNN system was found in the considered two-body interaction
models. For ηNNN, a weakly bound state (with η separation energy below 1 MeV) was found
for the Minnesota NN potential and one particular variant of the ηN potential that reproduced the
GW scattering amplitudes. No ηNNN bound states were found using more realistic NN interaction
model.

In Fig. 2, we demonstrate the self-consistent solution for η4He, calculated using the AV4’
NN potential and GW VηN potential with Λ = 4 fm−1. The η4He bound state energy E and the
expectation value < δ

√
s > are plotted as a function of the subthreshold energy argument δ

√
s of

the input potential VηN . The self-consistency condition is fulfilled by requiring δ
√

s =< δ
√

s >.
The corresponding value of E(< δ

√
s>) then represents the self-consistent energy of the η nuclear

cluster.
A precise self-consistent calculation of p-shell η nuclear clusters, such as η6Li, represents

highly non-trivial goal. In this report, we present our preliminary results for η6Li using the central
Minnesota VNN and GW VηN potentials. This should be regarded as the first step before doing
calculations with a more realistic NN potential to account for spin dependent force components
in the p shell. Moreover, we employed only one spin-isospin configuration in the description of
the 6Li nuclear core, which yielded binding energy B(6Li) = 34.66 MeV. It is reasonable to expect
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Figure 2: η4He bound state energy E (red line, squares) and the expectation value 〈δ
√

s〉 (blue line, circles),
calculated using the AV4’ NN potential (denoted here AV4p), as a function of the input energy argument
δ
√

s of the ηN potential GW with Λ = 4 fm−1. The dotted vertical line marks the self-consistent output
values of 〈δ

√
s〉 and E. The black dashed line denotes the 4He g.s. energy which serves as threshold for

bound η . The green curve shows the expectation value < HN > of the nuclear core energy. Figure adapted
from ref. [4].

that taking into account all possible configurations in 6Li will further increase the binding. 1 A full
account will be given elsewhere in due course.

The results of the SVM calculations of η binding energies Bη and widths Γη in η3H, η4He,
and η6Li are summarized in Fig. 3. Moreover, the figure illustrates the extent of the dependence
of Bη and Γη on the parameter Λ.
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Figure 3: Binding energies Bη (left) and widths Γη (right) of 1s η quasi-bound states in few-body nuclear
systems calcualted using the Minnesota NN potential and the ηN potential GW with Λ = 2 and 4 fm−1.

1In ref. [13], a value of B(6Li) = 36.51 MeV was quoted for the SVM calculation with the Minnesota potential
when more spin-isospin configurations were considered.
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3. The η meson in many-body systems

The binding energies Bη and widths Γη of η quasi-bound states in nuclear many-body systems
are determined by solving self-consistently the Klein-Gordon equation

[∇2 + ω̃
2
η −m2

η −Πη(ωη ,ρ) ]ψ = 0 , (3.1)

where ω̃η = ωη − iΓη/2 is complex energy of η , ωη = mη − Bη . The self-energy operator
Πη(
√

s,ρ) ≡ 2ωηVη = −(
√

s/EN)4πFηN(
√

s,ρ)ρ is constructed self-consistently using the rel-
evant in-medium ηN scattering amplitude FηN(

√
s) and RMF density of the core nucleus.

Modifications of the free-space amplitudes GW due to Pauli blocking in the medium are
accounted for by using the multiple scattering approach [14]. In the chirally inspired meson-
baryon interaction models CS and GR, Pauli blocking restricts integration domain in the in-medium
Green’s function which enters the underlying Lippmann-Schwinger (Bethe-Salpeter) equations [7].
Morever, hadron self-energy insertions reflecting in-medium modifications of hadron masses could
be included in the in-medium Green’s function, as well.

The energy argument in the scattering amplitude FηN(
√

s) is approximated as [1]

δ
√

s =
√

s−
√

sth ≈−BN
ρ

ρ̄
−ξNBη

ρ

ρ0
−ξNTN(

ρ

ρ0
)2/3−ξη

√
s

ωηEN
2πRe FηN(

√
s,ρ)ρ , (3.2)

where ρ̄ is the average nuclear density, TN = 23.0 MeV at ρ0, and BN ≈ 8.5 MeV is the average
nucleon binding energy. It is to be stressed that all terms in Eq. 3.2 are negative definite and thus
provide substantial downward energy shift. Since ReFηN(

√
s) and Bη appear as arguments in the

expression for δ
√

s (Eq. 3.2), which in turn serves as an argument for the self-energy Πη in Eq. 3.1,
a self-consistency scheme is required in calculations. 2
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Figure 4: Binding energies (left) and widths (right) of the 1s η nuclear states in selected nuclei calculated
using the GR ηN scattering amplitude [8] with different procedures for subthreshold energy shift δ

√
s.

2A slightly different form of δ
√

s has been used in recent calculations [15, 16], see the contribution of A. Gal in
these proceedings.
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Figure 5: Binding energies (left) and widths (right) of 1s η nuclear states in selected nuclei accross the
periodic table calculated self consistently using the GW, GR, and GR ηN scattering amplitudes.

It is instructive to compare our self-consistency procedure based on δ
√

s of Eq. 3.2, with a
self-consistency requirement δ

√
s = −Bη applied in Ref. [17]. This comparison is presented in

Fig. 4 for the in-medium GR amplitude. Our self-consistency formula in Eq. 3.2 (marked δ
√

s)
reduces considerably binding energies and widths of the η meson in nuclei with respect to the
calculations of ref. [17] that used δ

√
s = −Bη (marked −Bη ). However, even the reduced GR

widths are still rather large, which suggests that it would be extremely difficult to resolve η nuclear
states in this case.

The model dependence of the ηN amplitudes, shown in Fig. 1, has an impact on the calcula-
tions of η nuclear quasi-bound states. This is illustrated in Fig. 5 were we present binding energies
Bη and widths Γη calculated for 1s η nuclear states in selected nuclei using the GW, CS and GR
models. In the left panel, the hierarchy of the three curves for the η binding energies reflects the
strength of the ReFηN(

√
s) amplitudes below threshold (compare Fig. 1). For each ηN interaction

model the binding energy increases with A and tends to saturate for large values of A.
The right panel demonstrates substantial differences between the η absorption widths Γη .

While the CS and GW models produce relatively small widths (2 to 4 MeV), almost constant
across the periodic table, the GR model yields much larger widths of order 20 MeV which increase
with A.

4. Conclusions

In this contribution we briefly reviewed our calculations of η nuclear quasi-bound states ac-
cross the periodic table. We applied ηN scattering amplitudes derived from recent meson-baryon
coupled-channel interaction models. We demonstrated that the strong energy dependence of scat-
tering amplitudes calls for proper self-consistent treatment. The corresponding ηN amplitudes rel-
evant for calculations of η nuclear states are substantially weaker than the ηN scattering lengths.
As a result our calculated η bound states energies and widths are considerably smaller than those
obtained in other comparable calculations.
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In few-body calculations we explored whether the η meson binds in light nuclei. We found
no ηNN bound state. Our results suggest that the onset of η3He binding occurs for the models
providing the ηN scattering length ReaηN ∼ 1 fm. The binding η4He requires ReaηN ≥ 0.7 fm. It
is to be noted that the searches for η4He bound states performed with the WASA-at-COSY facility
have not revealed any signal for a narrow η nuclear state [18].

Small conversion widths in heavier η nuclei obtained in calculations using the CS and GW
amplitudes might encourage experimental searches for η nuclear bound states 3 It is to be stressed,
however, that the size of the widths Γη and binding energies Bη is strongly model dependent. Other
models produce either substantially larger widths or even do not generate any η nuclear bound state
in a given nucleus.
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