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The product of the gluon dressing function and the square of the ghost dressing function in the
Landau gauge can be regarded to represent, apart from the inverse power corrections 1/Q2n ,
a nonperturbative generalization A (Q2) of the perturbative QCD running coupling a(Q2) (≡
αs(Q2)/π). Recent large volume lattice calculations for these dressing functions strongly indicate
that such a generalized coupling goes to zero as A (Q2)∼ Q2 when the squared momenta Q2 go
to zero (Q2 � 1 GeV2). We construct such a QCD coupling A (Q2) which fulfills also various
other physically motivated conditions. At high momenta it becomes the underlying perturbative
coupling a(Q2) to a very high precision. And at intermediately low momenta Q2 ∼ 1 GeV2

it gives results consistent with the data of the semihadronic τ lepton decays as measured by
OPAL and ALEPH. The coupling is constructed in a dispersive way, ensuring as a byproduct
the holomorphic behavior of A (Q2) in the complex Q2-plane which reflects the holomorphic
behavior of the spacelike QCD observables. The coupling was applied to the Borel sum rules
for τ-decay V + A spectral functions and values for the gluon (dimension-4) condensate and
the dimension-6 condensate were extracted, which reproduce the measured OPAL and ALEPH
data to a significantly better precision than the perturbative MS coupling (+OPE) approach. The
evaluation of the V -channel Adler function, related with the e+e → hadrons ratio, and of the
Bjorken polarized sum rule, both at low Q2 ∼ 1 GeV2, also give results considerably better than
with the usual MS pQCD+OPE approach.
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1. Motivation

In perturbative QCD (pQCD), the running coupling a(Q2)≡ αs(Q2)/π as a function of Q2 ≡
−q2 has Landau singularities, i.e., singularities outside the negative semiaxis in the complex Q2-
plane, in most renormalization schemes, including MS and related schemes. On the other hands, the
general principles of quantum field theories, namely locality, microcausality and unitarity, imply
that the spacelike physical quantities D(Q2), such as current correlators and hadronic structure
functions, are holomorphic (analytic) functions of Q2 in the entire complex plane with the exception
of the negative semiaxis, Q2 ∈ C\(−∞,−M2

thr], where Mthr. is a threshold scale of the order of
the light meson mass. Such quantities are evaluated as functions of the QCD running coupling
a(κQ2) where κ ∼ 1 is a chosen renormalization scale parameter, D(Q2)ev. = F (a(κQ2)). Since
a(κQ2), due to the mentioned Landau singularities, does not share the holomorphic properties that
D(Q2) must have, the evaluated expressions D(Q2)ev. (such as truncated perturbation series for
the leading-twist and higher-twist terms) have wrong holomorphic properties. Furthermore, at low
|Q2|, due to the vicinity of the Landau singularities the evaluation of a(κQ2) and thus of D(Q2)ev.

becomes unreliable. For these reasons, it is preferrable to evaluate D(Q2) using a holomorphic
analog A (Q2) of the pQCD coupling a(Q2), i.e., A (Q2) based on a(Q2), but in contrast to it, has
no Landau singularities, i.e., A (Q2) is a holomorphic function for Q2 ∈ C\(−∞,−M2

thr].
A first version of such a coupling, called Analytic Perturbation Theory (APT), was constructed

in [1]. A (APT)(Q2) has the same discontinuity along the negative axis Q2 =−σ < 0 as the under-
lying pQCD coupling a(Q2), but the Landau discontinuities and singularities of a(Q2) along the
positive axis are eliminated in the dispersive integral representation of the coupling. Later, sev-
eral other couplings were constructed with the dispersive approach, where the discontinuity at low
σ > 0 was changed or parametrized so that the coupling fulfilled certian physically-motivated con-
ditions [2, 3, 4, 5, 6]. These coupling are IR-finite, A (0) < ∞. Analytization of the pQCD beta
function β (a)/a also leads to a holomorphic coupling A (Q2) [7], but it is infinite at Q2 = 0. Light-
front holography approach to QCD [8] gives an IR-finite coupling A (Q2)LFH ∝ exp(−Q2/Q2

0)
where Q0 ∼ 1 GeV.

The general algorithm for the construction of the higher power analogs a(Q2)n 7→ An(Q2)
( 6= A (Q2)n in general) in such holomorphic frameworks was presented in [4] (integer n) and in [9]
(n noninteger).

The mentioned dispersive approaches can also be applied directly to (spacelike) physical quan-
tities D(Q2) to enforce the correct holomorphic and physical properties, cf. [10, 3, 5]. We will not
pursue this line here.

2. Construction of A (Q2)

Here we will describe briefly the construction of the coupling A (Q2) of Refs. [6]. Having
the (underlying) pQCD coupling a(Q2), in a given renormalization scheme, we will impose the
following physically-motivated requirements on the coupling A (Q2):
1. A (Q2) is a holomorphic function for Q2 ∈ C\(−∞,−M2

thr].
2. At high |Q2| � 1 GeV2 we have practically equality A (Q2) = a(Q2) (pQCD at high |Q2|).

1



P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
3
6
7

Lattice-motivated QCD coupling Gorazd Cvetič

3. At intermediate |Q2| ∼ 1 GeV2, the A (Q2)-approach reproduces the well measured semi-
hadronic τ-decay physics.
4. At low |Q2| . 0.1 GeV2, we have A (Q2) ∼ Q2, as suggested by lattice results for the Landau
gauge gluon and ghost propagators [12].

It turns out that the property 1 will be a byproduct of the construction of A (Q2) by the above
properties 2-4.

First, we will explain the property 4. We recall that in pQCD we have for a(Q2)≡ αs(Q2)/π

a(Q2) = a(Λ2)Z(Λ)
gl (Q2)Z(Λ)

gh (Q2)2/Z(Λ)
1 (Q2)2, (2.1)

where Zgl, Zgh, Z1 are the dressing functions of the gluon and ghost propagator, and of the gluon-
ghost-ghost vertex. In the Landau gauge, Z(Λ)

1 (Q2) = 1 to all orders [13]. Hence

Alatt.(Q2)≡Alatt.(Λ2)Z(Λ)
gl (Q2)Z(Λ)

gh (Q2)2 . (2.2)

Alatt.(Q2) = A (Q2)+∆ANP(Q2) . (2.3)

Since Alatt.(Q2)∼ Q2 when Q2→ 0, no finetuning at Q2→ 0 implies

∆ANP(Q2)∼ Q2 and A (Q2)∼ Q2 (Q2→ 0) (2.4)

The coupling A (Q2) thus also goes to zero when Q2→ 0, this is the mentioned property 4.

Now we will construct A (Q2) such that the mentioned properties 2 and 4 can be enforced.
The dispersive relation for a(Q2) is

a(Q2) =
1
π

∫
∞

σ=−Q2
br−η

dσρa(σ)
(σ +Q2)

(η →+0), (2.5)

where Q2 = Q2
br > 0 is the branching point for Landau singularities, and ρa(σ) ≡ Im a(Q2 =

−σ− iε) is the discontinuity (spectral) function of a. The dispersive relation for the corresponding
A (Q2) is

A (Q2) =
1
π

∫
∞

σ=M2
thr−η

dσρA (σ)
(σ +Q2)

(η →+0), (2.6)

where ρA (σ)≡ Im A (Q2 =−σ − iε). At high positive σ0 > M0 (∼ 1 GeV) we expect ρA = ρa,
but at low positive σ < M2

0 we expect ρA 6= ρa. Here, M2
0 is a pQCD onset-scale. The a priori

unknown behavior of ρA in the low-σ regime (σ < M2
0 ) will be parametrized with several delta

functions (peaks), specifically three delta functions. This means

ρA (σ) = π

3

∑
j=1

F j δ (σ −M2
j )+Θ(σ −M2

0)ρa(σ) . (2.7)

⇒ A (Q2) =
3

∑
j=1

F j

(Q2 +M2
j )

+
1
π

∫
∞

M2
0

dσ
ρa(σ)

(Q2 +σ)
. (2.8)

At |Q2|> 1 GeV2, A (Q2) should practically coincide with pQCD (property 2), so we require

A (Q2)−a(Q2)∼
(

ΛL
2

Q2

)5

(|Q2|> ΛL
2 ∼ 0.1−1 GeV2) . (2.9)
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This (property 2), and the lattice condition A (Q2)∼ Q2 at Q2→ 0 (property 4), give 5 conditions

− 1
π

∫
∞

M2
0

dσ
ρa(σ)

σ
=

3

∑
j=1

F j

M2
j

; (2.10)

1
π

∫ M2
0

−Q2
br

dσσ
k
ρa(σ) =

3

∑
j=1

F jM2k
j (k = 0,1,2,3) . (2.11)

But we have 7 parameters, we need 7 conditions, i.e., two more:
a) Q2

max ≈ 0.135 GeV2 by lattice calculations, where A (Q2
max) = Amax (extension of property 4).

b) A -coupling framework should reproduce the correct value r(D=0)
τ ≈ 0.20 (cf. [14]) of the (QCD-

part of the) ratio of the semihadronic τ decay width (property 3), where

r(D=0)
τ,th =

1
2π

∫ +π

−π

dφ (1+ eiφ )3(1− eiφ ) d(Q2 = m2
τeiφ ;D = 0) . (2.12)

Here, d(Q2;D = 0) is the massless Adler function, d(Q2;D = 0) =−1−2π2dΠ(Q2;D = 0)/d lnQ2

(Π is the vector or axial current correlator), and its perturbation expansion is known up to ∼ a4. In
our approach, a(Q2)n 7→An(Q2) ( 6= A (Q2)n) [4]

d(Q2;D = 0)[4]
an = A (Q2)+d1A2(Q2)+d2A3(Q2)+d3A4(Q2). (2.13)

These 7 conditions (with r(D=0)
τ,th = 0.201) then give the values of the parameters of the coupling

(cf. Ref. [6] 2nd entry)

M2
0 = 8.719 GeV2; M2

1 = 0.053 GeV2, M2
2 = 0.247 GeV2, M2

3 = 6.341 GeV2;

F1 =−0.0383 GeV2, F2 = 0.1578 GeV2, F3 = 0.0703 GeV2.

The underlying (N f = 3) pQCD coupling a was constructed in the (4-loop) lattice MiniMOM
scheme [11], because the lattice results [12] for Alatt.(Q2) (at low positive Q2) were obtained in
this scheme. We do, however, rescale Q2 from the MiniMOM (ΛMM) to the usual ΛMS-scale
convention. The results are presented in Fig. 1. We note that all the locations of the delta func-
tions, σ j = M2

j ( j = 1,2,3), and M2
0 , turned out to be positive, i.e., the coupling A (Q2) has no

cut along the positive axis and is thus, as a consequence, holomorphic. The threshold mass is
Mthr = M1 ≈ 0.23 GeV, which is, as expected, in the regime of the light meson masses.

3. Conclusions

A QCD coupling A (Q2) was constructed, in the lattice MiniMOM scheme, rescaled to the
usual ΛMS-scale convention. It has the following properties:
A) A (Q2) reproduces the pQCD results at high momenta |Q2|> 1 GeV2.
B) A (Q2)∼ Q2 at low momenta |Q2|. 0.1 GeV2, as suggested by high-volume lattice results.
C) A (Q2) at intermediate momenta |Q2| ∼ 1 GeV2 reproduces the well the measured physics of
the inclusive semihadronic τ-lepton decay.
D) A (Q2), as a byproduct of construction, possesses the attractive holomorphic behavior shared
by QCD spacelike physical quantities.
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Figure 1: Coupling A at positive Q2 (solid curve) and the underlying pQCD coupling a (light dashed curve), both
in 4-loop MiniMOM scheme. Included is A2 (dashed curve) which is the A -analog of power a2, and the naive (i.e.,
unusable) power A 2 (dot-dashed curve). The usual MS scheme pQCD coupling a (dotted curve) is also included. The
lattice coupling Alatt. (Ref. [12], first entry), with Q2 rescaled as explained in the text, is presented as points with bars.

The usual MS pQCD coupling a(Q2;MS) ≡ αs(Q2;MS)/π shares with the coupling A only
the property A (high-momentum), but on the other three properties it is either worse (point C) or it
fails (points B and D).

We applied the Borel sum rules to τ-decay V + A spectral functions, and we obtained values
for the gluon (dimension-4) condensate and the dimension-6 condensate by fitting to the measured
OPAL and ALEPH data. The fitting turned out to be significantly better than with the pertur-
bative MS coupling (+OPE) approach. Further, when we compared the obtained theoretical and
the experimental V-channel Adler function DV (Q2), related with the e+e→ hadrons ratio, at low
Q2 ∼ 1 GeV2, the results were considerably better than with the usual MS pQCD+OPE approach.
We refer for details to Refs. [6] (in the 3-loop and 4-loop MiniMOM, respectively). Recently we
also applied the approach with this coupling to the study of the Bjorken polarized sum rule at low
Q2 [15], and the results are significantly better than with the MS pQCD coupling.
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