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1. Introduction

Large-R jets play a vital role in the physics program at ATLAS [1] using high energy LHC
pp collisions. As searches for Beyond Standard Model physics probes higher mass scales, boosted
hadronic final states become increasingly important. In order to better exploit this tool, many
advancements have been made to improve the usage of large-R jets to search for new physics. This
note presents the work of several published ATLAS analyses and is meant to provide an overview
of the methodologies and results.

2. Alternative jet definitions

The standard large-R jet definition used in ATLAS to date uses locally-calibrated topological
(LCTopo) clusters of energy deposited in calorimeters clustered into jets using the anti-kt algo-
rithm [2] with R = 1.0 and trimmed [3] with Rsub = 0.2 and fcut = 0.05. An analysis [4] is pre-
sented that compares the standard large-R jet definition to additional definitions that make use of
modified inputs and alternative grooming techniques. The alternative inputs used in the analysis
are LCTopo clusters modified with combinations of Voronoi Subtraction [5], Constituent Subtrac-
tion (CS) [6], and SoftKiller (SK) [7]. The alternate grooming algorithms include pruning [8], the
Modified Mass-Drop Tagger [9], SoftDrop [10], and reclustered jets.

The pile-up dependence of the reconstructed jet mass with each type of input is shown in
Figure 1a. Additionally, a comparison of many different inputs and grooming algorithms with a
range of parameter values is performed and the four configurations with the best QCD rejection
using a 68% efficient mass window for W tagging are selected. Mass and energy calibrations are
derived and applied for each of these configurations and the resulting QCD rejection as a function
of W tagging efficiency for each configuration is shown in Figure 1b using mass+Dβ=1.0

2 , where
Dβ=1.0

2 [11, 12] is an energy correlator ratio that is sensitive to the angular distribution of energy
inside a jet.

3. Track CaloClusters

At high pT, the coarse angular resolution of calorimeter clusters causes a degradation in the
resolution of jet substructure observables as clusters merge. This can be mitigated through the
use of novel jet inputs that combine charged particle tracks with calorimeter clusters into objects
called TrackCaloClusters (TCC) [13]. Tracks are matched to clusters and, in the simplest case of
a single track matched to a single cluster, a resulting TCC’s energy is that of the cluster and its
position is defined as that of the track. This use of tracking information results in improved jet
substructure resolutions as shown in Figure 2, especially for observables that are very sensitive
to angular distributions such as Dβ=1.0

2 . Additionally, the excellent primary vertex association of
tracks causes TCC jets to be more robust against the effects of pile-up than LCTopo jets.

4. Reclustered jets

In addition to jets built from calorimeter topological clusters, large-R jets built from calibrated
anti-kt R = 0.4 jets are studied [14]. This reclustering (RC) approach makes use of the excellent
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Figure 1: The jet mass of W jets as a function of NPV (a) shows a strong pile-up dependence for
LCTopo jet inputs, which can be mitigated with CS and SK. A comparison of mass+Dβ=1.0

2 W
tagging ROC curves for three select LCTopo+CS+SK jet configurations and the standard large-R
jet definition (b) shows the superior performance of the standard definition. These are both example
plots from the extensive parameter space studied in the Ref. [4].
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Figure 2: Resolution of jet mass (a) and Dβ=1.0
2 (b) for LCTopo jets and TCC jets [13]. Significant

improvements are seen for TCC jets, especially for Dβ=1.0
2 , which is very sensitive to angular

distributions.

calibrations and uncertainties [15] as well as the pile-up suppression [16] available for R = 0.4
jets. Figure 4 shows the improved jet mass resolution and the reduced jet energy scale uncertainties
from RC jets.

5. Measuring large-R jet response with in situ techniques

Several in situ techniques are used to measure large-R jet energy and mass response in MC and
data [17]. The jet energy response is measured using momentum balance in events in which a large-
R jet recoils against a well-measured object, either a photon, multiple small-R jets, or another large-
R jet. As an example, the uncertainty on the jet energy scale resolution in events using recoiled
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Figure 3: RC jets provide better jet mass resolution (a) and jet energy scale uncertainties (b) than
standard large-R jets [14]. Top jets are shown here, but similar performance gains are seen for W
jets.

small-R jets is shown in Figure 4a. The jet mass response is measured using the Rtrk method [18,
19] in which the ratio of cluster-based to track-based observables is used and the forward folding
method in which a truth-level jet mass distribution is shifted and smeared to match that in data.
The different methods for measuring the jet energy response are combined for a final comparison
to data, as are the methods for measuring the jet mass, which is shown in Figure 4b. The in situ
methods result in jet energy and mass scale uncertainties of < 5% and agreement between data and
MC within a few percent.

 [GeV]jet

T
p

210×2 210×3 310 310×2 310×3

F
ra

ct
io

na
l J

E
S

 u
nc

er
ta

in
ty

0

0.01

0.02

0.03

0.04

0.05
ATLAS    Preliminary-1 = 13 TeV, 33 fbsData 2016, 

 < 1.2lead jetηMulti-jet Events, 
 R=1.0 LC+JES TrimmedtAnti-k

 0.4 LC
t

Recoil system: anti-k
Total uncertainty
Statistical uncertainty
In-situ R=0.4 LC JES uncertainty
Flavor composition, response
Punch-through, average 2016 conditions
Pileup, average 2016 conditions
MC modeling
Event selection criteria

(a)

 [GeV]jet

T
p

210×3 310 310×2

M
C

m
/R

es
po

ns
e

da
ta

m
R

es
po

ns
e

0.7

0.8

0.9

1

1.1

1.2 ATLAS Preliminary
Data 2016

=1.0, LC+JES+JMSR tanti-k
-1 = 13 TeV, 33 fbs

|<2.0, Trimmed jetsη|
<120 GeV

jet
50<m

trkR
Forward Folding

Total uncertainty
Statistical component

(b)

Figure 4: A breakdown of the total uncertainty on the fractional jet energy scale using events
in which a large-R jet recoils against multiple small-R jets (a) and the relative jet mass response
between data a MC using a combination of the Rtrk and forward folding methods (b) [17].

6. W boson and top quark tagging

Improved techniques to identify large-R jets as boosted hadronically decaying W bosons or
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top quarks are developed and validated. Simple tagging techniques were developed at ATLAS in
Run 1 using mass and addition jet substructure observables for W [20] and top [21] jets. Further-
more, HEPTopTagger [22, 23] was shown to be effective at identifying top jets. An analysis using
Run 2 data and MC [24] compares the use of such taggers to taggers based on machine learning
techniques, BDT and DNN. The performance of the BDT and DNN taggers are found to be well-
modeled in MC as shown, as an example, by the similar data and MC jet mass spectra (shape and
normalization) after the DNN tagger is applied as shown in Figure 5a. Furthermore, both machine
learning techniques provide superior background rejection compared to the other techniques as
shown in Figure 5b.
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Figure 5: A comparison of jet mass with the 80% efficient DNN top tagger applied to both MC
and data (a) shows that the tagger is well-modeled in MC within systematic uncertainties. A com-
parison of the top tagging ROC curves (a) shows that the BDT and DNN taggers have similar
performances and are superior to non-machine-learning techniques. The results for W and top
tagging are similar [24].

7. H → bb tagging

Techniques for identifying boosted H → bb decays based on the presence of b-tagged jets
within a large-R jet and jet substructure observables are studied. It is shown [25] that the identifi-
cation of one or two b-tagged anti-kt R = 0.2 track-jets within a large-R jet in addition to a jet mass
cut provides an effective way of identifying H → bb jets, as shown in Figure 6a. The performance
of this method degrades for high-pT H → bb decays due to the merging of the b-jets, resulting in a
lower b-tagging efficiency. This can be mitigated using any of three techniques studied in Ref. [26].
Variable-R track-jets, exclusive kt calorimeter subjets, and center-of-mass subjet reconstruction all
offer improved performance at high pT as demonstrated by the double b-tagging efficiency as a
function of jet pT using these three techniques is shown in Figure 6b.
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Figure 6: The QCD background rejection vs. H → bb tagging efficiency using a jet mass cut and
associated b-tagged small-R track jets [25] is shown in (a). The curves are a result of scanning
the b-tagging efficiency and the 60%, 70%, 77%, and 80% efficiency working points are indicated
by stars. The double b-tagging performance increase at high-pT using different algorithms [26] is
shown in (b).
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