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1. Introduction

The pion–nucleon (πN) σ-term σπN determines the scalar couplings of the nucleon to u- and
d-quarks and thus represents a key matrix element required in the search for physics beyond the
Standard Model (BSM). This concerns most notably the interpretation of direct-detection searches
for dark matter [5–7], but also other search channels in which a scalar current can couple to the
nucleon [8–10]. Often, matrix elements that involve currents for which no Standard Model probe
exists can only be accessed in lattice QCD, but the σ-term constitutes a notable exception. It is
related to πN scattering by means of the Cheng–Dashen low-energy theorem (LET) [11,12], which
connects the scalar form factor of the nucleon to the Born-term-subtracted isoscalar πN scattering
amplitude analytically continued into the unphysical region. The corresponding phenomenological
determination of theσ-term thus presents a unique opportunity to confront lattice QCD calculations
with experiment. Theσ-term is also a classic example of chiral dynamics at work. On the one hand,
its smallness is a consequence of the vanishing of the leading chiral order, on the other, strong ππ
rescattering makes a resummation in dispersion theory mandatory. Accordingly, the scalar channel
as such is particularly interesting for BSM applications, see [13–20] for the consequences of chiral
symmetry in the dark matter context.

A precision determination of the low-energy scattering amplitude has further applications that
extend beyond πN. The response of the nucleon to external currents can be analyzed via a t-channel
dispersion relation, and depending on the quantum numbers ππ intermediate states frequently dom-
inate the integral. In particular, for the P-waves, the ππ continuum gives the bulk of the isovector
spectral functions of the nucleon electromagnetic form factors, an essential input for the analysis
of the proton radius puzzle from electron scattering experiments. Second, the low-energy constants
(LECs) that define the chiral expansion of the πN amplitudes also govern the long-range part of the
nucleon–nucleon (NN) potential and the three-nucleon force, and thus provide crucial input for a
systematic approach to nuclear forces.

2. Roy–Steiner-equation analysis of pion–nucleon scattering

The Cheng–Dashen LET [11, 12] relates the Born-term-subtracted isoscalar amplitude evalu-
ated at the Cheng–Dashen point (ν = 0, t = 2M2

π) to the scalar form factor of the nucleon, evaluated
at momentum transfer t = 2M2

π. In practice, this LET is often rewritten as

σπN = σ(0) = Σd +∆D−∆σ−∆R, (2.1)

where ∆R represents higher-order corrections in the chiral expansion, which are expected to be
small given that chiral logarithms cancel at 1-loop order [21]. ∆σ measures the curvature in the
scalar form factor, ∆D parameterizes contributions to the πN amplitude beyond the first two terms
in the subthreshold expansion, and Σd = F2

π

(
d+

00 + 2M2
πd+

01
)
. As shown in [22], although these

corrections are large individually due to strong rescattering in the isospin-0 ππ S -wave, they cancel
to a large extent in the difference. For the numerical analysis we use ∆D−∆σ = −1.8(2)MeV [23].

In this way, the remaining information on the scattering amplitude is encoded in the sub-
threshold parameters d+

00 and d+
01, and these are determined from the solution of Roy–Steiner (RS)
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ã
+
[ 10

−
3
M

−
1

π

] level shift of πH

level shift of πD width of πH

BMW

χQCD

ETMC

Figure 1: Constraints on the isoscalar and isovector scattering lengths ã+ and a− from the level shift in
pionic hydrogen (black) and pionic deuterium (red) as well as the with of pionic hydrogen (blue). The
pionic-atom overlap region (green) lies significantly above the bands from lattice QCD, reinterpreting the
σ-term results as a constraint on the scattering lengths. Figure taken from [46].

equations [24]. The complete system includes both the πN → πN (s-channel) and ππ→ N̄N (t-
channel) partial waves, with the physical regions connected via hyperbolic dispersion relations,
see [23, 25] for its derivation and [26] for the solution. Therefore, while the basic idea, the com-
bination of analyticity, unitarity, and crossing symmetry in a partial-wave framework, is identical
to ππ Roy equations [27–30], the presence of the crossed channel makes the process more closely
related to dispersive analyses of πK scattering [31] or γγ→ ππ [32]. In practice, the solution of the
πN RS equations is greatly stabilized when the S -wave scattering lengths, known precisely from
pionic atoms [26, 33, 34], are imposed as constraints. Final results for the πN partial waves and
subthreshold parameters are given in [26], in a form linearized around the pionic-atom input we
obtain [35]

Σd = 57.9(9)MeV +
∑

Is

cIs∆aIs
0+
, c1/2 = 0.242MeV, c3/2 = 0.874MeV, (2.2)

where ∆aIs
0+

gives the deviation from the scattering lengths extracted from pionic atoms in units of
10−3M−1

π . The result for the σ-term itself becomes

σπN = 59.1(2.0)CD(2.2)IB(1.6)SL(0.9)RS = 59.1(3.5)MeV, (2.3)

where the various sources of error refer to the Cheng–Dashen remainder, isospin-breaking correc-
tions in the LET [35] (see also [36–38]), the uncertainty in the scattering lengths, and the system-
atics of the solution of the RS system.

Our central result (2.3) crucially depends on the πN scattering lengths as extracted from pionic-
atom spectroscopy measurements [39–41]. Unfortunately, there is persistent tension with recent
results in lattice QCD [42–45], which favor a significantly lower value of σπN and can indeed
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be reinterpreted as another constraint in the scattering-length plane that is inconsistent with the
pionic-atom measurements [46], see Fig. 1. Given the role of σπN as a benchmark for BSM matrix
elements, this discrepancy between lattice QCD and phenomenology urgently needs to be resolved.

3. Frequently asked questions

3.1 Why does your number differ from Gasser, Leutwyler, Sainio?

Our result (2.3) lies significantly above the canonical value σπN ∼ 45MeV from [47]. This
shift can be fully explained just from the input used in the solution of the RS equations, given that
the analysis of [47] is based on the scattering lengths and πN coupling constant from the KH80
partial-wave analysis (PWA) [48]. We checked that given this input the KH80 solution is indeed
self-consistent [26] and accordingly reproduce the lower σ-term. However, we stress that this input
is inconsistent with the modern pionic-atom experiments, most notably in the Is = 3/2 scattering
length: a3/2

0+

∣∣∣
KH80 =−101(4)×10−3M−1

π vs. a3/2
0+

∣∣∣
pionic atoms =−86.3(1.8)×10−3M−1

π , which by means
of (2.2) implies a difference of 13MeV in the σ-term. We also checked that our amplitudes fulfill
the forward dispersion relations employed in [47].

3.2 Could it be isospin-breaking corrections?

We believe that this is highly unlikely. The isospin-breaking corrections to the LET analogous
to the known large effects in the isoscalar scattering lengths [36,37] are included, and so are isospin-
breaking corrections in the pion–deuteron system [33, 34]. Isospin amplitudes are consistently
defined in terms of the π±p channels, with the corresponding corrections applied to the scattering
lengths and the LET to match this definition [26]. In the end, the uncertainty of 2MeV in (2.3)
related to isospin breaking is dominated by a generous estimate for a LEC. It is difficult to see how
to generate higher-order effects that could exceed that estimate [46]. In the end, isospin breaking
in the LET actually increases σπN by 3.0MeV.

3.3 Why not use chiral perturbation theory to extract the σ-term?

First of all, a chiral analysis of σπN requires input for the LECs, typically obtained by a fit
to πN phase shifts. Accordingly, the results for σπN , see e.g. [49, 50], reflect the input chosen
for the PWA, with fits to KH80 leading to a lower and those to more modern PWAs [51, 52] to a
higher σ-term. More importantly, the one-loop representation proves not sufficiently rigorous for
a reliable σ-term extraction: the LET is only fulfilled perturbatively, with relations known to fail
for ∆D and ∆σ separately; the effect from t-channel D-waves, which is essential in the dispersive
analysis, is not captured at one-loop order; relating the subthreshold and the physical region with
a chiral representation is problematic, see Sect. 4.2 below; and a simple fit to a PWA neglects
isospin-breaking corrections.

3.4 What if the pionic-atom measurements are wrong?

We believe this is unlikely, given that three independent experimental constraints [39–41] and
their theoretical interpretation [33, 34, 53–55] produce an overlapping region for two scattering
lengths, but further confirmation is of course highly welcome. An independent constraint can be
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Figure 2: Constraints on the Is = 1/2,3/2 scattering lengths a1/2 and a3/2 from π+ p→ π+ p (blue), π−p→
π−p (maroon), and π−p→ π0n (orange). The combination of the elastic (all) channels leads to the green
(red) ellipse. The KH80 and pionic-atom scattering lengths are marked in violet and black, respectively.
Figure taken from [56].

obtained by fitting a RS representation to low-energy cross sections data [56], which allows for
an alternative albeit slightly less precise determination of the πN scattering lengths. Challenges
in this fit include the treatment of the substantial normalization uncertainties in the data base,
which implies that existing compilations cannot be used due to a bias to the respective fit model,
as well as isospin-breaking corrections. We considered each charge channel separately, with the
corresponding scattering length as a free parameter, kept the uncontentious Coulomb piece of the
electromagnetic corrections from [57] while treating the rest as an error estimate, and admitted all
normalizations as additional fit parameters (to avoid D’Agostini bias [58] setting up an iterative fit
strategy [59]). The final results for the scattering lengths are shown in Fig. 2: while the π−p→ π−p
channel is consistent with both KH80 and pionic atoms and the charge-exchange reaction π−p→
π0n remains largely inconclusive, the π+ p→ π+ p data unambiguously decide in favor of pionic
atoms. Combining all three channels, we find from the fit to the low-energy cross sections

σπN = 58(5)MeV, (3.1)

in perfect agreement with (2.3).
As a by-product we obtain the scattering lengths for the three channels separately, which al-

lows for the first time for a quantification of isospin breaking directly from the data. We find

R = 2
aπ+ p→π+ p−aπ−p→π−p−

√
2aπ−p→π0n

aπ+ p→π+ p−aπ−p→π−p +
√

2aπ−p→π0n

= −3.6(4.4)%, (3.2)

in agreement with expectation R = 0.6(4)% from chiral perturbation theory [37] albeit with sig-
nificantly larger uncertainties. A more conclusive test would require an improved treatment of
electromagnetic corrections.
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Figure 3: Isovector spectral functions for the electromagnetic form factors of the nucleon. Figure taken
from [68].

4. Applications

4.1 Nucleon form factors

The response of the nucleon to external sources is described by form factors, and depending
on the quantum numbers their unitarity relation is dominated by ππ intermediate states. The cor-
responding connection to the partial waves for ππ→ N̄N has first been pointed out in the context
of electromagnetic form factors [60, 61], while the scalar form factor of the nucleon that enters
the σ-term correction ∆σ is arguably the most immediate application for the S -wave [22, 23]. Ac-
cordingly, the t-channel P-waves largely determine the isovector spectral functions of the nucleon
electromagnetic form factors, which are essential ingredients for analytic form factor parameteri-
zations [62–66]. They also become relevant for the form factors of the antisymmetric tensor cur-
rent [67].

In [68] we constructed the P-wave spectral functions by combining the RS results for the t-
channel partial waves with a dispersive representation for the pion vector form factor (see [69] for
a comprehensive analysis of e+e−→ π+π+ data in this formalism), including a detailed analysis of
isospin-breaking corrections, of which ρ–ω mixing is the most relevant. In particular, these results,
available for download at https://arxiv.org/abs/1609.06722 and reproduced in Fig. 3 for
both Sachs form factors, ensure consistency between t-channel partial waves, the pion form factor,
and ππ scattering and implement full ππ unitarity, a key advantage of the dispersive representation.
Saturating the sum rules for the radii with the ππ spectral functions, we observe remarkably fast
convergence, to the extent that together with input for the neutron charge radius [70, 71] we find a
slight preference for a small proton radius from the ππ continuum alone.

Recently, it has also been studied to what extent the full dispersive spectral functions can be
reconstructed by unitarizing the chiral expansion [72, 73], mainly as a test case for more compli-
cated systems such as hyperon form factors [74] for which the full result is not known. The main
conclusions are that ∆-exchange diagrams need to be included and that there is a strong sensitivity
to both next-to-leading-order LECs and the chosen unitarization method, so that without imposing
the radii to fix parameters the ensuing uncertainties are substantial.
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a−0+
[10−3M−1

π ] heavy-baryon-NN heavy-baryon-πN covariant

∆-less ∆-ful ∆-less ∆-ful ∆-less ∆-ful

LO 79.4 79.4 79.4 79.4 79.4 79.4

NLO 79.4 79.4(0) 79.4 79.4(0) 80.1 81.9(1)

N2LO 92.2 92.7(10) 92.9 90.5(9) 89.9 81.7(1.2)

N3LO 68.5 96.3(2.0) 58.6 69.1(1.2) 83.8 83.4(1.0)

Pionic atoms 85.4(9)

Table 1: Convergence pattern of the isovector scattering length a−0+
in two variants of heavy-baryon counting

and a covariant formulation, both with and without explicit ∆ degrees of freedom. Table taken from [81].

4.2 Low-energy constants

The solution of the RS equations naturally proceeds in terms of subthreshold parameters,
which offers a unique opportunity for a systematic determination of πN LECs [75]. In fact, since
the subthreshold amplitude can be expanded in a polynomial, at a given chiral order there is a
one-to-one correspondence between subthreshold parameters and LECs, so that the LECs can be
expressed analytically in terms of the subthreshold parameters. Absent any singularities, one would
thus expect the chiral expansion to converge best in the subthreshold region, and, as an added ben-
efit, the subthreshold region is much closer to the kinematics relevant for NN scattering than the
physical region for πN. Recent implementations of precision chiral potentials [76, 77] have indeed
adopted the accordingly determined LECs.

Surprisingly, though, the chiral convergence of threshold parameters even for the isovector
channel is bad if the LECs determined at the subthreshold point are employed. The reason for
this behavior could be traced back to loop effects at next-to-next-to-next-to-leading order that are
enhanced by g2

A(c3−c4) ∼ −16GeV−1, clearly demonstrating that the heavy-baryon amplitude does
not converge equally well in the whole low-energy region. The large values of the ci can be un-
derstood from resonance saturation by the ∆(1232) [78–80], leading to the expectation that the
chiral convergence should improve if the ∆ is included as an explicit degree of freedom. In [81]
we extended the comparison of threshold and subthreshold expansions to the ∆-ful case, both in
heavy-baryon counting and a covariant formulation, the results for the isovector scattering length
are reproduced in Table 1. One can see that the inclusion of the ∆(1232) indeed improves the con-
vergence, as expected, but in nearly all cases we also see significant improvements when resum-
ming 1/mN corrections in a covariant set-up. To our knowledge there is currently no convincing
explanation as to why the covariant expansion behaves better.

For the application of the LECs to other processes, however, we have now reached the situation
where the uncertainties as propagated from the low-energy πN amplitude via the subthreshold
parameters are negligible compared to the differences between scheme and chiral order. In [81] we
have made these results available for various schemes up to full one-loop order, with and without
explicit ∆ degrees of freedom.
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5. Conclusions

We briefly reviewed RS equations for πN scattering, concentrating on the phenomenological
determination of the σ-term by means of the Cheng–Dashen LET. In particular, there are now two
completely independent extractions, based on pionic-atom measurements and low-energy cross
sections, respectively, that both point to a value close to 60MeV, making a resolution of the lin-
gering tension with lattice QCD all the more pressing. We also reviewed further applications of
the RS solution, to the spectral functions of nucleon form factors and the determination of LECs
by matching to chiral perturbation theory in the subthreshold region. In both cases the results are
readily available for use elsewhere, for form factor parameterizations that explicitly account for the
ππ continuum and in terms of LECs for various schemes and chiral orders including full covariance
matrices.
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