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We discuss previous studies on SO(N) linear sigma models (LσM) and some limits of phe-

nomenological interest. These models suffer a spontaneous symmetry breaking (SSB) down to

SO(N − 1), with the appearance of an associated vacuum expectation value (vev) f , a heavy

scalar degree of freedom (dof) with mass M and N − 1 massless Nambu-Goldstone bosons

(NGB). These models are of a high interest for beyond Standard Model extensions where the

Higgs boson is identified with a pseudo Nambu-Goldstone boson (pNGB) that appears in the

SO(N)/SO(N − 1) SSB. It gains a non-zero mass m due to soft explicit SO(N) symmetry break-

ing (ExSB) terms in the Lagrangian. In particular, we will focus on the soft breaking pattern

SO(N)
ExSB
−→ SO(4)× SO(P)

SSB
−→ SO(3)× SO(P − 1), with 4 + P = N, e.g., via new beyond

Standard Model (BSM) gauge boson loops. The SO(4)/SO(3) are the electroweak (EW) chi-

ral/custodial groups and the associated SSB is exactly the Standard Model (SM) one, giving mass

to the W± and Z gauge bosons while avoiding large corrections to the oblique T parameter. The

comparison of this type of models with the current phenomenological situation, close to the SM

(m = 0.125 TeV, EW vev v = 0.246 TeV, M ∼
>O(TeV), ghWW ≈ gSM

hWW ) sets important constraints

on the LσM parameters: there is a very small mixing between the heavy and light LσM massive

scalars and the pNGB h is essentially SM-like, the low-energy effective field theory (EFT) cou-

plings are very close to the SM ones, and a large hierarchy ξ = v2

f 2 ≪ 1 is needed in these LσM

near the SO(N) limit (and ξ much smaller than a certain ratio
λ2
λ1

of quartic LσM couplings in

the general case). Likewise, we note the existence of strongly coupled scenarios with a hierarchy

m2 ∼ v2 ≪ f 2 ≪ M2.

XVII International Conference on Hadron Spectroscopy and Structure

25-29 September, 2017

University of Salamanca, Salamanca, Spain

∗Speaker
†Speaker.
‡We thank the organizers for the nice scientific environment and their kindness and patience. This work was partly

supported by the Spanish MINECO fund FPA 2016-75654-C2-1-P.

c© Copyright owned by the author(s) under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/



P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
2
5
1

SO(N) models and Higgs extensions A. González-Jerez , C. Quezada,

1. BSM extensions of the SM scalar sector through an SO(N)LσM

In this proceedings we review and discuss some results on theories with the SSB [1, 2] 1

w/o ExSB: SO(N)
SSB, vev f
−→ SO(N −1) , (1.1)

w/ ExSB: SO(N)
ExSB
−→ SO(4)×SO(P)

SSB, vev (v,vs)
−→ SO(3)×SO(P−1) , (1.2)

The SO(N) ExSB turns one of N − 1 NGB from the symmetric case into a pNGB with mass

proportional to the explicit breaking Lagrangian parameters; the other N−2 remain as NGB, being

the three of them associated to the SO(4)/SO(3) SSB the standard EW Goldstones. 2

In order to study the implementation of this symmetry pattern in generic BSM scenarios, it is

interesting to discuss its realization through an SO(N) toy-model renormalizable LσM with a real

scalar multiplet ~ΣT = (φ1,φ2,φ3,φ4,S1,S2, ...SP) in the fundamental representation [2]:

L =
1

2
(Dµ

~Σ)2 −
[

V0(Σ) + V1(Σ, ζ̄ )
]

, (1.3)

V0(Σ) =−
µ2

1

4
Σ2 +

λ1

16
Σ4 , V1(Σ, ζ̄ ) = Σ4

(

µ2
1 −µ2

2

4Σ2
ζ̄ +

λ1 +λ2 −2λ3

16
ζ̄ 2 +

λ3 −λ1

8
ζ̄

)

,

with Σ ≡ |~Σ|, φ ≡ |~φ |, S ≡ |~S| and the field ζ̄ = 1− ζ = S2/Σ2 ∈ [0,1]. V0 +V1 develops the vev

〈φ2 〉= v2 =
2(λ2µ2

1−λ3µ2
2 )

λ2λ eff
1

and 〈S2 〉= v2
s =

2(λ1µ2
2−λ3µ2

1 )

λ2λ eff
1

, with 〈Σ2 〉= f 2 = v2+v2
s , ξ = 〈ζ 〉= v2/ f 2

and λ eff
1 ≡ λ1 −

λ 2
3

λ2
. In the SO(N) symmetric limit V1 = 0 (λ j = λ and µ2

j = µ2), there is a massive

dof with M2 = µ2 = λ f 2

2
, N−1 NGB and a continuum of SO(N−1) invariant vacua with f 2 = 2µ2

λ

and different ξ ∈ [0,1] related through SO(N) transformations. When V1 6= 0, the set of potential

minima take a unique value ξ = δ3−∆1

δ3(2+∆1)−δ1
, with λ j ≡ λ2(1+δ j), µ2

1 ≡ µ2
2 (1+∆1); an arbitrarily

small deviation from SO(N) may lead to scenarios with either v2 ≪ v2
s , v2 ∼ v2

s or v2 ≫ v2
s .

One may induce an ExSB in an SO(N) invariant LσM through the gauging of just a few com-

ponents of ~Σ, e.g., the gauging of the ~S components under a BSM group: SO(P) gauge bosons A∗
µ

with coupling e∗ explicitly break the SO(N) symmetry and induce a one loop contribution to V1 à la

Coleman-Weinberg (CW) proportional to powers of e2
∗ while gaining a mass MA∗ = e∗vs [4]. For in-

stance, the A∗
µ loops induce for P= 2 an effective potential of the form V

A∗−ℓoop
1 =

3e4
∗

64π2 S4 ln S2

R2 [4]: 3

the V1 potential is no longer flat for the field ζ and one Goldstone h becomes a pNGB with mass

proportional to powers of the ExSB parameter e∗.

1In the case P = 2 one has a discrete parity Z2 in the place of SO(P−1). It is worthy to note that SO(6)/SO(5) ∼

SU(4)/Sp(4) provides the minimal coset of this type with an ultraviolet (UV) completion of fermions in a complex

representation of the gauge group, and represents the minimal SO(N) realization of an UV-complete pNGB composite

Higgs model [3]. The often denoted as minimal coset SO(5)/SO(4) lacks a four dimensional UV completion.
2The experimental absence of massless scalars implies that all the remaining P−1 = N−5 NGB gain mass through

some mechanism not discussed in these proceedings, such as Higgsing or some BSM non-perturbative dynamics.
3These results corresponds to the Landau gauge and R is the renormalization scale in an appropriate scheme. There

are further corrections ∼
e2
∗λ j

(4π)2 S4 and ∼
e2
∗µ2

j

(4π)2 S2 if one considers a different gauge. SM loops introduce further SO(N)

ExSB terms, as the SM only couples to the ~φ components.
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In the general broken case, the φ–S mixing parameter ω ∈ [0,1] [2] (h ≈ φ for ω ≈ 0 and h ≈ S

for ω ≈ 1) and the masses are related to the model parameters in the form 4

M2, m2 =
M̄2

2



1±

√

1−
4m̄2

M̄2



 , λ2v2
s , λ1v2 = M̄2



1±|1−2ω |

√

1−
4m̄2

M̄2



 , (1.4)

|1−2ω |=

(

1−
4m̄2

M̄2

)− 1
2
(

1−
4λ1m̄2

λ eff
1 M̄2

)

1
2

, M̄2 =
1

2
(λ1v2 +λ2v2

s ), m̄2 =
λ eff

1 λ2v2v2
s

4M̄2
.

2. Low energy limit and Effective Field Theory

In the limit of a large mass gap m2 ≪ M2 –which we will assume from now on–, one has

m2 ≈ m̄2, M2 ≈ M̄2 and λ1v2 + λ2v2
s ≈ 2M2, up to corrections O(m2/M2). This alone does not

imply a hierarchy between v2 and v2
s . However, in general, the hWW coupling is related to the

mixing in the exact form ω = 1−
(

ghWW

gSM
hWW

)2

[2], leading to the relations

SM ≈ EFT

γ ≪ 1
⇔ Mixing ω ≪ 1 ⇐⇒

4λ1m̄2

λ eff
1 M̄2

≪ 1 ⇐⇒ λ1v2 ≈
2λ1m2

λ eff
1

≪ λ2v2
s ≈ 2M2 , (2.1)

with the positive parameter γ =
λ 2

3 v2

2λ2µ2
2

[2], and up to O( m2

M2 ) and O(ω) corrections. Thus, there is a

large v2 ≪ v2
s ≈ f 2 hierarchy when λ1 ≈ λ2. In the limit (2.1), the low-energy EFT is organized in

powers of γ ≈
(λ1−λ eff

1 )m2

λ eff
1 M2 ≪ 1, such that, up to O(γ), one finds [2], e.g.,

V (h)EFT =
m2h2

2
+

(

1−
3γ

2

)

m2h3

2v
+

(

1−
25γ

3

)

m2h4

8v2
− γ

m2h5

2v3
− γ

m2h6

12v4
(2.2)

FC(h)
EFT = 1+

(

1−
γ

2

) 2h

v
+(1−2γ)

h2

v2
−

4γ

3

h3

v3
−

γ

3

h4

v4
, (2.3)

with the low-energy potential V (h)EFT and ∆L =

(

g2v2

4
W µW

†
µ +

(g2 +g
′ 2)v2

4
ZµZµ

)

×FC(h)
EFT

the Lagrangian providing the interaction vertices W+W−, ZZ → h, hh ... (the SM corresponds to

the value γ = 0). Experimentally λ eff
1 ≈ 2m2

v2 ≈ 0.5 and 0 ≤ γ ≈ ω = 1−
(

ghWW

gSM
hWW

)2

≤ 0.2 for an hWW

coupling in the range 0.9 ≤ ghWW

gSM
hWW

≤ 1.

In terms of v2,v2
s 6= 0 and the λ1,2,3, one approaches the SO(N) invariant limit when |δ j| ≪ 1.

Thus, λ ∼ λ eff
1 /δ j can become non-perturbative near the SO(N) symmetric limit, for small enough

δ j: e.g., for |δ j| ∼<
1

(4π)2 ≪ 1 one has λ ∼> 8π2. We have performed a numerical analysis for the

benchmark points (BP) of the form λ2 = λ , δ1 = δ3 =−δ with 0≤ δ ≤ 1/2 and such that λ eff
1 = 0.5.

In order to have a solution for δ one needs λ ≥ 4λ eff
1 = 2. In Fig. 1, we have plotted λ1v2

2M2 vs. m
M

and λ1v2

2M2 vs. ξ for arbitrary values of v, vs. We fix δ = 0.64× 10−2 (soft ExSB), 0.15 (moderate

ExSB), 1
2

(large ExSB) for the benchmark points A, B and C, respectively, which correspond to λ =

8π2, 4, 2. It is illustrative to note that, in the strongly coupled case λ = 8π2, one has M ≈ 3.6 TeV

(M ≈ 6.5 TeV) for ξ = 1/4 (ξ = 1/16). The results are exact and no expansion is performed here.

4The relations in the second identity in (1.4) also admit the inverted hierarchy ∓.

2



P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
2
5
1

SO(N) models and Higgs extensions A. González-Jerez , C. Quezada,

Figure 1: BP A (thick black), B (light green) and C (red), from bottom to top. For the plot for ξ , the lines for

the BP A and B –and all the BP in between– are essentially superimposed and very approximately coincide

with the straight line ξ = λ1v2

2M2 . This linear relation is approximately fulfilled for any δ in this type of BP.

We note that m2

M2 → 0 for either
λ1v2

2M2 → 0 or 1, so the Higgs mass is linked to the EW SSB.

In conclusion, the symmetry pattern SO(N)
ExSB
−→ SO(4)×SO(P)

SSB
−→ SO(3)×SO(P−1) natu-

rally recovers the SM at low energies provided the ExSB potential V1 generates a vev 〈ζ 〉= ξ ≪ 1

(obviously, far from trivial). We would like to point out in these proceedings the existence of

strongly interacting scenarios with a large coupling λ and a scale hierarchy of the type m2 ∼ v2 ≪

f 2 ≪ M2 ≈ λ f 2

2
near the SO(N) limit, and ξ ≪ λ2

λ1
in general. Other works consider variants of

this symmetry pattern with N = 6: SO(6)
SSB
−→ SO(4)×SO(2), which gives places to 8 NGB [5]; a

non-linear realization of SO(6)
SSB
−→ SO(5) where one of the 5 NGB is proposed as as a dark matter

candidate [1]; lattice simulations of the SU(4)/Sp(4) (∼ SO(6)/SO(5)) spectrum properties [3];

a non-linear realization of the latter [6], where a large deviation from the SM is found for ghhh;

variations of the ExSB V1 based on fermion-loop estimates of the CW potential [7]. All of them

point out SO(N) models as appropriate BSM extensions which naturally generate a light pNGB h

and reproduce the SM phenomenology and its SO(4)/SO(3) chiral/custodial EW structure at low

energies, deserving further studies in the future.
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