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1. Introduction

Within an elapsed time of O(1fm) the strongly interacting matter produced in relativistic
heavy ion collisions evolves from the far-from-equilibrium state to a viscous hydrodynamic regime
[1]. The description of the pre-equilibrium configuration and of the transition to the hydrody-
namic behavior is an issue difficult to face theoretically [2]. Suitable methods make use of the
gauge/gravity duality approach, invoking a correspondence between a strongly coupled conformal
field theory on a 4D Minkowski space M4, and a weakly coupled gravity theory on AdS5×S5, the
bulk, of which M4 is the boundary [3–5]. Thermalization in the boundary theory corresponds to
the formation of a black-hole in the bulk with time-dependent horizon, and it can be probed con-
sidering the boundary theory stress-energy tensor Tµν , as well as correlation functions of boundary
theory operators.

Among the 4D coordinates xµ = (x0, x1, x2, x3), we identify x3 = x‖ with the collision axis.
Writing x0 = τ coshy and x3 = τ sinhy in terms of proper time τ and rapidity y, the Minkowski
metric reads: ds2 = −dτ2 + τ2dy2 +dx2

⊥, with x⊥ = {x1, x2}. Boost-invariance along x‖, rotation
and translation invariance in the x⊥ plane imply for an expanding inviscid fluid that Tµν is diago-
nal, with components (energy density, transverse and longitudinal pressures) depending only on τ:
ε(τ) =

c
τ4/3 and p‖ = −ε(τ)− τε ′(τ), p⊥ = ε(τ)+ τε ′(τ)/2, with c a constant [6]. Corrections

for viscous hydrodynamics modify these relations:

ε(τ) =
3π4Λ4

4(Λτ)4/3

[
1− 2c1

(Λτ)2/3 +
c2

(Λτ)4/3 +O

(
1

(Λτ)2

)]
(1.1)

p‖(τ) =
π4Λ4

4(Λτ)4/3

[
1− 6c1

(Λτ)2/3 +
5c2

(Λτ)4/3 +O

(
1

(Λτ)2

)]
(1.2)

p⊥(τ) =
π4Λ4

4(Λτ)4/3

[
1− c2

(Λτ)4/3 +O

(
1

(Λτ)2

)]
, (1.3)

with c1,2 numerical constants and Λ a parameter [7]. An effective fluid temperature can be defined:
ε(τ) = 3

4 π4Te f f (τ)
4. Invoking the gauge/gravity correspondence, the dual of Tµν is the 5D metric

tensor gMN , hence modifications of the bulk geometry produce variations in Tµν , which can be
determined through a near-boundary expansion of gMN [8].

To implement effects driving the boundary system out-of-equilibrium, a distortion (a quench)
in the 4D metric can be introduced with profile γ(τ) [9], writing the boundary line element as ds2 =

−dτ2+eγ(τ)dx2
⊥+τ2e−2γ(τ)dy2 . The corresponding 5D metric can be expressed using Eddington-

Finkelstein coordinates, introducing the fifth radial coordinate r so that the boundary is reached
for r→ ∞: ds2 = 2drdτ −Adτ2 +Σ2eBdx2

⊥+Σ2e−2Bdy2. The metric functions A, Σ, B depend
on r and τ only, due to the imposed symmetries. They can be computed solving the Einstein
equations with the constraint that the 4D metric with quench is recovered for r→ ∞. Moreover,
switching the quench on at τ = τi, the metric functions must reproduce the AdS5 geometry at
τi. A suitable expression for such equations has been worked out in [9], and an efficient solution
algorithm developed in [10] has been applied to different quench profiles γ(τ). The equilibration
time can be determined comparing the behavior of the various observables with the corresponding
hydrodynamic quantities. Here we describe the results for two profiles, denoted as model A2 and
model B, which represent two different kinds of impulsive distortion of the boundary geometry.
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2. Role of local versus nonlocal observables to probe thermalization

The quench profiles for model A2 and model B are depicted in the top panels of Fig. 1. The
deformation persists up to τA

f = 3.25 in model A2, and up to τB
f = 5 in model B. The lower

panels in the figure display the Tµν components [10]. To investigate the late time behavior, Fig. 2
shows the components of Tµν after the end of the quench in comparison with Eqs. (1.1)-(1.3). ε(τ)

follows the viscous hydrodynamics behavior right after the end of the quenches, while a pressure
anisotropy persists up to tAisotr = 6 and tBisotr = 6.74 [10]. Imposing that at the end of the quench the
temperature is Te f f = 500 MeV, the thermalization times turn out to be of O(1 fm).
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Figure 1: Profile γ(τ) (upper panel) and components of T µ

ν for the quench model A2 (left) and B (right).

The components of Tµν are local observables mainly sensitive to the geometry close to the
boundary. In the holographic approach one can also access nonlocal probes, namely the two-point
correlation function of boundary theory operators, and the expectation values of Wilson loops on
the boundary. This requires the calculation of the length of the geodesics in the bulk connecting
the two boundary points in the correlation function, or the area of the extremal surface plunging in
the bulk and having the Wilson loop as contour at the boundary [11]. They have been computed for
models A2 and B and compared to the corresponding quantities in viscous hydrodynamics [12].
The 5D metric reproducing the results (1.1)-(1.3) has been worked out in [12, 13].

The length of a curve connecting the points P, Q on the boundary is L =
∫ Q

P dλ
√
±gMN ẋM ẋN ,

where the coordinates xM(λ ) depend on the parameter λ , and ẋM ≡ dxM/dλ [14, 15]. Viewing
the integrand in L as a Lagrangian and solving the corresponding Euler-Lagrange equations, the
geodesic can be determined. In the Eddington-Finkelstein coordinates, the space-like path con-
necting the boundary points P = (t0,−`/2,x2,y) and Q = (t0, `/2,x2,y) that extends in the bulk
at fixed (x2,y) is described by the functions τ(x) and r(x), with x1 ≡ x, and τ(0) = τ∗, r(0) = r∗,
τ ′(0) = r′(0) = 0. Boundary conditions are τ(−`/2) = τ(`/2) = t0, r(−`/2) = r(`/2) = r0. In the

calculation r0 is set to r0 = 12. The result for the geodesic length is L =
∫ `/2

−`/2
dx

Σ̃(r,τ)√
Σ̃(r∗,τ∗)

with

Σ̃(r,τ) ≡ Σ(r,τ)2eB(r,τ) computed in correspondence to the solution (r(x),τ(x)). The calculation

2



P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
5
4
1

Investigating thermalization of a strongly interacting non-Abelian plasma Fulvia De Fazio

ϵ

P⊥

P∥

4 6 8 10 12
0

10

20

30

40

50

60

70

τ

�
νμ
(τ
)

ϵ

P⊥

P∥

5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

τ

�
νμ
(τ
)

Figure 2: ε(τ), p⊥(τ) and p‖(τ) computed in model A2 for τ > τA
f (left) and in model B for τ > τB

f
(right). The dashed lines correspond to the viscous hydrodynamic expressions (1.1)-(1.3).

for Wilson loops is described in [12], where two different shapes have been considered, a circle
(C) and an infinite rectangular strip (R). Fig. 3 displays for models A2 and B the differences ∆L ,
∆AR and ∆AC between each one of these three geometrical quantities and the corresponding quan-
tity computed in the hydrodynamic setup, after the end of the quenches. The thermalization time,
when the differences vanish, increases with the size of the probe, a feature of strongly coupled sys-
tems. To compare to the results from local probes, fig. 4 shows ∆L , ∆AR, ∆AC versus ` in model
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Figure 3: Results for model A(2) (left) and B (right): difference between the geodesic length (top panel),
the area of the extremal surface for the rectangular Wilson loop (middle), and for the circular Wilson loop
(bottom) in the models with quench and with the hydrodynamic metric. t0 starts after the end of the quench.
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Figure 4: Differences ∆L , ∆AR, ∆AC in model A2 at t0 = 6 (left), and in model B at t0 = 6.74 (right) versus
the size of the probe.

A2 at t0 = tAisotr = 6 and in model B at t0 = tBisotr = 6.74: only for small ` the differences are zero.

3. Real-time quarkonium dissociation in the far-from-equilibrium medium

In the holographic approach quarks are dual to open strings in the bulk [16]. In [17] the
real-time evolution of a string extending between two endpoints, representing a heavy quark and
an antiquark, kept close to the boundary, is studied. The strings falls down under gravity and,
at finite temperature, it can reach the black-hole horizon, an event interpreted as the in-medium
quarkonium dissociation [18, 19]. The string dynamics is governed by Nambu-Goto action SNG =

−Tf
∫

dτdσ
√
−g, with Tf =

1
2πα ′

, α ′ =
R2

5√
λ

, R5 the AdS5 radius and λ the ‘t Hooft coupling. g

is the determinant of the induced world-sheet metric, and (τ, σ) the world-sheet coordinates. We
consider strings in a 3D slice of the bulk described by the coordinates (t, w, r), with two choices for
w. The first one is w= x, with x= x1 or x= x2, and the string endpoints kept fixed at mutual distance
2L close to the boundary. The second one is w = y along the rapidity axis, representing a quark
and an antiquark moving away from each other in the longitudinal direction x‖ with rapidity yL.
Choosing τ = t and σ = w, the string profile is a function r(t, w). In terms of the metric functions

A, B, Σ, we find SNG =−Tf
∫

dt dw
√

Σw(t,r)(A(t,r)−2∂tr)+(∂wr)2, where Σw = Σ̄ = Σ2e−2B if
w = y and Σw = Σ̃ = Σ2eB if w = x. The resulting equation of motion for r(t,w) is (r′ = dr/dw):

r′′− ∂wg
2g

r′+
∂tg
2g

Σw−∂tΣw +
∂rg
2

= 0 . (3.1)

Since the metric is time-dependent, the solution depends on the initial time ti when the string is
completely stretched close to the boundary: r(ti, w) = rmax for all w (we set rmax = 12). The string
endpoints are kept fixed at wQ = −L and wQ = L in the w = x case, and wQ = −yL and wQ = yL

for the w = y configuration, so that r(t,wQ) = r(t,wQ) = rmax. We vary L and yL in the range
[0.1, 100] and impose the initial velocity ṙ(ti,w) = v, with v = 0,−0.5,−1. Fig. 5 displays the
string profile in model B for w = x and L = 0.1. Similar profiles are found for w = y and in
model A(2). The dissociation time tD (finite in the chosen coordinate system) is determined when
the string reaches the horizon. Fig. 6 shows tD versus ti in the two models. In each column, the
upper panel displays tD for the w = y configuration with yL = 10, and the bottom panel refers to
tD in the w = x configuration with L = 10. After the end of the quenches, tD varies smoothly
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Figure 5: String profile r(t,w), corresponding to {ti,v,L} = {3,−1,0.1}, for the transverse w = x configu-
ration and quench model B as a function of x at different t, until the horizon is reached.

and approaches values close to each other in the two models. During the quenches, tD abruptly
fluctuates with a different behavior for the two string configurations, similarly to the pressures p‖
and p⊥ [10] and to the screening length [20]. Fig. 7 compares the result for tD in model B and in
viscous hydrodynamics. The hydrodynamic behavior is recovered right after the end of the quench,
and tD asympotically approaches the time required to reach the AdS center starting from r = rmax:

t∞ =
2

3rmax
2F1

(
1,

5
4
,
7
4
,−1

)
.

4. Conclusions

Holographic methods allow us to describe the thermalization of a strongly interacting non-
Abelian plasma, driven out-of-equilibrium by a quench on the boundary geometry. Local and
nonlocal observables provide indications on the thermalization time at various length scales. The
energy density follows the hydrodynamic viscous behavior after the end of the quench, while the
pressures take longer. For nonlocal observables the thermalization time increases with the size
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Figure 6: tD versus ti in model A(2) (left) and B (right). Top panels: w= y string configuration with yL = 10.
Bottom panels: w = x configuration with L = 10.
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Figure 7: tD versus ti for w = x, L = 10 and v = 0, for quench model B (continuous line) and for a geometry
dual to viscous hydrodynamics (dashed line). The horizontal line corresponds to the asymptotic value t∞.

of the probe. Quarkonium dissociation is a fast phenomenon: the dissociation time follows the
behavior of viscous hydrodynamics as soon as the quench is switched off.

These studies have been carried out within the INFN project QFT-HEP. LB thanks the Angelo
Della Riccia Foundation for financial support.
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