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We carefully study the implications of adiabaticity for thehavior of cosmological perturbations.
There are essentially three similar but different definisiof non-adiabaticity: one is appropriate
for a thermodynamic fluidPRyq, another is for a general matter fied; noq, and the last one is
valid only on superhorizon scales. The first two definition@cide if ¢ = ¢2 wherecs is the
propagation speed of the perturbation, wit§e= P/p. Assuming the adiabaticity in the general
sensedP:nag = 0, we derive a relation between the lapse function in the camgoslicing A
and 0PR,5q Vvalid for arbitrary matter field in any theory of gravity, bying only momentum
conservation. The relation implies that as longcas: ¢y, the uniform density, comoving and
the proper-time slicings coincide approximately for angwity theory and for any matter field
if OPhag = O approximately. In the case of general relativity this gitlee equivalence between
the comoving curvature perturbatic#i. and the uniform density curvature perturbati¢ron
superhorizon scales, and their conservation. This iszelon superhorizon scales in standard
slow-roll inflation.

We then consider an example in which= cs, wheredPhaq = P nag = 0 exactly, but the equiv-
alence betweerZ. and { no longer holds. Namely we consider the so-called ultra slailv
inflation. In this case botlZ. and are not conserved. In particular, as rwe find that it

is crucial to take into account the next-to-leading ordemtén {’s spatial gradient expansion
to show its non-conservation, even on superhorizon scdlbi is an example of the fact that
adiabaticity (in the thermodynamic sense) is not alwaysighdo ensure the conservationg
orl.
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1. Adiabaticity: several definitions

Let us consider several definitions of (non)-adiabaticity. Adiabaticitpjmaently a term from
thermodynamics. Therefore originally it is meaningful only when the basic maitbles such as
the energy density and pressure are thermodynamic. As can be seehérperturbed energy and
momentum conservation equations for a perfect fluid with equation of Btatd>(p), adiabatic
perturbations move with the speed of sougggiven by

, _F

= (1.1)

For a perfect adiabatic fluid, we therefore hae = c2dp. Then it seems natural to define the
non-adiabatic pressure as

OPhad = 0P — 2,0, (1.2)
which is gauge invariant and vanishes for a perfect fluid. This is theitefi used in [4, 5], and
in much of the literature.

However, the early universe is for sure not in thermal equilibrium, socamequestion the
above definition based on thermodynamics. In fact, when the universerimated by a scalar
field, it makes more sense to talk about the propagation speefithat scalar field (the phase
speed of sound, see also [6]), defined on comoving slices via

2= (g;’)(:. (1.3)

One is then led to define the non-adiabatic pressure as
OP% nad = OP: — 28 (1.4)
For a fluid, one hass = ¢, and both definitions coincide. However, this is in general not true.

For a minimally coupled scalar field one has, for example,

2¢
c&vz—1+§—%, 2=1, (1.5)

with &, the usual slow-roll parameters. In this sense, the second definition isganegal: It

can apply both to a fluid and to a scalar field, hence should be regardeel poper definition of
adiabaticity. Therefore we focus on the perturbation which satiéfieg.q = O in this paper. As a
consequence, for the first definition we then have (in agreement wjth [7]

OPhad = (Cg - C\%v)5pc- (1.6)

The third definition which is commonly used in the inflationary cosmology is abeustdge
when the so-called growing mode

2. Formulas for arbitrary matter independent of gravity

The conservation of the energy-momentum tensor in the comoving gawesdgiv, TH;) = 0.
oP:=—(p+P)A:. (2.2)
Note that this relation betwe&¥; andA. is completely independent of the theory of gravity.
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3. Useful relations among gauge-invariant variables indegndent of gravity

Combining Egs. (1.3), (1.6) and (2.1), we now have

22
OPnad = (C§—Cv2v)5pc = %(P%—P)A@ (3.2)

S
The first equality is an identity, while the second comes from the consendtitie energy mo-
mentum tensor, and is valid for any gravity theory. This equation may bedegas a statement
that 0P,aq has the same behavior &p. and Ac unlessc\?v = c§ In other words, the proper-time
slicing (A = 0), comoving slicing {— B = 0) and uniform density slicingdpo = 0) coincide with
each other (approximately) ¢, # cZ anddPhq = O (approximately). Namely,

We can use Eq. (3.1) to obtain for example a general relation betweenriwiog curvature
perturbationZ. and uniform density curvature perturbation

H
4 :c@c—gm)c:%c‘f'épnad : (3.3)

p(c—cd)
This is in agreement with the well-known coincidenceoénd %Z. on super-horizon scales for
slow roll-models in general relativity, since in this case# ¢, and 0P\ =~ 0 on superhorizon

scales. Note also that this relation is degenerate in the case-0€,,. As an example of such a
case during inflation, later we explicitly consider the so-called ultra-slowrfidtion model.

4. Discussion and conclusions

The seminal works [4, 5] have taught us that for any relativistic thebgyavity, adiabaticity
implies that{ and. %, coincide and are conserved when gradient terms can be neglectedi, whic
in general happens on superhorizon scales. In this work, we havaepd more insight into this
claim.

First, we have specified that the above statement holds when (non)tédigha defined in
the thermodynamical sense, see Eq. (1.2). We have argued that &iemsyut of equilibrium, like
the early universe, one should define (non)-adiabaticity in the strisesas in Eq. (1.4). In this
work, we have looked at perturbations which are strictly adiabatic in thet sémse §P; nag = 0),
and checked the implications for non-adiabaticity in the thermodynamical dfhge A third
definition of non-adiabaticity states that the adiabatic limit has been reachedraas the time-
dependent solution (the non-freezing one){fdras become totally negligible.

Second, we have rewritten the relation between (thermodynamical) ndpatidiey and con-
served quantities in such a way as to clarify when exactly gradient ternmsecageglected, bypass-
ing the need for an explicit computation of these gradient terms. In Eq.\{& have shown that
for any gravity theorypPR,4q is proportional to the lapse function in comoving slicig, provided
thatc? # c2,. In the particular case of general relativify, is proportional toZ.. S0 we obtain the
proportionality betwee®P.q and %, still under the condition that2 # ¢2. Furthermore, we
have obtained in Eq. (3.3) that whéR,,q = 0, Z. and{ coincide, again under the condition that
c2 # 2. This results holds independently of gravity theory as well.
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Any Gravity theory

General Relativity A = %./H)

Generic matter

2
SPraa=pe(c ~ k) = | (&)~ 1| (0+P)A

OPhad= (%)2—1 (p+|3)%

M. c. scalar field

5Pnad = (C%, - 1)Ac§02

OPhad= (C\%/* 1)%#

Any Gravity theory

General Relativity

Generic matter | { = %.— 5Pnadp

P
s = et bl e

{=Zc+(P+P) 255

M. c. scalar field| ¢ :%chAc(bz%

Z:%c+¢2%%

Table 1: The upper table shows the relation between the fluid-baseeéhdmbatic pressure perturbations
OPnag @and metric perturbations, and the lower table gives theiogldetween curvature perturbations on
uniform density slice§ and on comoving slice%.. For both tables the first column corresponds to relations
valid in any gravity theory, the second column to the caseeoiegal relativity, the first row is for a generic
matter field and the second one is for a minimally coupledesdaid.
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