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We analyze here the mass spectrum of light vector and scalar mesons applying a novel approach
where a modified soft wall model that includes a UV-cutoff at a finite z-position in the AdS space
is used, thus introducing an extra energy scale. For this model, we found that the masses for the
scalar and vector spectra are well fitted within δRMS = 7.64% for these states, with non-linear
trajectories given by two common parameters, the UV locus z0 and the quadratic dilaton profile
slope κ . We also conclude that in this model, the f0(500) scalar resonance cannot be fitted
holographycally as a qq state since we cannot find a trajectory that include this pole. This result
is in agreement with the most recent phenomenological and theoretical methods.
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1. Introduction and Formalism

The AdS/CFT correspondence [1] has been largely used to describe nonperturbative QCD-
like phenomena which are unreachable by regular QFT methods. One example is given by the
dynamics of the lightest pseudoscalar mesons, which is properly described via the Effective Field
Theory approach of Chiral Perturbation Theory (ChPT) [2]. If resonant states are to be included, a
proper unitarization method has to be considered.

In this case, we will use a bottom-up approach known as the AdS/QCD Soft-Wall model whose
Lagrangian reads [3]

I =− 1
2g2

S

∫
d5x
√
−g exp[−Φ(z)]

[
∂n S∂

n S+m2
5 S2]

− 1
4g2

V

∫
d5x
√
−g exp[−Φ(z)]Fmn Fmn, (1.1)

where S (z,xµ) is a massive scalar field dual to the scalar mesons and Fmn = ∂m An−∂n Am is given
in terms of the massless abelian gauge field Am (z,xµ). The constants gS and gV fix the units of the
action in terms of the number of colors Nc as usual. As it can be seen, chiral symmetry breaking
effects are not taken into account.

The geometric background that explicitly breaks the conformal invariance is given by the
sliced AdS Poincare patch [4]

dS2 = Θ(z− z0)
R2

z2

[
dz2 +ηµν dxµ dxν

]
, (1.2)

with Θ(z) the Heaviside step function that gives the UV D-brane (D-Wall) locus. The Minkowski
metric has the signature (−,+,+,+). All of this will allow us to define the mass spectrum of light
scalar and vector mesons as functions of two energy scales, namely, the D-wall locus z0 and the
dilaton constant κ , as showed in [4].

2. Soft-Wall model Light Meson Spectra

We begin our analysis by taking the light vector meson action that reads

IV =− 1
4g2

V

∫
d5x
√
−g exp[−Φ(z)]Fmn Fmn. (2.1)

After taking small variations in Aµ and imposing the gauge condition Az = 0, we obtain an
On-Shell Boundary action given by

IBoundary
V On-Shell =−

R
2g2

V

∫
d4x

exp(−κ2z2)

z
Aµ ∂z Aµ

∣∣∣∣
z0

. (2.2)

Two-point functions are straightforwardly obtained after solving the vector equation of motion
by introducing Fourier transformed vector fields

Aµ(z,xµ) =
1

(2π)4

∫
d4q exp(−iqµxµ) vµ(z,q), (2.3)

1
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where we write vµ(z,q) as a function of the source term v0
µ(q) and the Bulk-to-Boundary propagator

V (z,q) as vµ(z,q) = v0
µ (q)V (z,q) Hence, we obtain that V (z,q) holds with the following equation

of motion:

∂z

[
exp(−κ2z2)

z
∂zV (z,q)

]
+

q2

z
exp(−κ

2z2)V (z,q) = 0. (2.4)

A proper vector mass spectrum is obtained from 2.2 through its two-point function. In order
to obtain it, we have to consider the Fourier transformation of the vector fields so that a Bulk-to-
Boundary propagator V (z,q) is properly introduced, along with a source term v0

µ(q). We check that
the solution of V (z,q) yields with the following result:

V (z,q) = c1 κ
2 z2

1F1

(
1− q2

4κ2 ,2,κ
2z2
)
, (2.5)

where 1F1(1−q2/4κ2,2,κ2z2) is the Kummer confluent hypergeometric function and c1 is a nor-
malization constant. Since the vector two-point function Gµν(q2) has to hold with Gµν(q2) =

ηµν Π(q2), we obtain after normalizing (2.5) such that V (z0) = 1, the following relation for Π(q2):

Π(q2) =−
R exp(−κ2z2

0)

g2
V z2

0

 2
z0

+κ
2z0

(
1− q2

4κ2

)
1F1

(
2− q2

4κ2 ,3,κ2z2
0

)
1F1

(
1− q2

4κ2 ,2,κ2z2
0

)
 . (2.6)

In order to obtain the scalar meson sector, we follow a similar procedure to find a two-point
function from the scalar action

IS =−
1

2g2
S

∫
d5x
√
−g exp[−Φ(z)]

[
∂n S∂

n S+m2
5 S2], (2.7)

whose associated equation of motion and solution for the Bulk-to-Boundary propagator respec-
tively read

∂z

[
exp(−κ2z2)

z3 ∂zv(z,q)
]
+

exp(−κ2z2)

z3 q2v(z,q)+
3exp(−κ2z2)

z5 v(z,q) = 0, (2.8)

v(z,q) = c1 κ
3z3

1F1

(
3
2
− q2

4κ2 ,2,κ
2z2
)
. (2.9)

We obtain the latter relations after writing the Fourier-transformed scalar field as S(z,q) =
S0(q)v(z,q). Its respective normalized two-point function is such that

ΠS(q2) =−R3

g2
S

exp(−κ2z2
0)

z3
0

 3
z0

+κ
2z0

(
3
2
− q2

4κ2

)
1F1

(
5
2 −

q2

4κ2 ,3,κ2z2
0

)
1F1

(
3
2 −

q2

4κ2 ,2,κ2z2
0

)
 . (2.10)

Our theoretical predictions [5] are obtained from the poles of (2.6) and (2.10) after adjusting
the dilaton parameters z0 and κ to z0 = 5 GeV−1, κ = 0.45 GeV. We compare these results with the
most recent PDG data [6] (as showed in Tables 1 and 2), thus obtaining a RMS error δRMS = 7.64%.
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ρ Mth (GeV) Mexp (GeV) %M
ρ(775) 0.975 0.775 20.53

ρ(1450) 1.455 1.465 0.66
ρ(1570) 1.652 1.570 4.96
ρ(1700) 1.829 1.720 5.97
ρ(1900) 1.992 1.909 4.15
ρ(2150) 2.142 2.153 0.50

Table 1: Mass spectrum for ρ vector mesons with κ = 0.45 GeV and z0 = 5 GeV−1.

f0 Mth (GeV) Mexp (GeV) %M
f0(980) 1.070 0.99 7.46
f0(1370) 1.284 1.370 5.11
f0(1500) 1.487 1.504 1.13
f0(1710) 1.674 1.723 2.93
f0(2020) 1.846 1.992 7.94
f0(2100) 2.153 2.101 2.39
f0(2200) 2.292 2.189 4.49
f0(2330) 2.424 2.314 4.52

Table 2: Mass spectrum for f0 scalar resonances with κ = 0.45 GeV and z0 = 5.0 GeV−1.

3. Conclusions

We show here that light meson spectra are quite well reproduced after minimizing the amount
of parameters of the model; however, the ground state of the scalar sector, i.e., the f0(500) cannot be
holographically reproduced as a qq state, unlike what happens after introducing quark condensates
and masses via chiral symmetry breaking effects, as in [7, 8].
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