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1. Introduction

In the high energy “Regge-Gribov” limit of QCD, a semi-hard saturation scale Q;(x) emerges
dynamically when repulsive gluon recombination and screening effects compete to tame the rapid
growth in bremsstrahlung gluons with decreasing x. This novel saturation regime of QCD is de-
scribed by a weak coupling effective field theory (EFT), the Color Glass Condensate (CGC) [1-7].
Isolated photons are clean probes of CGC because of the absence of final state interactions. CGC
computations of inclusive photon production have been performed previously for a number of chan-
nels in p+ A collisions [8§—11]. In this contribution, we will summarize the computation in [12],
as well as work in progress, of the cross-section for inclusive prompt photon production in deeply
inelastic scattering (DIS) of electrons off nuclei at small x.

Fig. 1 shows the two classes of leading order (LO) processes that are 0(062) in the CGC
power counting! The Class I diagram for photon bremsstrahlung is proportional to the valence
quark distribution f,(x). At small x, since gluons play a dominant role, f,(x) > f,(x), the Class I
diagram shown dominates. This process can be visualized as the virtual photon fluctuating into a
quark-antiquark dipole that subsequently emits a photon either before or after interacting with the
target.
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Figure 1: Representative Feynman diagrams for the LO processes at small x contributing to inclusive photon
production. The blobs represent Wilson lines from the target that rotate the color charges of the quarks and
antiquarks.The spacetime picture for the dominant Class II is also shown. The nucleus is considered to be
right moving with Py — oo and hence is Lorentz contracted in the x~ direction.

2. LO computation

In the CGC EFT, the abundant highly occupied small x gluons in the nuclear wave-function
are described by solutions of the Yang-Mills equations:

Dy, F*V](x) = g8 " 8(x") palxL). .1

IThere is a third possible class in which photon is produced from quark-antiquark annihilation. Like its p + A
analog [9], this process is suppressed relative to those shown here.
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The current induced by large x partons is described by a stochastic color charge density p4. The
momentum space dressed fermion propagator [3, 13, 14] in this background classical field com-
puted in the Lorenz gauge dy,A* =0 is

S(p,p') = 2r)*8“ (p—p') So(p) +So(p) 7 (p, 1) So(P'), (2.2)

where Sy(p) is the free fermion propagator and the function .7 (p, p’) represents the interaction
vertex resumming all eikonal interactions (O(gpa ~ 1)) with the nuclear “gluon shock wave” and
is expressed as

p p
. —> —
J >

Figure 2: “Dressed” fermion propagator in the background classical color field of the nucleus. The ®
symbol denotes all multiple scattering insertions including as well, the possibility of no scattering. i and j
denote color indices in the fundamental representation of SU (N,).

Zij(p.p") = 2m)8(p~ —p"") v sign(p”) / dz e PP R ) (z)),(23)
where
7 ) te 1 a(_— a
U('xl) = '@—exp |:_lg B dz ViglpA(Z 7xJ_)t :| 9 (24)

(see Fig. 2 for a diagrammatic representation of this propagator). This expression differs from
those in the literature because it includes the“no scattering” contribution within the interaction
vertex itself. This slight modification significantly reduces the number of diagrams at LO and
is especially efficient in computing interactions with the shock wave at higher orders. Note that
one must finally subtract the no scattering contribution (by setting U = 1) to obtain the physical
scattering amplitude.
Our final expression for the LO amplitude is [12]
%Ma(q,k,P,ky) = Zﬂ(le)zé(Pi - qi) / /l e*"PLXLHll.xlfilL.yL
X1y

€

<aa(k) | T4 (1, P[0T (31) = 1] |v(p). 5)

In the above equation, P, = k| + p, +ky, and the explicit expression for T‘Ei’f’)(l 1,P)) can be
found in [12]. We have verified that the amplitude in Eq. 2.5 satisfies the photon Ward identity.
Additionally, by taking the soft photon limit ky, — 0, one recovers the non-radiative amplitude [15]
for fully inclusive DIS which is a manifestation of the Low-Burnett-Kroll theorem [16 — 18]. This
also allows us to reproduce extant results [19] of the differential cross-section for fully inclusive
DIS dijet production.
Using the expression in Eq. 2.5, the triple differential cross-section for production of an iso-
lated photon in association with 2 jets or a quarkonium state [12] is
do _ a?qy°Ne 1o

dxdQ?d°K | d* g 5127°0? (@m)o(P™—q7) ) 27_Lu K, (2.6)
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where L*V is the familiar lepton tensor in DIS and the hadron tensor is given by

~ . 2a,
Xuv= [ [ @xP6(PL -1 )eu 001 1) o0 =52 (98 (1~ L0)
LoJi WA
+oP (1 1L+ OF (1 —10, 01500 — ll»li))] : (2.7

Here 7,,,99% is a Dirac trace [12]. The two nuclear unintegrated distributions d)ﬁ and (])YQA are
Fourier transforms of dipole and quadrupole Wilson line correlators in the nucleus. These are
universal, gauge invariant quantities that are ubiquitous in high energy collisions. The expression
for single inclusive photon production is obtained by integrating over the phase space for the quark
and antiquark in Eq. 2.6.

We next consider the large transverse momentum limit of these unintegrated nuclear distri-
butions and obtain the leading twist (O(p4)) expression for Eq. 2.7. We have shown that this
k, -factorized photon production result can also be obtained through a pQCD analysis. The leading
twist amplitude satisfies the gluon Ward identity [20, 10, 12] which leads to a well defined P, — 0
limit for the collinearly factorized result for the hadron tensor [12]

~coll. Qg . Ouy(Py)
Xy = N (21)*6 (p) + ki +ky1)xafea(xa, Q%) }}LIY_Y)IOMIV,T- (2.8)

We have thereby, in our framework, derived a clean relation between the inclusive photon
spectrum and the nuclear gluon distribution at small x. Our result corresponds to the dominant
contribution [21 —24] at NLO(O(as)) in the pQCD power counting.

3. Structure and organization of the NLO computation

For precision computations in the gluon saturation regime, we need to extend our calculation
to NLO accuracy. In the CGC power counting, this is equivalent to having external gluon lines and
internal gluon loops that are not connected to the effective vertices (shockwave) in the Feynman
diagrams. An essential component in this computation is the “shock wave” gluon propagator in
an appropriate choice of gauge. We will work in the A~ = 0 gauge, which we shall refer to as the
“wrong” light cone (LC) gauge? for the kinematics of our problem. The background field gluon
propagator (see Fig. 3) in this gauge has a similar momentum space expression as Eq. 2.2 and the

/
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Figure 3: Dressed gluon propagator with the dot representing the eikonal interaction vertex with the back-
ground classical field. This includes all possible scatterings including the case of “no scattering”.

2In the infinite momentum frame (IMF) of a right moving nucleus, P1§,F — oo the conventional light cone gauge
condition is AT = 0.
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effective vertex is given by [3, 14, 12]

Tuviab(p,p') = =28 (p~ — p'7) X (2p7)guv sign(p™) / Az e PPz e ) (g,
(3.1)

where U is the Wilson line in Eq. 2.4 written in adjoint representation. The structures of the fermion
and gluon effective vertices given by Eqgs. 2.3 and 3.1 are respectively identical to the quark-quark-
reggeon and gluon-gluon-reggeon vertices [25—28] in Lipatov’s reggeon field theory [29].

In addition to the simple structure of the “shock wave” propagators in A~ = 0 gauge, we will
also exploit the simplicity brought about by the natural separation between large x sources and
small x “wee” partons that is ingrained in the CGC EFT (See Fig. 4).

fields sources
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Figure 4: Schematic illustration of sources and fields in the CGC EFT. With high energy evolution, gluon
field modes that were fields at higher x start qualifying as sources for the fields at smaller x.

At LO, this separation is arbitrary and the effects of the large x modes are included in a weight
functional W [p,4] describing the probability density of having a source configuration with charge
density p4. In our computation, this is inherent in the definitions of the different ¢’s that appear
in Eq. 2.7. As we evolve towards the small x scale of interest, field modes that were below this
cutoff start contributing to the scattering process. We therefore have to consider quantum effects
due to the gluon modes with energies in the strip Ay < |I7| < A[ (= A, /b) where b < 1 but
osln(1/b) < 1 so that a perturbative treatment of the logarithmic corrections is still possible. The
rapidity separation between these “semi-fast” gluons leads to the occurence of the In(A; /A ) log
which, for agIn(A; /Ay ) ~ 1, changes the naive CGC power counting necessitating resummation
of these logs to all orders.

In addition to parton subprocesses building up the nuclear shockwave, we also have gluon
loop processes within the quark-antiquark dipole which suffer instantaneous interactions with the
shockwave. These can be categorized broadly into real and virtual graphs. The latter is further
subdivided into vertex and self-energy corrections. Due to the presence of the photon in the fi-
nal state, we have a multitude of kinematically allowed contributions. Nevertheless, they can be
systematically organized into a basis of dipole and quadrupole Wilson line correlators, and their
products, or equivalently, in terms of the functions ¢, ¢2, P ¢ and ¢P <.

A distinctive feature of these Feynman graphs, characteristic of CGC computations, is that
the gluon (both real and virtual) has the possibility of rescattering with the background classical
field. For the emission of a real gluon, these transverse momentum kicks destroy the possibility
of collinearity with the parent quark/antiquark; the UV divergent structure however remains un-
changed under this effect in virtual graphs. The latter kind of divergences appear in the transverse
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momentum integrations and will be regulated by dimensional regularization in d = 2 — € dimen-
sions. However, a real gluon can also be emitted after the dipole crosses the “shock wave” in which
case there are indeed collinear divergences. These will cancel exactly between real and virtual
graphs. In addition, we get logarithms in rapidity (or In(¢~ /A,y )) from integration over longitudi-
nal momentum of the gluon when we regulate the spurious /= = 0 pole in the free gluon propagator
in A~ = 0 gauge by imposing a lower cutoff equal to A, [30, 31].

The large logarithmic pieces accompanying the contributions discussed over the previous para-
graphs can be absorbed in the weight functional describing the stochastic color cources. High en-
ergy evolution is then described as an evolution of these W[p,4|’s and forms the basis for non-linear
evolution as described by the JIMWLK equation [32, 33, 30, 34, 35]. This procedure therefore
allows us to factorize the cross-section into an “impact factor” contribution (free of rapidity log-
arithms) that is convoluted with generalized unintegrated nuclear distributions that have the RG
evolution of the weight functional embedded in them.

Since we are also recovering the genuine s suppressed contributions or the NLO inclusive
photon impact factor in this process, we can work one step further and mould existing results [36—
41] on NLO(O(O!SZ)) BK and JIMWLK evolution into our RG framework to extend the results to
NLO+NLLx accuracy. This can be achieved by collecting the ot In(A[ /A, ) pieces from the NLO
evolution contributions and systematically combining them with LO(+LLx) and NLO impact factor
results. We do not need to compute the finite pieces in the NLO JIMWLK contributions because
they are formally next-to-next-to-leading order (NNLO) O((xf) in the CGC power counting and
hence suppressed at the required accuracy of our problem. This procedure is outlined in [12] and
will be discussed at length along with presentation of the non-trivial NLO impact factor calculation
in future work [42].

4. Conclusion

We outlined here the computation of the differential cross-section for inclusive photon produc-
tion (Eq. 2.6) in small x DIS in the framework of CGC EFT. The result is sensitive to the physics
of strongly correlated gluons in the saturation regime through its dependence on the universal
multigluon Wilson line correlators in the nucleus. We discussed the ingredients, in particular the
simple momentum space structures of the dressed quark and gluon propagators in the “wrong” LC
gauge, that allow for efficient higher order computations. We sketched the Wilsonian RG ideology
that will be adopted towards an extension of our results to NLO+NLLx accuracy; the non-trivial
NLO impact factor computation [42] is nearing completion and will be presented soon. This work
complements similar small x computations for fully inclusive [43 —48] and diffractive DIS [49, 50]
computations. They also provide useful insight into similar higher order computations in hadron-
hadron collisions. From a phenomenological standpoint, isolated photon production at small x
can be measured at the anticipated luminosities of a future Electron Ion Collider (EIC) [51] or
LHeC [52]; the process is free of hadronization uncertainties and is therefore a golden probe of the
structure of QCD matter at extreme gluon densities.
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