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We discuss previous studies on SO(N) linear sigma models (LoM) and some limits of phe-
nomenological interest. These models suffer a spontaneous symmetry breaking (SSB) down to
SO(N — 1), with the appearance of an associated vacuum expectation value (vev) f, a heavy
scalar degree of freedom (dof) with mass M and N — 1 massless Nambu-Goldstone bosons
(NGB). These models are of a high interest for beyond Standard Model extensions where the
Higgs boson is identified with a pseudo Nambu-Goldstone boson (pNGB) that appears in the
SO(N)/SO(N — 1) SSB. It gains a non-zero mass m due to soft explicit SO(N) symmetry break-
ing (ExSB) terms in the Lagrangian. In particular, we will focus on the soft breaking pattern
SO(N) 222 s0(4) x s0(P) 228 50(3) x SO(P— 1), with 4+ P = N, e.g., via new beyond
Standard Model (BSM) gauge boson loops. The SO(4)/SO(3) are the electroweak (EW) chi-
ral/custodial groups and the associated SSB is exactly the Standard Model (SM) one, giving mass
to the W+ and Z gauge bosons while avoiding large corrections to the oblique 7" parameter. The
comparison of this type of models with the current phenomenological situation, close to the SM
(m=0.125TeV, EW vev v =0.246 TeV, M > 0(TeV), grww = gi%w) sets important constraints
on the LoM parameters: there is a very small mixing between the heavy and light LoM massive
scalars and the pNGB # is essentially SM-like, the low-energy effective field theory (EFT) cou-
plings are very close to the SM ones, and a large hierarchy & = ;—i < 1 is needed in these LcM
near the SO(N) limit (and & much smaller than a certain ratio % of quartic LoM couplings in
the general case). Likewise, we note the existence of strongly coupled scenarios with a hierarchy
m? ~ v < f? < M.
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1. BSM extensions of the SM scalar sector through an SO(N)LocM

In this proceedings we review and discuss some results on theories with the SSB [1, 2] !

wio ExSB:  SO(N) 25" sov-1), (1.1)
w/ExSB: SO(N) 5% so)xsor) S so@)xsop—1),  (1.2)

The SO(N) ExSB turns one of N —1 NGB from the symmetric case into a pNGB with mass
proportional to the explicit breaking Lagrangian parameters; the other N — 2 remain as NGB, being
the three of them associated to the SO(4)/SO(3) SSB the standard EW Goldstones. 2

In order to study the implementation of this symmetry pattern in generic BSM scenarios, it is
interesting to discuss its realization through an SO(N) toy-model renormalizable LoM with a real
scalar multiplet T — (¢1,02,03,04,51,52,...Sp) in the fundamental representation [2]:

&= %(Dui)2 — V(@) +ni(Z.0)], (1.3)

M+ =243z AM—A;

2 2 . 2,2
@) =-tr2e B wEl) :Z4<“1422“2 C+

with 2= |Z|, ¢ = |¢|. S = |S| and the field { = 1—¢{ = 52/52 € [0,1]. Vp+V; develops the vev

(Ao i —Aap3 2y —Aapd)
(97) =37 = F e and () =7 = FRGEA, with (22) = 2= 03, £ = (6) = 7

and AT = 4, — %2 In the SO(N) symmetric limit V; =0 (4; = A and /.sz = u?), there is a massive
dof with M? = u? = l—f, N — 1 NGB and a continuum of SO(N — 1) invariant vacua with 2 = Z;LLZ
and different & € [0, 1] related through SO(N) transformations. When V; # 0, the set of potential
minima take a unique value & = %, with A; = (14 6;), uf = u3(1+A;); an arbitrarily
small deviation from SO(N) may lead to scenarios with either v> < vZ, v? ~v? or v2 > 12,

One may induce an ExSB in an SO(N) invariant LoM through the gauging of just a few com-
ponents of ¥ e. g., the gauging of the S components under a BSM group: SO(P) gauge bosons AL
with coupling e, explicitly break the SO(N) symmetry and induce a one loop contribution to V; a la

Coleman-Weinberg (CW) proportional to powers of e2 while gaining a mass My« = e, v, [4]. For in-

* 4 2
stance, the A, loops induce for P = 2 an effective potential of the form VlA —foop _ 3L*2 $41n % [4]:

647
the V; potential is no longer flat for the field { and one Goldstone i becomes a pPNGB with mass

proportional to powers of the ExSB parameter e¢*.

'In the case P = 2 one has a discrete parity Z, in the place of SO(P — 1). It is worthy to note that SO(6)/SO(5) ~
SU(4)/Sp(4) provides the minimal coset of this type with an ultraviolet (UV) completion of fermions in a complex
representation of the gauge group, and represents the minimal SO(N) realization of an UV-complete pNGB composite
Higgs model [3]. The often denoted as minimal coset SO(5)/SO(4) lacks a four dimensional UV completion.

2The experimental absence of massless scalars implies that all the remaining P— 1 = N —5 NGB gain mass through
some mechanism not discussed in these proceedings, such as Higgsing or some BSM non-perturbative dynamics.

3These results corresponds to the Landau gauge and R is the renormalization scale in an appropriate scheme. There
2. 2,2
are further corrections ~ &*TA;ZS“ and ~ %Sz if one considers a different gauge. SM loops introduce further SO(N)

ExSB terms, as the SM only couples to the (5 components.

W
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In the general broken case, the ¢—S mixing parameter ® € [0,1] [2] (h~ ¢ for @ ~0and h~ S

for @ ~ 1) and the masses are related to the model parameters in the form

M2 4—2 4—2
m A2, A2 =012 | 141 —20) 1—% (14

1 1
2 41] n_’lz 2 ) 1 2 2 _2 lffflgv2v2
<1—7_> s M :E(A]V +12VS), m :TZS

2. Low energy limit and Effective Field Theory

In the limit of a large mass gap m> < M? —which we will assume from now on—, one has
m? =~ m?, M* ~ M?* and A1v? + Apv? ~ 2M?, up to corrections &(m*/M?). This alone does not
imply a hierarchy between v?> and v2. However, in general, the "WW coupling is related to the

2
mixing in the exact form o =1 — <g’§%> [2], leading to the relations
hWw

SM ~ EFT 42 i 2m
< Mixing 0 € 1 < 1 5 <1 <= A2~ keff

2
- v~ 2M? ) (2.1
')/<<1 A’eff < Agvg 2.1

with the positive parameter y = T 2 [2] and up to O(3 ) and 0(®) corrections. Thus, there is a
large v < v? ~ f? hierarchy when kl ~ A,. In the limit (2.1), the low-energy EFT is organized in

- (llflleff)m2
powers of ¥~ I < 1, such that, up to &(), one finds [2], e.g.,
2h2 3 2h3 25 2h4 2h5 2h6
V(h)EFT:m_+ LA R Ry 4 B _ym _ym 2.2)
2 2 ) 2v 3 812 213 12v4
2h o o4ynd oyt
Fe(h)FFT = 1 (1—1’)— | oyt 2T 23
C() + 2 V+( ’}/)Vz 3\}3 3\}47 ( )
2,2 i, (&g
with the low-energy potential V (h)EFT and A.Z = <%W“Wu + ﬁZ#Z“> x Fc(h)EFT
the Lagrangian providing the interaction Vertices W*W~,ZZ — h, hh... (the SM corresponds to
2
the value y= 0). Experimentally A" ~ 22 ~0.5and 0 <y~ w0 =1— <g§%> <0.2 for an "tWW
hWw
coupling in the range 0.9 < 8% < |

Ehww
In terms of v2,v2 # 0 and the 4, » 3, one approaches the SO(N) invariant limit when |§;| < 1.

Thus, A ~ Af/§; can become non-perturbative near the SO(N) symmetric limit, for small enough
oj: e.g., for |6;| < < @z < 1 one has A > 8m2. We have performed a numerical analysis for the
benchmark points (BP) of the form A, = A, 8y = 83 = — 8 with 0 < 6 < 1/2 and such that /'Lelcf 0.5.
In order to have a solution for § one needs A > 4A¢ = 2. In Fig. 1, we have plotted ’1}“;2 vs.
and l“’ vs. & for arbitrary values of v, v;. We fix § = 0.64 x 1072 (soft ExSB), 0.15 (moderate
ExSB), 5 (large ExSB) for the benchmark points A, B and C, respectively, which correspond to A =
872, 4, 2. It is illustrative to note that, in the strongly coupled case A = 872, one has M ~ 3.6 TeV

(M ~ 6.5 TeV) for £ =1/4 (£ = 1/16). The results are exact and no expansion is performed here.

4The relations in the second identity in (1.4) also admit the inverted hierarchy T.
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Figure 1: BP A (thick black), B (light green) and C (red), from bottom to top. For the plot for &, the lines for
the BP A and B —and all the BP in between— are essentially superimposed and very approximately coincide

2
with the straight line £ = ;1“;2

2 .
‘We note that % — 0 for either

This linear relation is approximately fulfilled for any § in this type of BP.

;Ll vz
2M2

— 0 or 1, so the Higgs mass is linked to the EW SSB.

In conclusion, the symmetry pattern SO(N) Exs8 SO(4) x SO(P) 558 SO(3) x SO(P—1) natu-

rally recovers the SM at low energies provided the ExSB potential V; generates avev ({) =& < 1
(obviously, far from trivial). We would like to point out in these proceedings the existence of
strongly interacting scenarios with a large coupling A and a scale hierarchy of the type m? ~ v? <

P M~ lez near the SO(N) limit, and & < % in general. Other works consider variants of

this symmetry pattern with N = 6: SO(6) 558, SO(4) x SO(2), which gives places to 8 NGB [5]; a

non-linear realization of SO(6) 5B SO(5) where one of the 5 NGB is proposed as as a dark matter

candidate [1]; lattice simulations of the SU(4)/Sp(4) (~ SO(6)/SO(5)) spectrum properties [3];
a non-linear realization of the latter [6], where a large deviation from the SM is found for gpu;
variations of the ExSB V) based on fermion-loop estimates of the CW potential [7]. All of them
point out SO(N) models as appropriate BSM extensions which naturally generate a light pPNGB &
and reproduce the SM phenomenology and its SO(4)/SO(3) chiral/custodial EW structure at low
energies, deserving further studies in the future.
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