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1. Introduction and Parton Showers

In this talk I discussed recent findings of reordering dipole chains with simple matrix elements
as presented in [1]. Event generators like Herwig7 [2] are important tools to compare experimental
data measured at collider experiments like the LHC to theory predictions. Such computer pro-
grams contain various components to describe the physics at the high energies (O(1TeV )) but also
processes that are described at very low energies (O(1GeV )). An important part to link between
those energy scales in such events are parton shower algorithms. Here the evolution between the
high and the low scales are described by probabilistic branching and particle productions. Various
algorithms have been developed to describe such processes. Cascades can be produced, as it is
done in the angular ordered shower of Herwig7 [2], by successive one-to-two splitting processes.
Here the momenta of the contributing partons are reconstructed at some stage of the production.
Branching formalisms based on the dipole picture, as e.g. implemented in [3, 4, 5, 6, 7], can
describe the branching while restoring energy momentum conservation immediately. These algo-
rithms are describe the emissions by two-to-three particles transitions. Here the emitting parton
(emitter) i will produce an emission j, and in order to conserve energy-momentum locally the mo-
mentum of a so-called spectator parton (spectator) k is rescaled 1. In either case, one-to-two or
two-to-three, the cascades are produced probabilistically in the Sudakov veto algorithm with the
help of no-emission probabilities constructed with splitting functions and ordering variables. The
main differences between the shower algorithms in the two categories are exactly those choices. In
the collinear limit z-dependence2 the splitting functions need to collapse to the standard Altarelli
Parisi splitting functions [8]. In the soft limit an eikonal structure (sik/(si js jk)) needs to emerge
from the sum over all contributions if the soft gluon j is emitted. The eikonal structure is in the
construction of dipole showers shared between the contribution of the emission of the emitter and
another possible emission where the roles of emitter and spectator are exchanged.

2. Starting Conditions and Large NC

In order to start parton shower the conditions need to be set in the beginning. For dipole
shower this these are apart from shower starting scales the starting set of dipoles in the leading
colour (large NC) approximation. In this approximation (anti-)quarks are connected to one other
parton and gluons are connected to two other partons. These connections are treated as the dipoles
described above. This also tells that there is for example one qq̄-pair in the process, then the colour
connections will form a chain containing all additional gluons and the ends of the chain will be
given by the quark and the anti-quark. This configuration is called a dipole chain. For standard
processes (excluding loop induced, e.g. Higgs gluon couplings) will have n dipole chains where
n is the number of qq̄-pairs. If there is no qq̄-pair in the process, then the gluons build a cyclic
dipole ring. In order to setup the chains the event generator requires information from the matrix
element about the large NC structure. In bases like the colour-flow but also the Trace-Basis the

1If either the emitter or the spectator is part of the initial state of the process the kinematics are modified such that
the direction of the initial state parton is preserved. In this case it is also possible that the momenta of other participants
of the process at modified.

2Where z is the energy fraction of the emitted particle.
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over generators, meaning that a general tree-level gluon amplitude can be decomposed as

M(g1, g2, . . . , gn) =
∑

σ∈SNg−1

tr(tg1tgσ2 . . . tgσn )A(σ) =
∑

σ∈SNg−1

g1 gσ2
gσn

. . .
A(σ). (3.7)

That only fully connected color structures enter in tree-level gluon amplitudes can eas-

ily be understood from the decomposition of Feynman diagrams into basis vectors; upon

application of eq. (3.1) all external gluons remain attached to a quark-line, and – while

contracting internal gluons using the Fierz identity, eq. (3.2) – they remain connected to

the same quark-line, as the color suppressed terms cancel each other out. (This can be

proved by a short calculation.) The same cancellation appears for gluon exchange between

a quark and a gluon, meaning that also tree-level color structures for one qq-pair and Ng

gluons must be of the “fully connected” form of a trace that has been cut open, an open

quark-line,

M(q1, g3, . . . , gn, q2) =
∑

σ∈SNg

(tgσ1 tgσ2 . . . tgσn )q1
q2A(σ) =

∑

σ∈SNg

gσ1 gσ2
gσn

. . .

q1 q2

A(σ),

(3.8)

i.e., only the first two basis vectors in eq. (3.4) are needed. However, when the Fierz

identity is applied directly to a gluon exchange between quarks, as in eq. (3.2), both terms

do appear, and color structures with up to Nq disconnected quark-lines may appear even

at tree-level.

Starting from a trace basis tree-level color structure, for example a single trace over

gluons, and exchanging a gluon between two partons may split off a disconnected color

structure, such as in

g1 g2 g3 g4

= −TR

g1 g2 g3 g4

− TR

g1 g4 g2 g3

. (3.9)

Thus, counting to lg additional gluon exchanges (on top of a tree-level diagram), the color

structures can not consist of more than max(1, Nq)+ lg open and closed quark-lines, two in

the above case. In general, when any Feynman diagram is decomposed into a trace basis,

there can be at most Nq + ⌊Ng/2⌋ quark-lines, since all gluons may be disconnected from

the quarks, but no gluon can stand alone in a trace, giving the factor ⌊Ng/2⌋.
For NLO color structures having a quark-loop in the Feynman diagram, the quark-loop

is necessarily connected to the remaining color structure via at least one gluon exchange,

– 5 –

 Equations from:  M. Sjöldahl arXiv:1412.3967  
 similar equation in several sources 

J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018

Pictorial representation 
pq

pq̄

pg2

pg1

pq

pg2

pq̄
pq

pq̄

pg1

pg2

pg1

pq

pg2

pq̄

pg1
pg1

pq

pg2

pq̄

pg1

pq

pg2

pq̄

⇠ N3
C ⇠ N3

C ⇠ NC

J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018

Pictorial representation 
pq

pq̄

pg2

pg1

pq

pg2

pq̄
pq

pq̄

pg1

pg2

pg1

pq

pg2

pq̄

pg1
pg1

pq

pg2

pq̄

pg1

pq

pg2

pq̄

⇠ N3
C ⇠ N3

C ⇠ NC

J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018

Figure 1: Pictorial representation of possible colour structures. The contraction of different permutations
leads to subleading colour configurations.

colour connections can be easily read off. The parton shower starting chains are choosen according
to the weight of the squared large NC amplitudes.

3. Rearranging Chains and Comparison to Data

While the shower is evolving from hard scales to lower scales the additional emissions need to
be inserted in the dipole chains. Here the obvious choice can be the insertion of the emission gluon
in between the emitter and the spectator partons. The amplitude in the trace basis with one qq̄-pair
can be written as (in the notation of [9]),

M (q1,g1g2, ...,gn,q2) = ∑
σ∈SNg

(tgσ1 tgσ2 ...tgσn )q1
q2

A(σ) . (3.1)

Here σ are the permutations of gluons and each permutation can be seen as a possible colour
chain configuration. In the amplitude however the kinematics is in sync with the colour part. Note
that the kinematic part |A(σ)| is in this case used to arrange the colour connections if the shower
is started from this stage. Parton shower algorithms are build such that they approximate the next
higher multiplicity. So if we insert a "new" gluon into this chain we need to take care that the
kinematic part is still in sync with the colour part. A main source of ambiguity of appointing the
ordering after the emission of gluon is the splitting of a gloun into a pair of gluons, namely the
g→ gg splitting. The AP splitting function reads,

P(z)∼ z
1− z

+
1− z

z
+ z(1− z) (3.2)

where the first part corresponds to a soft emission and the second to a soft emitter. The third
part, essentially proportional to the transverse momentum, is purely collinear. In the formalism
proposed by Catani and Seymour [10] the subtraction expression for gluon splitting is written such
that it reproduces the AP kernels and since the sum is taken over all configurations it reproduces
the soft and collinear behaviour of real emission. If we however want to construct a parton shower
we need to take care an very soft emission does not modify the other parts of the cascade strongly.
A soft emitter, mainly produced by the second part of Eq.3.2, however will alter the kinematics
differently than the colour part of the amplitude.

One can now modify the splitting kernel to anti-symmetrize w.r.t. emitter and emission. Two
examples are seem reasonable. One can use the kernel multiplied by 2z and therefore essentially
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Figure 2: Left plot shows the results for modified g→ gg splitting kernels, data from [11]. All choices
collapse if in addition the ColoRea algorithm is performed. The right plot shows the result if one rearranges
the colour dipole chains with matrix elements (ME) of higher multiplicity. Here the first integer gives the
ME multiplicity up to which the highest multiplicity is rearranged. The second indicates the ME multiplicity
used for higher multiplicity chains. The data is from [12]

tag the harder/emitter gluon. Another possibility is to choose only the first part of eikonal part for
the soft emission, multiplied by a factor 2 and keep the purely collinear part unchanged. The third
option is to keep the old kernel and then decide the insertion in the dipole chain probabilistically
according to z vs. 1-z. In the left plot in Fig. 2 the choice of symmetrised splitting functions in
red and the two options are shown in blue and green. It is clearly visible that the modification has
an impact on the result. But the ambiguity remains. In the following an algorithm is proposed
in which the chains are rearranged after emissions to resolve the ambiguity by comparing to the
leading colour structure of real matrix elements.

In [1] an algorithm was proposed to correct for the disordering of gluon insertions. Here,
instead of making the choice between the options above but also to take into account emissions
from other legs, simple matrix elements are used to probabilistically rearrange the colour chains in
the shower process. To do so the matrix elements for a γ∗→ qq̄gg was generated using MadGraph5
[13] and the code was modified to extract the leading colour expressions for the squared amplitudes.
Two possible colour structures, depicted in Fig. 1, are possible in this case. The algorithm now
probes after each emission probabilistically if the other ordering should be chosen. Here we check
if a random number is smaller than the current configuration with weight |A(cur.)|2/(|A(cur.)|2 +
|A(other)|2). If not the ordering is altered. If we have more than the two gluons in the chain the
ordering of two gluons can still be tested using the momenta of the then neighbouring gluon(s) in
the ME to be the quark momenta. The dashed lines in the same left Fig. 2 as described above are
produced using this algorithm.

To test the validity of this approach we can produce matrix elements for more than two gluons
and test according to those, see Fig. 3. Then we obviously will have more than the two permu-
tations, but still each permutation can be associated with a weight and the rearrangement can be
performed according to this weight. The right plot in Fig. 2 shows the result for the charged particle
multiplicity as measured at LEP if one reorders the chains with higher multiplicity matrix elements.
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Figure 3: Pictorial representation of correcting dipole chains with matrix elements with two, three or four
gluons. The right plot in Fig. 3 shows, in the same colour coding, the result if the same multiplicity is
rearranged with the corresponding matrix elements.

The labels indicate if to which order the same matrix element multiplicity was used as the first in-
teger and which matrix elements have been used to correct the ordering if the chain size exceeds
the number of available matrix element legs. As can be seen the results are very stable numerically
and further investigations on the validity of the methods are ongoing. Other data comparison can
be found in [1]

4. Summary

In this talk I presented an algorithm that allows to reorder the chains of dipole showers with
the leading NC limit of leading order matrix elements. I discussed and showed comparisons of
modified spitting kernels and the reordering with matrix elements of higher multiplicity.
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