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Shannon entropy and hadronic decays
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How much information is added to the Review of Particle Physics when a new decay branching
ratio of a hadron is measured and reported? This is quantifiable by Shannon’s information entropy.
It may be used at two levels, against the distribution of decay-channel probabilities, or against the
distribution of individual quantum-state probabilities (integrating the phase space of those states
provides the former). We illustrate the concept with some examples.
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Figure 1: Left: Shannon entropy against the number of channels for the decay distribution of χc1(1p). For
comparison, the entropy has also been calculated without radiative channels, denoted as NRC (No Radiative
Channels). Right: entropy in bits (with the log in base 2) of a two-channel decay −p1 log2 p1 − p2 log2 p2

(curve, crosses) reaching a maximum when both channels are equally likely.

A measure of the surprise when, in the transmission of a message, a new letter is received, is
provided by Shannon’s entropy [1] of the message’s alphabet distribution. If each letter has proba-
bility pi, then that entropy is S = ∑−pi ln pi. The same concept can be applied to the distribution
of decays of an unstable particle (or nucleus or any other compound). The decay distribution as
described by branching ratios BRi satisfying ∑BRi = 1 = ∑Γi/Γ (as defined by the total Γ and
partial Γi widths) provides a natural definition of classical entropy

S(decay) =−∑
i

BRi lnBRi (1)

that is represented in figure 1 for the χc1(1p) meson decay distribution, with data taken from [2] and
the channels ordered with decreasing width towards the righ (also plotted is S for a toy distribution
of two channels).

We learn that entropy is maximum (in fact, equal to lnN, with N the number of channels)
when all decays are equally likely. For the typical decay shown, the entropy saturates to a value
smaller than that maximum once most of the biggest decay channels have been accounted for. As
the number of discovered channels increases towards the right of the plot, we see that the added
information entropy is decreasingly smaller. It may be that the discovery of a new channel is
important because it questions a symmetry or opens a new alley of investigation, but entropy is a
fair predictor of how relevant it is for the knowledge of the decaying particle at a coarse level.

A technical aspect is that when part of the total width is unaccounted for, one does not know
how many channels yet to be discovered share into that width. For the time being, we have opted
for bunching them in only one “unknown” channel such that, by definition, BRunknown = 1−∑i BRi

carries all missing probability. When a new channel is actually discovered, its probability is dis-
counted from this unknown one. The procedure is illustrated in figure 2.

A further interesting property of Shannon’s entropy is its additivity. If a part of the decay
“alphabet” of N channels is divided into subsets N1, N2 (for example: a former decay to two
charged hadrons A+A is found to divide into π+π− and K+K−), then S(N) = S(N1)+S(N2) where
S(Ni) is the remaining entropy once it is known that the decay falls into the i group. Decay channels
are not infinitely indivisible as the smallest unit is precisely one quantum state of specific particles,

1



P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
2
4
5

Shannon entropy of hadron decays Felipe J. Llanes-Estrada

Figure 2: Top function (straight crosses): entropy of a decay distribution where all the unknown branching
fraction is grouped into one "unknown" channel. Bottom function (diagonal crosses): the entropy associated
to that unknown channel. The fake distribution is in the geometric progression Γi/Γ ∝ 2−i.

spin, momenta, etc. We can count the number of such quantum states with phase space, as briefly
recounted in [3]. Figure 3 exemplifies the variation of entropy with the two-body phase space of
the decay distribution for the a2 meson.

Figure 3: Entropy against the phase space ∑i ρi accrued upon including further two–body decay channels
of the a2(1320) meson, taken from larger to smaller branching fraction.

We wish to propose simple criteria to quantify what information the discovery a new branch-
ing fraction provides. A simple one is to represent the actual importance of a new channel by
the separation of the entropy from its maximum value lnN by the normalized entropy increment,
defined as

∆S(N)

∆log(N)
=

S(N +1)−S(N)

log(N +1)− log(N)
(2)

that is plotted in figure 4.
On reasoning that the maximum information extractable from a random process is the differ-

ence between the maximum entropy and the measured value, Imax = Smax − S = lnN − S one can
also, normalizing by lnN and subtracting before and after discovering a new decay channel, define
a “degree of likeness” Θ = S(N+1)

log(N+1) −
S(N)

log(N) that can play a similar role. We defer to our upcoming
longer work for further discussion [5].
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Figure 4: Increase of the normalized entropy for the decay distribution of the a2(1320) meson as function of
the number of channels. Additional ones can be seen to contribute decreasingly less, so this quantity could
be taken as a measure of the amount of information contained in each newly reported channel.

In summary, we have extended the known uses of Shannon’s entropy as applied to axion
physics [6], to the postdiction of the Higgs mass [7, 8] from a maximum entropy principle, or to
quantifying the information in parton-splittings in jets [9] in particle physics. Our contribution
has centered in deploying the entropy, and some derived functions, as measuring the amount of
information gained when a new particle decay is discovered. This is motivated by the already vast
information contained in the available PDG tables.
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