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The Skyrme Model is considered a natural candidate for a low-energy effective theory of QCD,
a point of view supported by results coming from 1/Nc expansion and holographic QCD. This
framework leads to an attractive picture where baryons (and nuclei) emerge as topological solitons
with a topological number identified to the baryon number A. Unfortunately, even the most naive
Skyrme Model extensions have been plagued with the same problem: they predict large binding
energies for the nuclei. The more recently proposed near-BPS class of Skyrme models provides
a simple answer to this problem. The solutions nearly saturate the Bogomol’nyi bound which
means that by construction they must have small binding energies. We present our most recent
results regarding near-BPS Skyrmions and argue that they provide an improved description of
nucleons and nuclei. More precisely, we address here the issue regarding the energy minimizer
which remains unknown for A > 1 by proposing a more appropriate ansatz than the usual axially
symmetric solution at least for large A.
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1. Introduction

Despite the successes of the Standard Model, there remain unanswered questions among which
one of the most important is due to our inability to provide a clear explanation on confinement of
quarks and gluons from QCD. However it is expected that the low-energy limit of QCD should
lead to an effective theory of mesons in which nucleons and nuclei emerge as topological solitons.
The Skyrme Model [1] provides such a picture by establishing a direct link between baryons and
soft-pion physics. In its original form, it reproduces most of the properties of the nucleon within
a 30% accuracy which is considered a rather good agreement for a model involving only two free
parameters. Modifications in the structure of the potential term, the contribution of other vector
mesons or simply the addition of higher-order terms in derivatives of the pion fields [2, 3, 4] may
help to improve some of the features of the model but in general these models fail to give an
appropriate account of multibaryon physics or nuclei. Among the most common problems are large
binding energies, shell-like baryon density configurations with unexpected discrete symmetries, as
well as a nuclear radius that grows as

√
A instead of the usual |A|1/3 mass number dependence.

Recently, it was pointed out in refs. [5, 6, 7] that if the model was to be constructed along the
lines of a BPS model it would have zero or small binding energies. A BPS soliton saturates the
Bogomol’nyi bound leading to a static energy EBPS(A) = EBPS(1) |A| and no binding energy which
come close to what is observed experimentally. The present work is based on the more realistic
extension of the original Skyrme Model called near-BPS Skyrme Model [7, 8]. The model has
been shown to replicates some basic relations for nuclei: (a) a small but non zero binding energies,
(b) a nuclear radius that grows |A|1/3 , (c) solutions that possess the symmetries of incompressible
fluid and more. It is also possible to achieve a more realistic description of the baryon density
configurations and binding energies per nucleon B/A [8].

There remains however an open question: what is the energy minimizing solution and does it
affect the nuclei properties? For the near-BPS models, lowest energy solutions are unknown for A>

1 and using the usual axially symmetric (AS) ansatz [5] as an approximation leads to a potentially
problematic behavior as EnBPS grow as A7/3 for large A. On the other hand, a complete analysis of
this class of models is numerically difficult so here, in the absence of an exact energy minimizer, we
aim for a simpler prospective analysis and propose to extend the usual axially symmetric ansatz to
"multilayer" solutions. It turns out that distributing the energy among several layers is energically
favored and modifies how nuclei masses depend on A to a more acceptable behavior, i.e. EnBPS

grows roughly as A for large A.

2. Near-BPS Skyrme Model

Extending the Skyrme Model [1] to a regime where the solutions become near-BPS solitons
so that Mnuclei ≈ A ·Mnucleon, we consider the Lagrangian density

LnBPS = LSkyrme +LBPS. (2.1)

Here, LSkyrme = L2 +L4 is the original Skyrme Model1 consisting of the nonlinear-σ and the

Skyrme terms, respectively L2 = −αTr
[
LµLµ

]
and L4 = βTr

([
Lµ ,Lν

]2)
. The pion fields

1A potential term L0 such as in eq. (2.2) is sometimes added.
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πi are introduced through in U = exp(−2i(~τ ·~π)/F
π
) where U ∈ SU(2), Lµ = U†∂µU and Fπ is

the pion decay constant. Furthermore, LBPS = L0 +L6 corresponds to the so-called BPS Skyrme
Model proposed by Adam et al. [5, 6]. It contains a potential term V and the term of order six in
derivative of the pion fields respectively

L0 =−µ
2V (U) and L6 =−

3
2

λ 2

162 Tr
([

Lµ ,Lν

][
Lν ,Lλ

][
Lλ ,Lµ

])
=−λ

2
π

4BµBµ (2.2)

Here Bµ = 1
24π2 εµνρσ Tr

(
LνLρLσ

)
is the baryon (or topological) current. So here, L6 has a spe-

cial meaning: it is the square of the pullback of the volume form in target space. Finite energy
solutions require a conserved topological charge identified with the nuclear mass number which
also corresponds to the baryon number A =

∫
d3rB0.

The BPS model energy minimizer saturates of the Bogomol’nyi bound so the static energy
EBPS ∝ A. Using the general form U = cosF + in̂ · τ sinF with n̂ = (sinΘcosΦ,sinΘsinΦ,cosΘ)

where F = F(r), Θ = Θ(r) and Φ = Φ(r), ones finds an infinite number solutions with same
lowest energy EBPS = 2µλπ2

〈√
V
〉

S3 |A| provided µ
√

V = ∓λπ2
(
sin2 F sinΘ∇F · (∇Θ×∇Φ)

)
.

This cannot be achieved in the Skyrme Model whose minimizing energy exceeds the bound by as
much as 23% leading eventually to unsatisfactory large binding energies for nuclei. On the other
hand, BPS model have zero binding energies at the level of the static energy and lacks a kinetic
term in L2 that would define a proper propagator.

The near-BPS Skyrme Model [7] in (2.1) slightly departs from the BPS model assuming the
term LBPS dominates while treating L2 and L4 as small perturbations. The model then allows
for small but non-zero binding energies as well as a kinetic term. Unfortunately, the lowest energy
solutions for the near-BPS model are not known for A > 1 and cannot be guessed from the dom-
inant part LBPS since it possesses an infinite number of degenerate solutions. Accordingly, it is
both the L2 and L4 parts that fix the shape of the energy minimizing solutions. One then usually
considers an axially symmetric ansatz as in ref. [5] but in the context of the near-BPS model the
energies EnBPS grow as A7/3 for large nuclei, as opposed to the linear behavior observed experimen-
tally. Furthermore, it was shown in [9] that the solutions should instead be a so-called restricted
harmonic. Yet this constraint is not sufficient to determine uniquely the lowest energy solution.

The solution proposed in this work relies on a more elaborate ansatz in the form of the
L ≤ A concentric layers such that each layer that corresponds to a segment of length π in F(r)
winds up ml times around the symmetry axis. The solution can be written as U = cosF(r)+ in̂l ·
τ sinF(r) for 0≤ F ≤ Lπ with

n̂l = (sinθ cosmlϕ,sinθ sinmlϕ,cosθ) (2.3)

thereby carrying a topological charge ml for layer l such that A = ∑
L
l=1 ml. Allowing for multilayer

solutions, L ≥ 1, the total static energy get a contribution of the each Lagrangians Li in eq. (2.1)
according to

EnBPS =
L

∑
l=1

[
(

al
0 +al

6

)
ml +m1/3

l

(
al

2 +bl
2m2

l

)
+m−1/3

l

(
al

4 +bl
4m2

l

)
] (2.4)

where the model dependent quantities al
i,b

l
i are computed for to each part of the Lagrangian Li and

layer l. It then remains to find which configuration of layer winding numbers (m1,m2, ...,mL) has
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the lowest energy E2 +E4 since all layers contribute equally to E0 and E6. The axially symmetric
ansatz in [5] corresponds to the 1-layer case (L = 1,m1 = A in (2.4)) and generates terms propor-
tional to A7/3 and A5/3 which are problematic for large nuclei. It turns out that the distribution of
the topological charge over several layers attenuates the large A behavior.

It should be noted that in order that the solution (2.3) remains a minimizing solution of LBPS, it
must saturate the Bogomol’nyi bound. This requires that

〈√
V
〉

l be the same for all layers. Taking
this into account, we proposed three simple multilayer near-BPS models using β = 0: (a) Model
1 (constant potential): VM1(F) = 1, (b) Model 2 (oscillating potential): VM2(F) = sin4 F and (c)
Model 3 (constant potential dropping near surface): VM3(F) = 1 for F ≥ F0 and VM3(F) = sin4 F

sin4 F0

for 0≤ F ≤ F0 where F0 is chosen so that
〈√

V
〉

l are all equal.
The apparently simple form of these models however hides a technical difficulty. When the

model allows for zeros in the quantity sin2 F√
2V (F)

, the BPS differential equation for F causes F ′ and

E2 to diverge (for example here VM1 and VM3 at F = nπ with n ∈ N∗). In such cases, one cannot

neglect L2 and F can be obtained from F ′(x) =−
[

1
V

((
ml

24A
sin2 F

x2

)2
+A2/3γ2

)]−1/2

where x = ar

with a = (µ/18Aλ )2/3 and γ =
√

2α
(
18λ µ2

)−1/3. Otherwise the BPS solution (the solution with
γ = 0) exists for all F and can be used to estimate E2. But for such models (VM2 for example), the
baryon density must be zero at the frontier of each layer where F = nπ thereby forming distinct
concentric shells in the baryon density.

Bound States
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Figure 1: Model 1: (a) Static energy E2 (in units of µλ ) for single and multilayer configurations.
Configurations lying in the shaded area are bound states. (b) Distribution of ml for energy
minimizer. The vertical gray lines indicates transitions in the number of layers.

The search for a minimizing configuration requires that we set the value of γ whereas the
parameters µ and λ may be use to rescale the energy and radial distance in units of µλ and a
respectively. In Fig.1, we present our results for Model 1 using γ = 0.001, which is typical of the
values obtained in previous fit for near-BPS calculations [7]. The static energy E2 is compared for
single and multilayer configurations in Fig.1(a). All configurations in the shaded area are lower
in energy than A infinitely separated skyrmions and can be considered as bound states. We find
that, not only the multilayer configurations are energy favored for large A, but E2 seems to grow
almost linearly with A in that limit. This behavior is certainly more in agreement with experiment
than the 1-layer results. Furthermore, Fig.1(b) illustrates how the baryon number is distributed
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among layers (layer 1 is the innermost layer). It turns out that for all models, the number of layers
increases rather slowly with A and one also observe some regularity on how A is distributed among
layers. However, this exact pattern of distribution seems to be model dependent. For example in
Model 1 (see Fig. 1(b)), the baryon number carried by each layer ml generally increases as it gets
further from the center except for the outermost layer which carry the lowest charge. Model 2 and
Model 3 however follow completely different patterns yet multilayers are still energically favored.

3. Conclusion

In this work, we proposed a multilayer axially symmetric ansatz for the near-BPS Skyrme
model. Our calculations show that multilayer configurations are energically favored as the baryon
number A increases and that they correspond to bound states. This should remain true for even
larger A, at least for the prototype models at hand, since their static energy EnBPS only grows as ∼
A. So, although the exact energy minimizer remains unknown for A > 1, we can assume that near-
BPS Skyrmions are bound states as well. Further analysis is required to investigate the cases with
β 6= 0, compute rotational and Coulomb contributions to the nuclear masses and verify if the near-
BPS models successes (such as the results for B/A shown in [8]) are preserved. More generally,
these results support the idea that nuclei could be topological solitons emerging from an effective
field theory of mesons, perhaps as near-BPS Skyrmions.
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