
P
o
S
(
C
D
2
0
1
8
)
0
7
2

Complete One-Loop Renormalization of the
Higgs-Electroweak Chiral Lagrangian

Claudius Krause∗†
Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL,60510,
USA
E-mail: ckrause@fnal.gov

Gerhard Buchalla
Ludwig-Maximilians-Universität München, Fakultät für Physik, Arnold Sommerfeld Center for
Theoretical Physics, D-80333 München, Germany
E-mail: Gerhard.Buchalla@physik.uni-muenchen.de

Oscar Catà
Theoretische Physik 1, Universität Siegen, Walter-Flex-Straße 3, D-57068 Siegen, Germany
E-mail: Oscar.Cata@uni-siegen.de

Alejandro Celis
Ludwig-Maximilians-Universität München, Fakultät für Physik, Arnold Sommerfeld Center for
Theoretical Physics, D-80333 München, Germany
E-mail: alejandrocelis5555@gmail.com

Marc Knecht
Centre de Physique Théorique (CPT),UMR 7332 CNRS/Aix-Marseille Univ./Univ. du Sud
Toulon-Var, Marseille, France
E-mail: marc.knecht@cpt.univ-mrs.fr

The electroweak sector of the Standard Model can be formulated in a way similar to Chiral Pertur-
bation Theory (ChPT), but extended by a singlet scalar. The resulting effective field theory (EFT)
is called Higgs-Electroweak Chiral Lagrangian (EWChL ) and is the most general approach to
new physics in the Higgs sector. It solely assumes the pattern of symmetry breaking leading to
the three electroweak Goldstone bosons (i.e. massive W and Z) and the existence of a Higgs-like
scalar particle. The power counting of the EWChL is given by a generalization of the momentum
expansion of ChPT. It is connected to a loop expansion, making the theory renormalizable order
by order in the EFT.
I will briefly review the construction of the EWChL and its power counting. Then, I will discuss
the complete one-loop renormalization of the EWChL employing the background-field method
and the super-heat-kernel expansion. This computation confirms the power counting assumptions,
is consistent with the completeness of the operator basis, and reproduces known results of sub-
sectors in the appropriate limits.
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1. Introduction and Motivation

After the discovery of a Higgs-like scalar particle at the LHC, the particle physics community
was interested in answering the question
“Is that particle the Higgs-boson of the Standard Model, or is it something else?”
Many models of new physics beyond the Standard Model (SM) exist, and many of them predict
new particles at the scales accessible to the LHC. So far, no such direct sign of new physics has
been discovered and the focus of the analyses shifted towards searches for indirect effects. In those
searches, the couplings of the SM particles are measured with high precision and deviations from
the SM expectations are looked for.
Bottom-up effective field theories (EFTs) offer the perfect tool for these analyses, as they are con-
sistent quantum field theories while at the same time they only assume very little on the new
physics. In the bottom-up approach, the couplings of the effective operators (called Wilson co-
efficients) are free parameters to be determined by experiment. Once a UV-model is specified,
the Wilson coefficients can be computed and the EFT can be specified to the given model. With
all Wilson coefficients kept as free parameters, the bottom-up EFT provides a model-independent
approach to look for the indirect signs of new physics.
Since the couplings of the Higgs-like scalar are so far only known with O(10%) [1] uncertainty or
more, we cannot assume that it is indeed the Higgs of the SM and new physics decouples from the
SM. Dynamical symmetry breaking, like in composite Higgs models [2, 3] where the Higgs-like
scalar is a pseudo-Nambu-Goldstone boson, is still an appealing alternative to solve the hierarchy
problem.
The Electroweak Chiral Lagrangian (EWChL ) is the most general EFT for the Higgs sector and
therefore the most suitable bottom-up EFT for current LHC analyses. Its construction can be
understood intuitively as follows. First, we start from the Lagrangian of the SM and omit the phys-
ical Higgs scalar. The resulting Higgs-less chiral Lagrangian is then supplemented with a generic
scalar singlet with the most general couplings to fermions and gauge fields. The Goldstone dy-
namics in the chiral Lagrangian is given by the pattern of symmetry breaking SU(2)L×SU(2)R→
SU(2)L+R. This is analogous to QCD and Chiral Perturbation Theory (ChPT). The underlying
strongly-coupled UV theory (QCD) has a global chiral symmetry that is dynamically broken at low
energies. The dynamics of the resulting low-energy EFT (ChPT) is solely governed by the pattern
of this global symmetry breaking. Moreover, the chiral Lagrangian is agnostic about how the elec-
troweak symmetry is broken. It can describe the SM in the limit described below in eq. (4.1), as
well as composite Higgs models, as discussed in [4, 5].
Parallel to the EWChL , there is an alternative EFT used to study new physics beyond the SM,
the Standard Model EFT (SMEFT) [6]. In the SMEFT, the Higgs belongs to the SU(2)L Higgs
doublet of the SM and the effects of decoupling new physics is described by operators of canonical
dimension larger than four.
With the increased interest in EFTs for data analysis at the LHC, there was also an increased inter-
est in formal aspects of both EFTs, like (among others) the counting of independent operators [7] in
SMEFT, the matching to models [8, 9, 10], a geometric interpretation of the scalar field space [11],
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and the one-loop renormalization [12, 13, 14, 15, 16, 17].
In these proceedings, I will report on the one-loop renormalization of the EWChL [17], which is
especially interesting for the following reasons. First, it confirms the power counting that is based
on the loop expansion and the superficial degree of divergence [18]. Second, it provides indepen-
dent support to the completeness of the basis we previously derived in [19]. Third, it gives us the
running of the couplings. And fourth, the functional approach we employ reduces the problem to
an algebraic problem of matrix multiplication and tracing. The resulting master formula can also
be applied to other Lagrangians beyond our EFT.

2. The Electroweak Chiral Lagrangian

The EWChL applies the techniques of ChPT to the Higgs sector. As any bottom-up EFT, it
is defined by the low-energy particle content, its symmetry content and the power counting of the
expansion.

• Particles: The EWChL assumes the particle content of the SM, including the Higgs-like
scalar h and the three EW Goldstone bosons (GBs) ϕa, but no relation between h and the
GBs.

• Symmetries: The EWChL assumes the SU(3)c× SU(2)L×U(1)Y → SU(3)C ×U(1)em

local symmetry of the SM and the conservation of baryon number B and lepton number L. It
further assumes custodial symmetry at leading order.

• Power counting: The EWChL is expanded in chiral dimensions [18], a generalization of
the momentum expansion of ChPT. The total chiral dimension of a term in the Lagrangian
sums to 2L+2, where L is the order of the EFT expansion. Derivatives, fermion bilinears and
weak couplings (gauge and Yukawa) have chiral dimension 1, bosons have chiral dimension
0. Leading order is given by L = 0, i.e. O(p2) and next-to-leading order by L = 1, i.e. O(p4).

Once we relax the relation between the h and the GBs, they in general cannot be written as ele-
ments of the same multiplet. To have gauge invariance manifest, we introduce polar coordinates
and collect the GBs in U = exp(2iϕaTa/v), with v = 246 GeV the electroweak vacuum expectation
value and Ta the generators of SU(2). A gauge transformation gL ∈ SU(2)L and gY ∈U(1)Y acts
linearly on U → gLUg†

Y , but non-linearly on ϕa. Hence the name nonlinear EFT for the EWChL .
The radial mode, h, remains a singlet under the symmetry.
For generic Higgs couplings, the resulting Lagrangian is non-renormalizable in the traditional
sense, having interactions beyond canonical dimension four in the expansion of the exponential
in U . It is, however, renormalizable in the modern sense — order by order in the EFT expan-
sion. Counterterms needed for the renormalizatin of loops of leading-order vertices are included as
next-to-leading order operators [19, 18]. This ultimately connects the expansion of the EFT to an
expansion in loops, which is reflected in the definition of the chiral dimensions above.
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The leading-order Lagrangian (at chiral dimension 2) is

L =−1
2
〈GµνGµν〉− 1

2
〈WµνW µν〉− 1

4
BµνBµν +

v2

4
〈DµU†DµU〉F(h)+

1
2

∂µh∂
µh−V (h)

+ ψ̄i /Dψ− ψ̄
[
UM(h)PR +M†(h)U†PL

]
ψ.

(2.1)

Here, G,W, and B are the gauge fields of SU(3)C,SU(2)L, and U(1)Y , respectively; 〈x〉 denotes the
trace of the operator x; the covariant derivative of U is defined as

DµU = ∂µU + igWµU− ig′BµUT3 , (2.2)

with T3 the third generator of SU(2); ψ collects the SM fermions, ψ = (u,d,ν ,e)T ; and F(h),V (h),
and M(h) are Higgs-dependent polynomials containing all powers of h. M(h) carries not only
fermion-, but also flavor indices.
These polynomials generalize the Higgs couplings of the SM. The couplings linear in the Higgs
field are related [20, 1] to the experimental κ-formalism [21]. Current LHC data constrains them to
be SM-like with roughly 10% uncertainty [1]. The EWChL is especially suited for the analysis of
current Higgs data, because its power counting introduces a hierarchy between the experimentally
well-constrained electroweak precision data (at NLO in the EWChL ) and the not-so-well known
Higgs couplings (at LO).

3. Background-Field Method and Super-Heat-Kernel Expansion

We employ the background-field method [22] in our computation, splitting each field into
a (classical) background component and a (quantized) fluctuating component. We call the latter
ξ ,ωµ , and χ for scalars, vectors, and Dirac fermions, respectively. Further, we define the bosonic
objects φi ≡ (ξ ,ωµ) and φ i ≡ (ξ ,−ωµ). Starting from a generic Lagrangian that is at most bilinear
in fermion fields and expanding it to second order in fluctuating fields, we have

L2 =−
1
2

φ
iA j

i φ j + χ̄
(
i/∂ −G

)
χ + χ̄Γ

i
φi +φ

i
Γ̄iχ, (3.1)

with
A = (∂ µ +Nµ)(∂µ +Nµ)+Y (3.2)

and
G≡ (r+ρµγ

µ)PR +(l +λµγ
µ)PL. (3.3)

The background-field-dependent entities Nµ ,Y,r,ρµ , l,λµ are bosonic; Γi, Γ̄i are Dirac spinors. The
gauge-fixing Lagrangian for Bµ ,Wµ , and Gµ with fluctuating fields bµ ,wµ , and εµ is

Lg.f. =−
1
2

(
∂

µbµ +
g′v
2

Fϕ3

)2

− 1
2

(
Dµwa

µ −
gv
2

Fϕ
a
)2
− 1

2
(
Dµ

ε
a
µ

)2
, (3.4)

where the terms with the fluctuating GBs, ϕi, are introduced [23] to cancel a mixing term between
the GBs and the gauge fields. This makes the intermediate steps of the computation easier1. We

1We verified explicitly that using a gauge-fixing Lagrangian without these terms leads to the same final result.
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use the Feynman gauge for the fluctuating gauge fields to obtain the form of eq. (3.2).
The one-loop effective action is given by the Gaussian integral over the bosonic and fermionic
fields in

eiSeff ∼
∫
[dφi dχ dχ̄]ei

∫
dDxL2(φi,χ,χ̄). (3.5)

Since we are only interested in the divergent part of Seff, we can write [24]

Seff =
i
2

Str ln∆, (3.6)

where

∆≡

(
A

√
2Γ̄γ5Bγ5

−
√

2Γ Bγ5Bγ5

)
≡ (∂ µ +Λ

µ)(∂µ +Λµ)+Σ, (3.7)

and B ≡ i/∂ −G. In this notation, ∆ is a supermatrix treating bosonic and fermionic fields on the

same footing. The supertrace of a supermatrix M =

(
a α

β b

)
is defined2 as str M = tr a− tr b. On

the right hand-side of eq. (3.7), we brought ∆ already to standard form in super space, defining
the super matrices Λµ and Σ. The divergent part of the effective action is given by the second
Seeley-DeWitt coefficient of the corresponding heat-kernel expansion [24, 25]. Using dimensional
regularization, the divergent terms of the one-loop effective Lagrangian is given by

Ldiv =
1

32π2ε
str
[

1
12

Λ
µν

Λµν +
1
2

Σ
2
]

(3.8)

where ε = 2−d/2 and Λµν ≡ ∂µΛν −∂νΛµ +[Λµ ,Λν ].
With the definitions in eqs. (3.1)–(3.3), we can evaluate the supertraces and express the result in
terms of the entities Nµ ,Y,r,ρµ , l,λµ ,Γ

i, and Γ̄i. We can also perform the trace in Dirac space
explicitly. We find the master formula [26, 17]

Ldiv =
1

32π2ε

(
tr

[
1
12

NµνNµν +
1
2

Y 2− 1
3
(
λ

µν
λµν +ρ

µν
ρµν

)
+2Dµ lDµr−2lrlr

]

+ Γ̄

(
i/∂ + i/N +

1
2

γ
µGγµ

)
Γ

) (3.9)

with

Nµν ≡ ∂µNν −∂νNµ +[Nµ ,Nν ] ,

λµν ≡ ∂µλν −∂νλµ + i[λµ ,λν ] , ρµν ≡ ∂µρν −∂νρµ + i[ρµ ,ρν ] ,

Dµ l ≡ ∂µ l + iρµ l− ilλµ , Dµr ≡ ∂µr+ iλµr− irρµ

(3.10)

The contribution of the ghosts has to be added to eq. (3.9), but can be found with the same tech-
niques.
Equation (3.9) is the master formula that we use to find the 1/ε-poles of the EWChL at one loop in
dimensional regularization. However, it can be applied to any theory, assuming that its Lagrangian
can be written in the form of eq. (3.1). The main advantage of this master formula is that all mo-
mentum integrals are already performed and the problem of finding the 1/ε poles at one loop is
reduced to algebraic manipulations of matrices.

2Capital (super) traces include an integration over space-time, lower-case (super) traces do not include such an
integration.
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4. The One-Loop Renormalization

The detailed results are in our publication [17]. Here instead, I focus on some of the key
aspects of the result. In order to verify our results, we performed several cross checks.

1. In the limit

F(h) = (1+ h
v )

2 , V (h) =
m2

hv2

8
(
−2(1+ h

v )
2 +(1+ h

v )
4) , M(h) = M0 (1+ h

v ),

(4.1)
the Lagrangian in equation (2.1) reduces to the Lagrangian of the SM. In this limit, our results
reproduce the β -functions of the SM.

2. When restricting to loops of Higgs and Goldstone Bosons only, we reproduce the results
of [15], where the divergent contributions of these scalar loops were computed.

3. All five members of our collaboration performed the computation independently, even using
different choices of the gauge-fixing Lagrangian in eq. (3.4).

To find the β -functions of all the couplings of the Lagrangian, the results of eq. (3.9) have to be
projected on an operator basis. At leading order, the operators are defined through eq. (2.1). Terms
of the form (∂µh)(∂ µh) f (h) and ψ̄i /Dψ g(h), arising from eq. (3.9), need to be eliminated using
field redefinitions [19]. Further, we have to impose V ′(0) = 0. At next-to-leading order, we project
the result of eq. (3.9) to the basis defined in [19]. The resulting operator structures are sketched in
Table 1. This computation confirms that

• the operator basis defined in [19] is complete, i.e. all the divergent terms at the one-loop level
can be expressed as a sum of the operators of [19].

• the power counting based on chiral dimensions [18] gives the right classes of counter terms,
i.e. the operators come with additional factors of weak couplings, as predicted.
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Operator class Example Operator count3

generated total [19]

κ2UD2h Oβ = (g′v)2〈UT3DµU†〉2F 1 1

UD4h OD1 = 〈DµUDµU†〉2 F 5 15

κUXD2h OXU7 = g′〈T3DµU†DνU〉Bµν F̄ 0 8

κ2UX2h OXh1 = g′2BµνBµν F̄ 0 10

κ2UDΨ2h OΨV 1 = iy2(q̄LγµqL)〈UT3DµU†〉F 13 13

κUD2Ψ2h OΨS1/2 = yq̄LUP±qR〈DµUDµU†〉F 12 30

κ2UΨ2Xh OΨX1/2 = yg′q̄LσµνUP±qRBµν F 0 11

κ2UΨ4h OLL1 = y2(q̄LγµqL)(q̄LγµqL)F 22 60

Table 1: Schematic summary of the result. The notation of op-
erator classes and operators are as in [19], with a generic weak
coupling (gauge or Yukawa) κ .

5. Conclusions

Without direct signs of new physics at the LHC, effective field theory techniques have become
very popular in recent years. Used in the bottom-up approach, they provide a model-independent
framework to look for indirect signs of physics beyond the Standard Model.
Here, I introduced the Electroweak Chiral Lagrangian as the most general EFT at the electroweak
scale. It generalizes the Higgs couplings of the SM and can therefore also be used to study the

3The operators are counted with the Higgs functions F (h) included, meaning different orders in h count to the same
operator.

6



P
o
S
(
C
D
2
0
1
8
)
0
7
2

1-loop Renormalization of the EWChL Claudius Krause

properties of the newly-discovered Higgs-like scalar. The Electroweak Chiral Lagrangian applies
techniques used in Chiral Perturbation Theory to electroweak physics. The presence of dynamical
gauge fields and fermions requires a generalization of the momentum expansion of ChPT to include
those fields as well. Since the leading-order Lagrangian is non-renormalizable, the expansion of
the EFT is tied to a loop expansion, where NLO counterterms absorb the divergences generated by
the leading-order operators. I introduced the concept of chiral dimensions, which are based on the
superficial degree of divergence, to keep track of the loop order of a given operator. They provide
the desired generalized momentum expansion and can also be applied for example to ChPT cou-
pled to QED [27, 28, 18].
Since the power counting is based on the loop structure of the theory, knowing the full divergence
structure beyond the superficial degree of divergence is essential for our understanding. Here, I pre-
sented our computation [17] of the divergence structure of the full Electroweak Chiral Lagrangian.
It uses the background-field method and is based on the super-heat-kernel expansion. We find a
universal master formula for the 1/ε-poles in dimensional regularization in eq. (3.9), which can
be applied to any theory with a Lagrangian quadratic in fluctuations of the form of eq. (3.1), not
restricted to the EFT we consider here.
The result of our computation supports the completeness of the operator basis defined in [19] and
confirms the power counting based on chiral dimensions [18], which was based on the superficial
degree of divergence.
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