
P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
0
4
3

Decoupling effects in the running of the
Cosmological Constant

Oleg Antipin
Rudjer Bošković Institute, Division of Theoretical Physics, Bijenička 54, HR-10000 Zagreb,
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of the vacuum energy stemming from the Higgs condensate in the entire energy range and show
that it behaves as expected from the simple dimensional arguments meaning that it exhibits the
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extension of the SM where saturation of this constraint enables us to predict the radiative Higgs
mass correctly. Generalization to constant curvature spaces is also given.

EPS-HEP 2017, European Physical Society conference on High Energy Physics
5-12 July 2017
Venice, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:oantipin@irb.hr
mailto:melic@irb.hr


P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
0
4
3

Decoupling effects in the running of the Cosmological Constant Blaženka Melić

1. Introduction

We start by briefly reviewing the Cosmological Constant (CC) problem and for this purpose it
is sufficient to work in the low energy domain of the gravitational physics so that we start with the
bare Hilbert-Einstein action with coupling constants Gvac, Λvac and ξ :

SHE =
∫

d4x
√
−g
{

LSM +ξ
0

ϕ
†
ϕ R− 1

16πG0
vac

(R+2Λ
0
vac)

}
. (1.1)

The bare quantities are defined with the superscript "0". Let us focus on the various contributions
to the vacuum energy density defining

(ρ0
Λ)

vac =
Λ0

vac

8πG0
vac

ρ
0
ind =V (ϕvac) =−

m4

2λ
(1.2)

where the ”induced” contribution ρ0
ind to the vacuum energy density is arising from the vacuum

condensates i.e. for ϕvac being the value of the Higgs field ϕ(x) which minimizes the Higgs po-
tential V (ϕ) = −m2ϕ†ϕ + λ

2 (ϕ
†ϕ)2, ρ0

ind is the Higgs condensate contribution (at the classical
level) to the induced vacuum energy. Both contributions to the vacuum energy must be renormal-
ized so that ρvac

Λ
(µ) and ρind(µ) and the connection with experimentally measured value ρphys at

µc = O(10−3) eV has to be achieved. Besides the vacuum and induced terms we may have ad-
ditional effects from the higher derivative gravitional terms as well as corrections from quantum
gravity so that the physical value ρphys measured at the cosmological RG scale µc finally reads

ρphys = ρ
vac
Λ (µc)+ρind(µc)+ ... = 10−47 GeV4 . (1.3)

The problem is that if we use the experimental Higgs mass mH = 125 GeV, then the corresponding
value |ρind(µ ∼ vew ≈ 246 GeV )| ∼ v4

ew' 108 GeV4. Therefore, neglecting all the ... terms in (1.3),
the ρvac

Λ
and ρind should cancel with the precision of 55 decimal orders. This is the CC fine-tuning

problem [2].
To deeper understand this tuning, one has to also take into account the decoupling effects of

massive particles due to the RG running from the high energies to the present one, µc = O(10−3)

eV. Clearly, we expect that contribution to the RG running from the particle of mass m should
change dramatically as we go from µ � m to µ � m regime. This leads to additional contribution
to ρind(µ) with the leading term scaling as µ2m2. We will show that requiring the absence (or,
at least, reduction) of this additional tuning due to µ2

c m2 term may provide a constraint on the
spectrum of the particle physics models [1].

2. RG running of the Cosmological Constant in the Standard Model

2.1 Mass-independent (MS) scheme

The renormalized effective potential V of the SM can be written in the ’t Hooft-Landau gauge
and the MS scheme as [3]

V (ρvac
Λ ,φ ,m2,λi,µ) ≡ V0 +V1 + · · · , (2.1)

V0 =−
1
2

m2
φ

2 +
1
8

λφ
4, V1 =

5

∑
i=1

ni

64π2 M4
i (φ)

[
log

M2
i (φ)

µ2 − ci

]
+ρ

vac
Λ , (2.2)
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Table 1: Contributions to the effective potential (2.1) from the SM particles W±, Z0, top quark t, Higgs φ

and the Goldstone bosons χ1,2,3.
Φ i ni κi κm

i ci

W± 1 6 g2/4 0 5/6

Z0 2 3 (g2 +g′2)/4 0 5/6

t 3 −12 y2
t /2 0 3/2

φ 4 1 3λ/2 1 3/2

χi 5 3 λ/2 1 3/2

where λi ≡ (g,g′,λ ,ht) runs over all dimensionless couplings and V0, V1 are the tree level potential
and the one-loop correction respectively. The tree-level background masses M2

i (φ) = κiφ
2−κm

i m2

of the particles with coefficients ni, κi, κm
i , and ci defined in Table.1 enter in the one-loop radiative

corrections and M1 ≡ mW , M2 ≡ mZ , M3 ≡ mt , M4 ≡ mHiggs, M5 ≡ mGoldstone.
We split the effective potential into two pieces: the φ -independent (vacuum) term and the

φ -dependent "scalar" term

V (ρvac
Λ ,φ ,m2,λi,µ) =Vvac(ρ

vac
Λ ,m2,λi,µ)+Vscal(φ ,m2,λi,µ) . (2.3)

The RG-invariance of the full renormalized effective potential reads (with γmm2 = βm2):(
µ

∂

∂ µ
+βλi

∂

∂λi
+ γmm2 ∂

∂m2 − γφ φ
∂

∂φ
+βρvac

Λ

∂

∂ρvac
Λ

)
V (ρvac

Λ ,φ ,m2,λi,µ) = 0 , (2.4)

and it is possible to show that Eq. (2.4) is, in fact, a sum of two independent RG equations,(
µ

∂

∂ µ
+βλi

∂

∂λi
+ γmm2 ∂

∂m2 +βρvac
Λ

∂

∂ρvac
Λ

)
Vvac(ρ

vac
Λ ,m2,λi,µ) = 0 , (2.5)(

µ
∂

∂ µ
+βλi

∂

∂λi
+ γmm2 ∂

∂m2 − γφ φ
∂

∂φ

)
Vscal(φ ,m2,λi,µ) = 0 . (2.6)

It is straightforward to check that the requirement (2.4) applied to the full one-loop effective
potential (2.1) leads to the conditions

1
8

βλ −
1
2

γφ λ = ∑
i

niκ
2
i

32π2 ,
1
2

γm− γφ = ∑
i

niκiκ
m
i

16π2 , µ
∂ρvac

Λ

∂ µ
= m4

∑
i

ni(κ
m
i )

2

32π2 , (2.7)

up to two-loop corrections. The first two equations come from (2.6) and the last condition satisfies
(2.5). These equations show explicitly that the vacuum Vvac and scalar Vscal parts of the full effective
potential satisfy independent RG equations. Combining (2.7) appropriately we finally obtain

µ
∂ (ρvac

Λ
+ρind)

∂ µ
= m4

(
∑

i

niκ
2
i

8π2λ 2 −∑
i

niκiκ
m
i

8π2λ
+∑

i

ni(κ
m
i )

2

32π2

)
= ∑

i

ni

32π2 M4
i (〈φ〉) , (2.8)

where we used

ρind(µ)≡V0(〈φ〉) =−
m4(µ)

2λ (µ)
M2

i (〈φ〉) = κi〈φ〉2−κ
m
i m2 = m2

(
κi

2
λ
−κ

m
i

)
(2.9)

and 〈φ〉2 = 2m2/λ . Eq.(2.8) is the central equation valid in the UV regime of massless and massive
theories, theories with the spontaneous symmetry breaking (SSB) and without.
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2.2 Decoupling effects of heavy particles

By definition, the RG equation (2.8) holds in the region µ�m and to go to the opposite regime
µ � m would require to take into account: 1) the contribution of heavy particles at the energies
near their mass, 2) the residual effects from the heavy particles at energies well below their mass.

It is well-known that the decoupling of heavy particles does not hold in a mass-independent
scheme like the MS, and for this reason they must be decoupled by hand using the sharp cut-off
procedure or some of the mass-dependent schemes. The quantum effects of the massive particles
are, in principle, suppressed at low energies by virtue of the Appelquist-Carazzone theorem, so
that in the region below the mass of the particle its quantum effects become smaller. On purely
dimensional grounds, in the regime µ�m one expects the corrections to the CC of the type µ2m2.
These corrections can be seen from the fact that in a mass-dependent subtraction scheme a heavy
mass m enters the β -functions through the dimensionless combination µ/m, so that the CC, being
a dimension-4 quantity, is expected to have the β -function corrected as follows:

β
(
mlight ,

µ

m

)
= am4

light +b
(

µ

m

)2
m4 + c

(
µ

m

)4
m4 + ... (2.10)

where a,b and c are some coefficients, mlight is some light mass mlight � µ , and the dots stand for
terms suppressed by higher order powers of µ/m� 1. We will now show how one can deal with
the decoupling effect in the SM and how to calculate explicitly the coefficients a,b,c for any model.

2.3 Mass-dependent scheme

In the MS renormalization scheme, one chooses counterterms (c.t.) in such a way as to remove
the divergent ∼ 1/ε pole and scale independent number −γE + log(4π) in the scattering ampli-
tudes and therefore, by construction, the counterterms are mass-independent. In a mass-dependent
renormalization scheme, the counterterms are mass-dependent and can be chosen, for example, to
subtract, in addition to the divergent pole and scale-independent numbers above, also the value of
the amplitude evaluated at the external momentum p2 =−µ2. After this additional finite subtrac-
tion, (2.8) will be replaced by the corresponding expression in the momentum subtraction scheme
(MOM) which reads [1]

µ
∂ (ρvac

Λ
+ρind)

∂ µ |MOM
= ∑

i

ni

32π2 M4
i (〈φ〉)

∫ 1

0

x(1− x)µ2dx
M2

i (〈φ〉)+ x(1− x)µ2 . (2.11)

This is the master equation describing the running of CC in any regime, non-decoupling and de-
coupling one, which is valid both in the UV and the IR regime. Working in the region where
(m2

light) j � µ2 � M2
i (〈φ〉) where M2

i (〈φ〉) = (M2
t ,M

2
W ,M2

Z,M
2
H) are heavy SM particles, we ob-

tain:

µ
∂ (ρvac

Λ
+ρind)

∂ µ
= ∑

j

n j(m4
light) j

32π2 +
µ2

12(4π)2

[
−12M2

t +6M2
W +3M2

Z +M2
H

]
+

µ4

30(4π)2 + ...

(2.12)

The above expression is exactly of the form of (2.10) and proves the expected decoupling behav-
ior in the effective theories. The light masses mlight may be, again, generated by the Higgs vev
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mlight(〈φ〉) such as a mass for, say, charm quark, or may be a new mass parameters in the SM
Lagrangian related, for example, to the neutrino masses. As the µ-scale slides down the energy,
more and more SM masses will migrate from the m4

light-term to the inside of the brackets in the
µ2-term. The µ2M2

i term in the running of ρvac
Λ

+ρind provides the leading RG effect due to the
heavy SM particles and we may demand it to vanish as to reduce the fine-tuning in the physical
value of the CC at the µc = O(10−3) eV. This requirement, however, leads to the SM prediction
mH ≈ 550 GeV, inconsistent within the experimental value of mH ≈ 125 GeV.

3. RG running of the Cosmological Constant in the massless theories

In the massless limit m = 0, from (2.7) we have ρvac
Λ

= const and only ρind runs with µ . Also,
in these theories at the tree-level 〈φ〉 = 0 which means that the tree-level mass of the Higgs is
zero and the electroweak symmetry needs to be broken radiatively. For this to happen, we need to
balance the tree-level potential against the 1-loop contribution, so that for consistent perturbative
expansion we have to impose the value of the Higgs quartic couplings at the electroweak scale to
be parametrically given as λ ∼ (g4,g′

4
,y4

t ). This allows us to simplify (2.12) to obtain (i =W,Z, t
and neglecting the light masses mlight):

µ
∂ρind

∂ µ
=
〈φ〉4

32π2 ∑
i

niκ
2
i

∫ 1

0

x(1− x)µ2dx
(M2

phys)i + x(1− x)µ2 =
µ2〈φ〉2

12(4π)2
∂

∂φ 2 ∑
i

niM2
i (φ)+

µ4

20(4π)2 + ... ,

(3.1)

where in the last line we used the fact that in the massless theory with only one background field
φ , any mass can be written as M2

i (φ) = κiφ
2. Notice that the µ2-proportional term is nothing but

the generalization of the well known Veltman condition i.e. the requirement of the absence of the
quadratic divergence for the Higgs mass (cancellation of the prefactor of the φ 2-term). This means
that in the massless case the fine-tuning problem of the Higgs mass is linked to the fine-tuning
problem of the Cosmological Constant value.

Let us consider the simplest extension of the SM by adding one extra massless real scalar S:

V0 =V SM
0 +λHSΦ

†
ΦS2 +

λS

4
S4 (3.2)

so that contribution from the Higgs background to the mass of the scalar S is given by M2
S(φ) =

λHSφ 2. In this model, the solution to the Veltman condition (3.1) reads

12M2
t −6M2

W −3M2
Z−M2

S = 0 =⇒ λHS(µ) = 6y2
t (µ)− 9

4 g2(µ)− 3
4 g′2(µ)

µ≈vEW≈ 4.8 .

Working in the parameter space of the model where 〈S〉=0, see [5] for details, leads to the scalar
mass MS =

√
λHS vEW ≈ 550 GeV which we already noticed above in the massive version of the

SM where the role of the scalar S was played by the Higgs.

M2
H = 3

8π2

[ 1
16

(
3g4 +2g2g′2 +g′4

)
− y4

t +
1
3 λ 2

HS

]
v2

EW =⇒ MH ≈ 125 GeV . (3.3)

This provides an interesting example of how the demand for the absence of leading RG effects in
the running of the ρind due to the heavy particles may provide the hints on the possible extensions
of the SM.
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4. Standard Model in the constant curvature space

Generalizing the SM to the constant curvature space in the mass-dependent scheme we obtain
[1]:

µ
∂ (ρvac

Λ
+ρind +κR)

∂ µ
= ∑

i

ni

32π2 M 4
i (〈φ〉)

∫ 1

0

x(1− x)µ2dx
M 2

i (〈φ〉)+ x(1− x)µ2 =

∑
j

n j(M 4
light) j

32π2 +
µ2

12(4π)2

[
−12m̃2

t +6m̃2
W +3m̃2

Z + m̃2
H +

7
3

R

]
+

µ4

30(4π)2 , (4.1)

where masses m̃2
i have corrections from the non-minimal Higgs coupling ξ

m̃2
i ≡M2

i (〈φ〉)−2κi
ξ R
λ

(4.2)

with M2
i (〈φ〉) defined in (2.9). The result (4.1) also generalizes effective theory expansion (2.10)

to the constant curvature space

β
(
mlight ,

µ

m

)
= a1 m4

light +b1 µ
2m2 + c1 µ

4 +d1µ
2R+ ... (4.3)

5. Conclusions

We revisited the decoupling effects associated with heavy particles in the RG running of the
vacuum energy using the mass-dependent renormalization scheme. We derived the universal one-
loop beta function of the vacuum energy ρvac

Λ
+ρind , arising from the Higgs vacuum and the Cos-

mological Constant term in the entire energy range, valid in the UV and in the IR regime. We
have shown that although ρvac

Λ
and ρind run separately, it is only the sum ρvac

Λ
+ρind that exhibits

behavior consistent with the decoupling theorem, in the SM as well as in massless theories with
the simple extension and in the generalization at the constant curvature spaces.
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