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Gamma-ray bursts (GRBs) are the most energetic transients in the far Universe. Several thousands
of GRBs have been observed so far but we could measure the distance of only a few hundreds.
We studied the parameters of GRBs with available spectroscopic redshift in order to be able to
estimate the redshift of those GRBs without a measured one. To calculate their distances we
applied two machine-learning estimator methods: random forest regressor and XGBoost. For
the process we used selected gamma, x-ray and ultraviolet parameters from the Swift GRB cata-
log, which contains the measured spectroscopic redshift of 328 GRBs. We found a significantly
higher correlation between the measured and estimated redshift, we have improved the correlation
in multiple steps from 0.57 (published by Ukwatta et al., 2016) to 0.67. It seems that both the ran-
dom forest and the XGBoost methods give similarly high correlation. For further improvements
additional redshift measurements are required.
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1. Introduction

Gamma-ray bursts (GRBs) are the most energetic explosions in distant galaxies. The duration
of these bursts can range from tens of milliseconds to thousands of seconds [1]. However, the
phenomenological classification scheme remains an open question since the 80s. It is generally
accepted that there are short and long GRBs [2], the former is thought to be originating from binary
neutron star mergers and the latter from hypernovas. Lately, with the help of multi-and uni-variate
statistical analysis techniques an intermediate group was found [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
Furthermore, recent publications have discovered large structures based on GRBs: the Hercules-
Borealis great wall at z ≈ 2 [14, 15] and the Giant GRB ring at z ≈ 0.8 [16, 17]. More GRBs
with known redshift are necessary to understand the genesis of these structures. There are more
attempts to estimate/determine the redshifts of GRBs without exact redshift measurement, such as
[18], which describes a "machine-z" redshift prediction algorithm. Their method could show a 0.57
correlation coefficient between machine-z predictions and the real redshift measurements.

2. Data

The Swift robotic telescope is a multi-wavelength space observatory specialized to study
GRBs and their afterglows with its three instruments on board working in gamma-ray (BAT), X-ray
(XRT), ultraviolet, and optical (UVOT) wavebands. In this work we used data from all three in-
struments, but in contrast with [18] we used not only the Swift GRB Table from the NASA website
but we merged this table with the Swift-XRT GRB Catalogue from the UK Swift Science Data
Centre [19, 20, 21], so our new table contains all X-ray spectral fitting data, which are more precise
compared to the data of the Swift GRB Table. Finally, we used similar parameters like [18].

3. Mathematical summary

XGBoost ("Extreme Gradient Boosting") is an advanced machine learning algorithm based on
the decision tree method and uses "boosting" to improve a single weak model by combining it with
a number of other weak models in order to generate a collectively strong model [22].

It is applied for supervised learning problems. To predict a target variable yi we use an xi

training sample with multiple features, where usually the parameters follow the variance of the
near normal, gamma or Poisson distribution.

Because there are relatively few GRBs with measured redshift, the training sample should
contain the most objects possible, that’s why we decided that the size of the training sample is 90%
of the size of the original sample and we cross-validate with 10% of the objects. The method, with
the help of a bootstrap algorithm, based on numerous – partially different – training samples, made
the final decision tree.

4. Results

Fig. 1 shows how we improved the correlation on a perspective block diagram. We checked
the input data, we decided that we skip the records where the parameters are uncertain. We defined
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some limits for the XRT first time observation and errors of data. We used the values if the errors
were not too bad (errors 5 100%). These limits were given by the examination of the parameter
distribution. On the other side, we only used the X-ray and UVOT data if the XRT/UVOT first time
observation was not too late (Tf irst 5 150/200s). Because these late measurements were conducted
in a different setup, sometimes hours or days later, therefore the measured values represent different
quantities than in all other data points. Additionally, we checked the redshift values too, and also
skipped the photometric redshift data.

Figure 1: This block diagram shows the main steps for improving the goodness of redshift estimation. We
checked the data and skipped the record which were not precise enough. Then we trained the method with
log10(1+ z) data because this was following normal distribution.

Examining the redshift distribution we found that on a logarithmic scale it can be estimated
with a normal distribution. Taking the fact into consideration that the used algorithm gives the
best results with parameters following normal distribution we decided that we train XGBoost with
log10(1+ z) samples.

After sufficiently cleaning the data –skipping the uncertain records (see above) – from all
three Swift instruments, we used the log10(1+z) data as a training sample with which a 0.67 linear
correlation (Fig. 2) was achieved between the estimated and measured redshifts. We calculated
both (Spearman and Pearson) correlation coefficients and their significances and found similar
correlation and high significances is both cases (sign. level: < 10−16).

5. Summary

We examined the Swift BAT-XRT-UVOT data. Using the XGBoost estimator we could suc-
cessfully improve the redshift estimations. The log10(1+ z) correlations improved between the
measured and calculated data from 0.57 to 0.67, the significance of this latter correlation – simi-
larly to the previous case – strong (sign. level: < 10−16). Our results show that with the increase in
the number of GRBs with measured redshift the redshift estimation can improve further. We plan
to take the errors of the parameters into consideration in our analysis, also to test other machine
learning algorithms for this task.
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Figure 2: We used the data of all three Swift instruments and sufficiently cleaned them. Using the
log10(1+ z) data we could establish a 0.67 linear correlation (both Pearson and Spearman correlation) be-
tween the estimated and measured redshifts without the errors of measured redshift (for now, the errors were
not taken into account). The figure shows this correlation between the logarithms of the estimated and the
measured redshifts.
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