

Study of the Interstellar Medium and Cosmic Rays in local H I Clouds

Tsunefumi Mizuno*on behalf of the Fermi-LAT Collaboration

Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

E-mail: mizuno@astro.hiroshima-u.ac.jp

Aims. We aim to study the interstellar medium (ISM) and cosmic-rays (CRs) in a mid-latitude region in the third Galactic quadrant (Galactic longitude l from 200° to 260° and latitude |b| from 22° to 60°). The region is expected to be dominated by local H I clouds since it is located at high latitude and free of know large molecular clouds.

Methods. We evaluated the total gas column density $N(H_{tot})$ by investigating the correlations among 21 cm survey data (HI4PI), *Planck* dust thermal emission models (optical depth at 353 GHz τ_{353} and radiance *R*), and *Fermi*-LAT γ -ray data in the region studied. In the South region, we first masked areas containing an intermediate velocity cloud or the Orion-Eridanus superbubble, and that with a ratio of the integrated H I 21-cm line intensity to dust emission significantly different from that seen in the rest of the region. We then fit the γ -ray data with a linear combination of gas template maps based on *Planck* dust models and other components to obtain the total gas column density $N(H_{tot,\gamma})$.

Results & Prospects. We found that $N(H_{tot,\gamma})/\tau_{353}$ and $N(H_{tot,\gamma})/R$ depend on dust temperature T_d in the North region, indicating that that neither τ_{353} nor R were proportional to $N(H_{tot})$. We also found that $N(H_{tot,\gamma})$ is not proportional to τ_{353} but shows non-linear relation in the South region. We will examine the systematic uncertainties and discuss ISM and CR properties inferred from γ -ray data.

7th Fermi Symposium 2017 15-20 October 2017 Garmisch-Partenkirchen, Germany

*Speaker.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).