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1. Introduction

Since the deep inelastic scattering experiment at SLAC in late 1960s, the hadron structure has
been probed in various hard scattering processes. In such processes, the hadron structure can be
characterized by certain parton observables such as the parton distribution functions (PDFs) or the
distribution amplitudes (DAs). These parton observables are defined as the expectation value of
lightcone correlations in the hadron state, and how to calculate them from first principles has been
a long-standing challenge in hadron physics. In the past few decades, the ab initio lattice QCD
approach has only been able to access the first few moments of the PDFs and DAs [1, 2, 3, 4], while
reconstructing the full distribution requires information on all their moments. Phenomenologically,
the PDFs or DAs are usually determined by assuming a smoothly parametrized form and fitting the
unknown parameters to a large variety of experimental data (for a recent review, see e.g. Ref. [5]).

Recently, a new theory framework has been developed that allows for a lattice calculation of
the full x-dependence, instead of the moments, of parton observables. This theory is now known
as large momentum effective theory (LaMET) [6, 7] (for other related proposals see Refs. [8, 9,
10, 11, 12, 13, 14, 15, 16]). According to LaMET, a parton observable can be directly accessed
from lattice QCD using the following procedure: 1) Construct an appropriate static-operator matrix
element (quasi-observable) that approaches the parton observable in the infinite momentum limit
of the external hadron. The quasi-observable constructed in this way is usually hadron-momentum-
dependent but time-independent, and thus can be readily computed on the lattice. 2) Calculate the
quasi-observable on the lattice and renormalize it nonperturbatively in an appropriate scheme. 3)
Match the renormalized quasi-observable to the parton observable through a factorization formula
accurate up to power corrections that are suppressed by the hadron momentum. The existence
of such a factorization is ensured by construction. For a proof in the case of nonsinglet quark
distribution, see Refs. [8, 9, 17]. In the case of singlet quark distribution and gluon distribution, the
proof is given in Ref. [18].

Since LaMET was proposed, much progress has been achieved both in the theoretical under-
standing of the formalism and in the direct calculation of the x-dependent hadron structure from
lattice QCD (see a recent review [19] and references therein). In particular, multiplicative renor-
malization of both the quark [20, 21, 22] and the gluon [23, 24] quasi-PDF has been established in
coordinate space. Nonperturbative renormalization in the regularization-independent momentum
subtraction (RI/MOM) scheme as well as a perturbative matching in the same scheme has been car-
ried out for the flavor nonsinglet quark quasi-PDFs in Refs. [25, 26, 27, 28] (see also [29, 30, 31])
and for the singlet quark and gluon quasi-PDFs in Ref. [18]. Despite limited volumes and relatively
coarse lattice spacings, the state-of-the-art nucleon isovector quark PDFs determined from lattice
data at the physical point have shown a reasonable agreement [27, 28, 31] with phenomenological
results extracted from the experimental data [32, 33, 34, 35, 36]. Of course, a careful study of
theoretical uncertainties and lattice artifacts is still needed to fully establish the reliability of the
results.

In this talk, I review recent progress in lattice calculations of the x-dependence of hadron
structure, with a particular focus on the isovector quark PDFs in the proton, for which intensive
studies in the past few years have yielded very encouraging results.

1



P
o
S
(
C
D
2
0
1
8
)
0
5
0

Recent Progress on Hadron Structure from Lattice QCD Jian-Hui Zhang

2. From quasi-PDF to PDF

The leading-twist quark PDF in the proton is defined as

q(x,µ) =
∫ dξ−

4π
e−ixP+ξ−

〈
P
∣∣ψ̄(ξ−)ΓW (ξ−,0)ψ(0)

∣∣P〉 , (2.1)

where the proton has momentum Pµ = (P0,0,0,Pz), ψ, ψ̄ denote the quark fields, ξ± = (t±z)/
√

2
are the lightcone coordinates, x is the fraction of proton momentum carried by the quark, Γ =

{γ+,γ+γ5,γ
+γ⊥γ5} is a Dirac structure that specifies the leading-twist quark PDF, µ is the renor-

malization scale in the MS scheme, and

W (ξ−,0) = exp
(
− ig

∫
ξ−

0
dη
−A+(η−)

)
(2.2)

is the Wilson line inserted to ensure gauge invariance of the nonlocal quark correlator, where A+ =

A+
a ta with ta being the generators in the fundamental representation of color SU(3) group.

For the above quark PDF, a well-suited quasi-PDF candidate is given by

q̃(x, µ̃,Pz) = N
∫ dz

4π
eizxPz〈P|ψ̄(z)ΓW (z,0)ψ(0)|P〉, (2.3)

where z is a spatial direction, Γ = {γ t ,γzγ5,γ
tγ⊥γ5} is a Dirac matrix with the corresponding nor-

malization factor N = Pz/Pt , µ̃ is the renormalization scale in an appropriate scheme. As shown
in Ref. [20], the renormalization of the above quark quasi-PDFs has a multiplicative form in coor-
dinate space so that the matrix elements at different z do not mix with each other. Moreover, the
above choice has the advantage of avoiding O(1) mixing with other PDFs when a non-chiral lattice
fermion is used [29, 37].

The renormalization of the above quark quasi-PDF can be carried out nonperturbatively in
the RI/MOM scheme [25, 26]. After the bare matrix element on the r.h.s. of Eq. 2.3, denoted as
h̃(z,Pz,a), is calculated on the lattice, it can be renormalized by demanding that the counterterm
cancels all the loop contributions for the matrix element of the same operator in an off-shell external
quark state at a specific momentum [25, 26]:

h̃R(z,Pz,µR, pR
z ) = Z−1(z,µR, pR

z ,a)h̃(z,P
z,a), (2.4)

and

Z(z,µR, pR
z ,a) =

Tr[ΛΓP]

Tr[ΛΓP]tree

∣∣∣∣p2 =−µ2
R

pz = pR
z

, (2.5)

where ΛΓ is the amputated Green’s function of the quark bilinear operator in Eq. (2.3) in an off-
shell quark state with momentum p. µR, pR

z are renormalization scales introduced in the RI/MOM
scheme. P is a projection operator that defines the renormalization factor [26, 28, 38, 39]. After
renormalization, h̃R has a well-defined continuum limit. It can be converted to the renormalized
quasi-PDF, q̃R, by the Fourier transform in Eq. (2.3). When taking the isovector u− d combina-
tion, q̃R can be connected to the normal PDF in the MS scheme through the following factorization
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Figure 1: Comparison of unpolarized isovector quark distributions with phenomenological results (left:
LP3, right: ETMC).

formula

q̃R(x,Pz,µR, pR
z ) =

∫ 1

−1

dy
|y|

C
(

x
y
,

µR

pR
z
,
yPz

µ
,
yPz

pR
z

)
q(y,µ)+O

(
M2

P2
z
,
Λ2

QCD

P2
z

)
, (2.6)

with a perturbatively calculable hard matching kernel C. It is worthwhile to point out that the
higher-twist contributions shall behave like 1/[x2(1− x)P2

z ] instead of 1/P2
z , as demonstrated in

Ref. [40].

3. Lattice results on PDFs

Within the LaMET approach, the isovector quark unpolarized, helicity and transversity PDFs
have been computed by two different groups: LP3 [27, 28, 39] and ETMC [31, 41]. In the work
of LP3, the calculation was done using clover valence fermions on an ensemble of gauge config-
urations with lattice spacing a = 0.09 fm, box size L ≈ 5.8 fm and pion mass Mπ ≈ 135 MeV
with N f = 2+1+1 (degenerate up/down, strange and charm) flavors of highly improved staggered
quarks (HISQ) [42] generated by MILC Collaboration [43]. The gauge links were hypercubic
(HYP)-smeared [44] and then clover parameters were tuned to recover the lowest pion mass of
the staggered quarks in the sea [45, 46, 47, 48]. Only one step of HYP smearing was used to
improve the discretization effects. The calculation of ETMC used gauge configurations generated
with the Iwasaki improved gluon action [49, 50] and the twisted mass fermion action with clover
improvement [51, 52]. Their results were obtained with an ensemble of two degenerate light quarks
(N f=2) at maximal twist, with quark masses that were tuned to reproduce approximately the phys-
ical pion mass value [53]. The lattice spacing was a = 0.094 fm, box size L ≈ 4.5 fm and pion
mass Mπ ≈ 130 MeV. They applied stout smearing [54] to the links of the Wilson line entering the
operator, and tested up to 20 smearing steps and found complete agreement upon renormalization.
Both groups have used a momentum smearing [55] that was designed to align the overlap with nu-
cleons of the desired boost momentum, and the largest momentum reached was 3.0 and 1.4 GeV,
respectively.
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Figure 2: Comparison of isovector quark helicity distributions with phenomenological results (left: LP3,
right: ETMC).
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Figure 3: Comparison of isovector quark transversity distributions with phenomenological results (left: LP3,
right: ETMC).

As can be seen from the ETMC plot in Fig. 1, the lattice results tend to approach the phe-
nomenological curves when the proton momentum is increased. In addition, there is an oscillatory
behavior in the ETMC plot, which is due to the truncated Fourier transform from coordinate space
matrix elements to momentum space distributions. In the LP3 plot such an oscillation is hardly
visible because a “derivative method" [56] has been applied to suppress the unphysical oscillation
effects. Similar behavior also occurs in Figs. 2 and 3.

In all three cases, the LP3 results show a reasonable agreeement with phenomenological curves
within errors. This is encouraging, however, one should be aware that in these plots a thorough
analysis of the systematic uncertainties is still missing, which needs to be done in the future to
fully establish the reliability of these results.
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