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1. Introduction

In this contribution we summarize the findings from our study in Ref. [1] where we performed
a comparison of two prominent models for the evolution of bulk QCD matter. The first one is
a non-equilibrium transport approach, the Parton-Hadron-String-Dynamics (PHSD) [2, 3, 4], and
the second one a 2D+1 viscous hydrodynamical model, VISHNew [5, 6] which is based on the
assumption of local equilibrium and conservation laws.

Non-equilibrium effects are considered to be strongest during the early phase of the heavy-ion
reaction and thus may significantly impact the properties of probes with early production times,
such as heavy quarks (charm and bottom hadrons), electromagnetic probes (direct photons and
dileptons), and jets. Moreover, some bulk observables, such as correlation functions and higher-
order anisotropy coefficients, might also retain traces of non-equilibrium effects [7, 8, 9]. In par-
ticular, the impact of the event-by event fluctuations on the collective observables has been studied
by Kodama et al. [8]. Based on the comparison of the coarse-grained hydrodynamical evolution
with the PHSD dynamics, they find that in spite of large fluctuations on event-by-event basis in the
PHSD, the ensemble averages are close to the hydrodynamical limit. A similar behavior has been
pointed out before within the PHSD study in Ref. [2] where a linear correlation of the elliptic flow
vy with the initial spatial eccentricity & has been obtained for the model study of an expanding
partonic fireball (cf. Fig. 7 in Ref. [2]). Such correlations of v, versus & are expected in the ideal
hydrodynamical case [10]. The large event-by-event fluctuations of the charge distributions has
been addressed also in another PHSD study [11].

In the present paper our focus will be on isolating differences in the dynamical evolution
of the system that can be attributed to non-equilibrium dynamics. The groundwork laid in this
comparative study will hopefully lead to the development of new observables that have an enhanced
sensitivity to the non-equilibrium components of the evolution of bulk QCD matter and that will
allow us to quantify how far off equilibrium the system actually evolves.

2. Description of the models

2.1 PHSD transport approach

The Parton-Hadron-String Dynamics (PHSD) transport approach [2, 3, 4, 12] is a microscopic
covariant dynamical model for strongly interacting systems formulated on the basis of Kadanoff-
Baym equations [13, 14] for Green’s functions in phase-space representation (in first order gra-
dient expansion beyond the quasi-particle approximation). The approach consistently describes
the full evolution of a relativistic heavy-ion collision from the initial hard scatterings and string
formation through the dynamical deconfinement phase transition to the strongly-interacting quark-
gluon plasma (sQGP) as well as hadronization and the subsequent interactions in the expanding
hadronic phase as in the Hadron-String-Dynamics (HSD) transport approach [15]. The transport
theoretical description of quarks and gluons in the PHSD is based on the Dynamical Quasi-Particle
Model (DQPM) for partons that is constructed to reproduce lattice QCD results for the QGP in
thermodynamic equilibrium [12, 16] on the basis of effective propagators for quarks and gluons.
The DQPM is thermodynamically consistent and the effective parton propagators incorporate finite
masses (scalar mean-fields) for gluons/quarks as well as a finite width that describes the medium
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dependent reaction rate. For fixed thermodynamic parameters (7', 14,) the partonic width’s I';(T, i)
fix the effective two-body interactions that are presently implemented in the PHSD [17]. The PHSD
differs from conventional Boltzmann approaches in a couple of essential aspects: 1) it incorporates
dynamical quasi-particles due to the finite width of the spectral functions (imaginary part of the
propagators); ii) it involves scalar mean-fields that substantially drive the collective flow in the
partonic phase; iii) it is based on a realistic equation of state from lattice QCD and thus describes
the speed of sound cy(7T') reliably; iv) the hadronization is described by the fusion of off-shell
partons to off-shell hadronic states (resonances or strings) and does not violate the second law of
thermodynamics; v) all conservation laws (energy-momentum, flavor currents etc.) are fulfilled in
the hadronization contrary to coalescence models; vi) the effective partonic cross sections are not
given by pQCD but are self-consistently determined within the DQPM and probed by transport
coefficients (correlators) in thermodynamic equilibrium. The latter can be calculated within the
DQPM or can be extracted from the PHSD by performing calculations in a finite box with periodic
boundary conditions (shear- and bulk viscosity, electric conductivity, magnetic susceptibility etc.
[18, 19]). Both methods show a good agreement.

2.2 2D+1 viscous hydrodynamics

Relativistic hydrodynamical models calculate the space-time evolution of the QGP medium
via the conservation equations
9T =0 @.1)

for the energy-momentum tensor
" =eutu” — A¥Y(P+11) + 7", (2.2)

provided a set of initial conditions for the fluid flow velocity u*, energy density e, pressure P, shear
stress tensor T#V, and bulk viscous pressure I1. For our analysis, we use VISH2+1 [5], which is an
extensively tested implementation of boost-invariant viscous hydrodynamics that has been updated
to handle fluctuating event-by-event initial conditions [6]. We use the method from Ref. [20] for
the calculation of the shear stress tensor 7#V.

This particular implementation of viscous hydrodynamics calculates the time evolution of the
viscous corrections through the second-order Israel-Stewart equations [21, 22] in the 14-momentum
approximation, which yields a set of relaxation-type equations [23]

T+ 11 = — &6 — Sunll6 + ¢ 117 + A ¥ oy + G370V 7y

Tt M) L oY = 2n ot 427 WY — 8tV O+ ¢yt V)Y — T 6V 4 AgrTIoHY + g6 IITHY.
(2.3)
Here, 1 and { are the shear and bulk viscosities. For the remaining transport coefficients, we
use analytic results derived for a gas of classical particles in the limit of small but finite masses [23].
The hydrodynamical equations of motion must be closed by an equation of state (EoS), P =
P(e). We use a modern QCD EoS based on continuum extrapolated lattice calculations at zero
baryon density published by the HotQCD collaboration [24] and blended into a hadron resonance
gas EoS in the interval 110 < T < 130 MeV using a smooth step interpolation function [25]. While
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not identical, this EoS is compatible with the one that the DQPM model (underlying the PHSD
approach) is tuned to reproduce.

For our study here, we shall initialize the hydrodynamical calculation with an initial condi-
tion extracted from PHSD that provides us with a common starting configuration for both models
regarding our comparison of the dynamical evolution of the system.

3. Non-equilibrium initial conditions

In this section we describe the construction of the initial condition for the hydrodynamical
evolution from the non-equilibrium PHSD evolution. One should note that PHSD starts its calcula-
tion ab initio with two colliding nuclei and makes no equilibrium assumptions regarding the nature
of the hot and dense system during the course of its evolution from initial nuclear overlap to final
hadronic freeze-out. For the purpose of our comparison we have to select the earliest possible time
during the PHSD evolution where the system is in a state in which a hydrodynamical evolution is
feasible (e.g. the viscous corrections are already small enough) and generate an initial condition for
the hydrodynamical calculation at that time (note that this criterion is less stringent than assuming
full momentum isotropization or local thermal equilibrium).

3.1 Evaluation of the energy-momentum tensor 7"V in PHSD

The energy-momentum tensor 7#Y(x) of an ideal fluid (by removing viscous corrections in
Eq. 2.2) is given by
" = (e+ P)u*u’ — Pg"¥ 3.1

where e is the energy density, P the thermodynamic pressure expressed in the local rest frame
(LRF) and the 4-velocity is u* =y (1, By, By, B;). Here B is the (3-)velocity of the considered fluid

element and the associated Lorentz factor is given by y=1/4/1— [32.

In order to calculate 7Y in PHSD which fully describes the medium in every space-time
coordinate, the space-time is divided into cells of size Ax = 1 fm, Ay = 1 fm (which is comparable
to the size of a hadron) and Az o< 0.5 x t/yyn scaled by yyy to account for the expansion of the
system. In each cell, we can obtain TV in the computational frame from:

TMV(x) :;/Ow

where f;(E) is the distribution function corresponding to the particle , le the 4-momentum and

&*pi pip
2n) fi(E) “E (3.2)

v
i

E; = p? is the energy of the particle i. In the case of an ideal fluid, if the matter is at rest (u* =
(1,0,0,0)) T*V(x) should only have diagonal components and the energy density in the cell can be
identified to the 7% component. However, in heavy-ion collisions the matter is viscous, anisotropic
and relativistic, thus the different components of the pressure are not equal and it becomes more
difficult to extract the relevant information. This especially holds true for the early reaction time
at which the initial conditions for hydrodynamical model are taken. In order to obtain the needed
quantities (e, 3) from THY for the hydrodynamical evolution, we have to express them in the local
rest frame (LRF) of each cells of our space-time grid. In the general case, the energy-momentum
tensor can always be diagonalized, i.e presented as
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THY (xy)i= A (") = A g*Y (xv)i, (3.3)

with i =0, 1,2,3, where its eigenvalues are A; and the corresponding eigenvectors (xy);. When
i = 0, the local energy density e is identified to the eigenvalue of 7"V (Landau matching) and the
corresponding time-like eigenvector is defined as the 4-velocity u, (multiplying (3.1) by uy):

" uy, = eu” = (eg"")uy (3.4

using the normalization condition u*u, = 1. In order to solve this equation, we have to cal-
culate the determinant of the corresponding matrix which is the 4™ order characteristic polynomial
associated to the eigenvalues A:

TOO -2 TOl T02 T03
T 10 T] 1 y) T 12 T 13
P(A) = 20 ;: 22 23 (3.5
T T T“+A T
T30 T3l T32 T33 _1_2’
Having the four solutions for this polynomial, we can identify the energy density being the larger
and positive solution, and the 3 other solutions are (—P;) the pressure components expressed in the

LRF. To obtain the 4-velocity of the cell, we use (3.4) which gives us this set of equations:

(TP —e) +TUX +TO?Y +T%Z =0
T+ (T +e)X +T2Y +TBZ=0
TR+ TAX (TP +e)Y +THZ =0
TO+T3IX +T32Y + (T3 +e)Z=0

(3.6)

Rearranging these equations, we can obtain the solutions which are actually for the vector u, =
y (1,X,Y,Z) =y (1,—Bx, —By, —P:). To obtain the physical 4-velocity u*, we have to multiply by
g*Vuy = ut.
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Figure 1: Initial conditions for hydrodynamics: the energy density profiles from a single PHSD event (left
panel) and averaged over 100 PHSD events (right panel) taken at + = 0.6 fm/c for a peripheral (b = 6 fm)
Au+Au collision at /syy = 200 GeV.
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3.2 PHSD initial conditions for hydrodynamics

By the Landau matching procedure described above, we can obtain the initial conditions such
as the local energy density e and initial flow B for the hydrodynamical evolution. In the PHSD sim-
ulation the parallel ensemble algorithm is used for the test particle method, which has an impact
on the fluctuating initial conditions. For a larger number of parallel ensembles (NUM), the energy
density profile is smoother since it is calculated on mean-field level by averaging over all ensem-
bles. From a hydrodynamical point of view, gradients should not be too large and some smoothing
of the initial conditions is therefore required. Here, we choose NUM= 30, which provides the
same level of smoothing of the initial energy density as in typical PHSD simulations. In fig. 1 we
show the initial condition at time ¢ = 0.6 fm/c extracted from a single PHSD event averaged over
(NUM=30) parallel events (left panel) and averaged over 100 parallel events (right panel), the color
maps represent the local energy density while the arrows show the initial flow at each of the cells.
Even though the initial profiles are averaged over NUM= 30 parallel events, the distribution still
captures the feature of event-by-event initial state fluctuations.

PHSD: t = 0.6 fm/c PHSD: t = 1.6 fm/c PHSD: t = 2.6 fm/c PHSD: t = 3.6 fm/c
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Figure 2: Evolution of the inverse Reynolds number R; ' extracted from PHSD in the transverse plane of
a peripheral (b = 6 fm) Au+Au collision at /syy = 200 GeV. Note that T#" has been averaged over 100
PHSD events.

In order to justify the choice of initial time #y = 0.6 fm, we first took a look in Ref. [1] at
the evolution of the different pressure components in PHSD as a function of time. We have seen
that by averaging over many PHSD events, the medium reaches with time a transverse pressure
comparable to the isotropic one as given by the IQCD EoS. This statement is of course not valid
for a single PHSD event where the pressure components show a much more chaotic behavior and
where the high fluctuations in density and velocity profiles indicate that the medium is in a non-
equilibrium state, as we will see in the next section. In the pre-equilibrium stage deviations from
thermal equilibrium are very large. As a further check, we evaluated the inverse Reynolds number
in Fig. 2 defined as R;' = /wHV7,, /P which quantifies the applicability of fluid dynamics. One
can see that at 0.6 fm/c, the inverse Reynolds number is predominantly below 1 which reinforce
this choice for the initialization time of the hydrodynamic simulation.

4. Medium evolution: hydrodynamics versus PHSD

In this section we compare the response of the hydrodynamical long-wavelength evolution
to the PHSD initial conditions with the microscopic PHSD evolution itself. In order to avoid



Traces of non-equilibrium dynamics in relativistic heavy-ion collisions Pierre Moreau

as many biases as possible we apply the temperature-dependent shear viscosity as determined in
PHSD simulations [18] and shown in the left panel of Fig. 3: the blue and red symbols correspond
to 1 /s obtained from the Kubo formalism and from the relaxation time approximation method,
respectively. The black line in Fig. 3 shows the parametrization of the PHSD n/s(T'), which is
used in the viscous hydrodynamics for the present study. We note that the parametrized curve is
very similar to the recently determined temperature dependence of 17/s via Bayesian analysis of
the available experimental data [26]. Concerning the bulk viscosity, we decided to use the bulk
viscosity that has recently been determined by the Bayesian analysis of experimental data in our
hydrodynamical simulations [26]. In the right panel of Fig. 3 we compare the ratio of bulk viscosity
to entropy § /s that is adapted in our hydrodynamical simulations and the one extracted from PHSD
simulations. It should be noted that the maximum /s that hydrodynamical model can handle is
much smaller than the bulk viscosity from PHSD simulations, and its effect on the momentum
anisotropy will be discussed at the end of this section.

5 T T T T
§ PHSD: —¢— Kinetic theory —@— Kubo formalism B ' ' N
5 2 m A A @ O IlatticeQCD 100 3 Pl.{SD ® © lattice QCD
(=} o o 8 H B
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7(:—05 @ hydro:
~ 0.50 default
0.2 —fit ———y = eeeeeee
3 — = hydro 0.25
0.1 ) J
—————— O e S I
0.05 ) ) nE n/sKs.s = 1/(4n) 0.00 =N
1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
T/T, /T,

Figure 3: (Color online) 11/s and /s versus scaled temperature 7 /T¢: Left: The symbols indicate the
PHSD results of 1n/s from Ref. [18], calculated using different methods: the relaxation-time approxi-
mation (red line+diamonds) and the Kubo formalism (blue line+dots); the black line corresponds to the
parametrization of the PHSD results for 17/s. The orange short dashed line demonstrates the Kovtun-Son-
Starinets bound [27] (1/s)kss = 1/(4x). For comparison, the results from the virial expansion approach
(green line) [28] are shown as a function of temperature, too. The orange dashed line is the 17 /s of VISHNU
hydrodynamical model that has been recently determined by Bayesian analysis; Right: {/s from PHSD
simulation from Ref. [18] and the { /s that is adapted in our hydrodynamical simulations.

4.1 Space-time evolution of energy density ¢ and velocity ﬁ

Starting with the same initial conditions (as discussed in section 3), the evolution of the QGP
medium is now simulated by two different models: the non-equilibrium dynamics model — PHSD,
and hydrodynamics — (2+1)-dimensional VISHNU.

Fig. 4 shows the time evolution of the local energy density e(x,y,z = 0) (from T*") (left) and
the corresponding temperature 7 (right) as calculated using the IQCD EoS in the transverse plane
from a single PHSD event (NUM=30) at different times for a peripheral (b = 6 fm) Au+Au collision
at \/syy = 200 GeV. As seen in figure 1 for # = 0.6 fm/c, the energy density profile is far from
being smooth. Note also that the energy density decreases rapidly as the medium expands in the
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Figure 4: Local energy density e(x,y,z = 0) (left) and the corresponding temperature 7 (x,y,z = 0) given by
the EoS (right) in the transverse plane from a single PHSD event (NUM=30) and a single hydrodynamical
event at different times for a peripheral (b=6fm) Au+Au collision at ,/syy = 200 GeV.



Traces of non-equilibrium dynamics in relativistic heavy-ion collisions Pierre Moreau

transverse and longitudinal directions. By converting the energy density to the temperature given
by the 1QCD EoS, we can see that the variations are less pronounced in that case. In particular for
the energy density at later times one can already observe a significant smoothing compared to the
PHSD evolution. A comparison of the two medium evolutions shows distinct differences: in PHSD
the energy density retains many small hot spots during its evolution due to its spatial non-uniformly.
In hydrodynamics, the initial hot spots of energy density quickly dissolve and the medium becomes
much smoother with increasing time. We attribute these differences directly to the non-equilibrium
nature of the PHSD evolution. Moreover, as a result of the initial spatial anisotropy, the pressure
gradient in x-direction is larger than that in y-direction, resulting in a slightly faster expansion in
x-direction.

4.2 Time evolution of the spatial and momentum anisotropy

Much interest is given to the medium’s response to initial spatial anisotropies. For the hydro-
dynamical models the spatial anisotropies lead to substantial collective flow, measured by Fourier
coefficients of the azimuthal particle spectra. Initial spatial gradients are transformed into momen-
tum anisotropies via hydrodynamical pressure. While experimentally only the final state particle
spectra are known, models for the space-time evolution of the medium can give insight into the
evolution of the spatial and the momentum anisotropy. For hydrodynamical models the latter is
directly related to the elliptic flow v,. Similar statements apply to the transport models where the
initial spatial anisotropies are converted to momentum anisotropies [2].

The spatial anisotropy of the matter distribution is quantified by the eccentricity coefficients
€, defined as
Jrdrd@r*exp(ing)e(r,¢)

[ rdrd¢rie(r,¢)

where ¢(r, ¢) is the local energy density in the transverse plane.

g, exp(in®,) = — 4.1)

The second-order coefficient &, is also called ellipticity and to leading order the origin of the
elliptic flow v,. It can be simplified to

e V{r2cos(20) 2 + {sin(29) .

{r’}
where {...} = [dxdy(...)e(x,y) describes an event-averaged quantity weighted by the local energy
density e(x,y) [29].
The importance of event-by-event fluctuations in the initial state has been realized in particular

for higher-order flow harmonics but also as a contribution to the elliptic flow and has been exten-
sively investigated both experimentally and theoretically [30, 31, 32]. As shown earlier, the PHSD
model naturally produces initial state fluctuations due to its microscopic dynamics. We therefore
apply event-by-event hydrodynamics and all subsequent quantities are averaged over many events.

In Fig. 5 we show the time evolution of the ellipticity (&) for both medium descriptions. For
the PHSD simulations we observe large oscillations in (&) at the beginning of the evolution due
to the initialization geometries and formation times. After sufficient overlap of the colliding nuclei
at the initial time 7y the average (&;) is stabilized in PHSD. There are, however, still significant
event-by-event fluctuations of this quantity at later times and strong variations between individual
events.
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Figure 5: (Color online) Event-by-event averaged spatial eccentricity & of 100 PHSD events and 100
VISHNU events with respect to proper time, for a peripheral Au+Au collision (b = 6 fm) at /syy = 200
GeV. The green dots show the distribution of each of the 100 PHSD events used in this analysis. The solid
red line is the average over all the green dots. The blue, yellow and black line correspond to hydrodynamical
evolution taking different initial condition scenarios.
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Figure 6: (Color online) Event-by-event averaged total momentum anisotropy of 100 PHSD events and 100
VISHNU events with respect to proper time, for a peripheral Au+Au collision (b = 6 fm) at /syy = 200
GeV. Left: the total momentum eccentricity of hydrodynamical evolution for different initial scenarios, as
well as different bulk viscosity adapted in the hydrodynamical simulation. Right: comparison of the total
momentum eccentricity from PHSD events compared with the standard hydrodynamical events. The green
dots show the distribution of each of the 100 PHSD events used in this analysis. The solid red line is an
average over the green dots. The black line corresponds to the standard hydrodynamical evolution taking the
100 initial conditions which are generated from PHSD events.

In contrast, in a single hydrodynamical event €, deviates from the average, but remains a
smooth function of time. Due to the faster expansion in x-direction the initial spatial anisotropy
decreases during the evolution for both medium descriptions. However, the spatial anisotropy
decreases faster when initial pre-equilibrium flow fB; (extracted from the early PHSD evolution) is
included in the hydrodynamical evolution. In this case, the time evolution of the event-by-event
averaged spatial anisotropy is very similar in PHSD and in hydrodynamics. Initializing with the
shear-stress tensor 7rl“ ¥ may have slight effects on the spatial eccentricity but not large enough to

be visible.

A similar feature is also seen in the evolution of the momentum ellipticity, which is directly
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related to the integrated elliptic flow v, of light hadrons. The total momentum ellipticity is deter-
mined from the energy-momentum tensor as [33, 20]:

[ dxdy(T™ —T)
P [dxdy(T* +T»)

4.3)

Here the energy-momentum tensor includes the viscous corrections from 7#" and IT.

In the left panel of Fig. 6 we show the time evolution of the event-by-event averaged (€(p)) for
the hydrodynamical medium description with and without pre-equilibrium flow in the initial con-
ditions. Including the initial flow leads to a finite momentum anisotropy at Ty which subsequently
increases as the pressure transforms the spatial anisotropy in collective flow. Consequently, g, is
larger than in the scenario without initial flow throughout the entire evolution of the medium and
an enhanced elliptic flow can be expected. We also see that for an enhanced bulk viscosity around
T, the momentum anisotropy develops a bump at later times, which is more pronounced for larger
bulk viscosity.

In the right panel of Fig. 6 the hydrodynamical simulation is compared to the results from
PHSD, again for event-by-event averaged quantities and the event-by-event fluctuations indicated
by the spread of the cloud. The PHSD momentum eccentricity is constructed by Eq. (4.3) where
THV is evaluated from Eq. (3.2). It can be observed that before 7y the averaged momentum
anisotropy in PHSD develops continuously during the initial stage, before it reaches the value
which is provided in the initial conditions for hydrodynamics. Despite the seemingly large bulk
viscosity, as discussed in the beginning of this section, the momentum anisotropy in PHSD does
not show any hint of a bump like in the hydrodynamical calculation. The response to intrinsic bulk
viscosity in a microscopic transport model does not seem to be as strong as in hydrodynamics.

5. Summary

In this work, we have compared two commonly used descriptions of the evolution of a QGP
medium in heavy-ion collisions, the microscopic off-shell transport approach PHSD and a macro-
scopic hydrodynamical evolution. Both approaches give an excellent agreement with numerous
experimental data, despite the very different assumptions inherent in these models. In PHSD,
quasi-particles are treated in off-shell transport with thermal masses and widths which reproduce
the lattice QCD equation of state and are determined from parallel event runs in the simulations.
Hydrodynamics assumes local equilibrium to be reached in the initial stages of heavy-ion colli-
sions and transports energy-momentum and charge densities according to the lattice QCD equation
of state and transport coefficients such as the shear and bulk viscosity. We have tried to match the
hydrodynamical evolution as closely as possible to these quantities as obtained within PHSD:

1. by construction the equation of state in PHSD is compatible with the IQCD equation of state
used in the hydrodynamical evolution

2. anew Landau-matching procedure was used to determine initial conditions for hydrodynam-
ics from the PHSD simulation,

3. the hydrodynamical simulations utilize the same 7 /s(7T') as obtained within PHSD and
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4. different bulk viscosity parameterizations have been introduced in the hydrodynamical sim-
ulation that resemble to those obtained in (dynamical) quasi-particle models, which are the
basis for PHSD simulations.

In general we find that the ensemble averages over PHSD events follow closely the hydrody-
namical evolution. The major differences between the macroscopic near-(local)-equilibrium and
the microscopic off-equilibrium dynamics can be summarized as:

1. A strong short-wavelength spatial irregularity in PHSD at all times during the evolution
versus a fast smoothing of initial irregularities in the hydrodynamical evolution such that
only global long-wavelength structures survive. These structures have been calculated on the
level of the fluid velocity and energy density and quantified in terms of the Fourier modes of
the energy density in Ref. [1]. Due to the QCD equation of state the irregularities imprinted
in the temperature are smaller than in the energy density itself.

2. The hydrodynamical response to changing transport coefficients, especially the bulk viscos-
ity, has a strong impact on the time evolution of the momentum anisotropy. In PHSD these
transport coefficients can be determined but remain intrinsically linked to the interaction
cross sections. Although there are indications for a substantial bulk viscosity in PHSD, it
does not show the same sensitivity to the momentum space anisotropy as in hydrodynamical
simulations.

3. Event-by-event fluctuations might be of similar magnitude in quantities like the spatial and
momentum anisotropy but while they remain smooth functions of time in hydrodynamics
significant variations are observed within in a single event in PHSD as a function of time.

After having gained an improved understanding of the similarities and differences in the evo-
Iution of bulk QCD matter between the non-equilibrium PHSD and the equilibrium hydrodynamic
approach, we plan to utilize our insights in future projects regarding the development of observ-
ables sensitive to non-equilibrium effects and the impact these effects may have on hard probe
observables.
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