
P
o
S
(
C
D
2
0
1
8
)
0
9
9

NN interaction and spectrum of the light- and
medium-mass nuclei using Lattice EFT

Ning Li∗

Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State
University, MI 48824, USA
E-mail: lini@nscl.msu.edu

Serdar Elhatisari
Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,
Universität Bonn, D-53115 Bonn, Germany
Department of Physics, Karamanoglu Mehmetbey University, Karaman 70100, Turkey
E-mail: selhatisari@gmail.com

Evgeny Epelbaum
Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44870 Bochum, Germany
E-mail: evgeny.epelbaum@ruhr-uni-bochum.de

Dean Lee
Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State
University, MI 48824, USA
Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
E-mail: leed@nscl.msu.edu

Bing-Nan Lu
Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State
University, MI 48824, USA
E-mail: lub@nscl.msu.edu

Ulf-G. Meißner
Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,
Universität Bonn, D-53115 Bonn, Germany
Institute for Advanced Simulation, Institut für Kernphysik, and
Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
JARA - High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany
E-mail: meissner@hiskp.uni-bonn.de

We present a new lattice formulation of chiral nuclear forces which is much more efficient that
the one we used in our previous calculations. We also present some preliminary results of nuclear
binding for the light- and medium-mass nuclei. Our results provide a pathway to ab initio lattice
calculations of nuclear structure, reactions, and thermodynamics with accurate and systematic
control over the chiral nucleon-nucleon force.

The 9th International workshop on Chiral Dynamics
17-21 September 2018
Durham, NC, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:lini@nscl.msu.edu
mailto:selhatisari@gmail.com
mailto:evgeny.epelbaum@ruhr-uni-bochum.de
mailto:leed@nscl.msu.edu
mailto:lub@nscl.msu.edu
mailto:meissner@hiskp.uni-bonn.de


P
o
S
(
C
D
2
0
1
8
)
0
9
9

New lattice formulation of NN interaction Ning Li

1. Introduction

In the past fifteen years, it has been witnessed that the nuclear lattice effective field theory has
achieved great success in researches of the structure and scattering of atomic nuclei [1, 2, 3, 4, 5, 6].
However, the treatment of nuclear forces at higher orders in the chiral EFT expansion is more
difficult on the lattice due to the breaking of rotational invariance produced by nonzero lattice
spacing [7, 8]. Fitting the unknown coefficients of the short-range lattice interactions to empirical
phase shifts can introduce significant uncertainties. We proposed a new lattice formulation of the
chiral nuclear forces to solve this problem. For the new lattice interaction, the angular dependence
of the relative separation between the two nucleons is prescribed by spherical harmonics, and the
dependence on the nucleon spins is given by the spin-orbit Clebsch-Gordan coefficients. We will
show that the neutron-proton scattering phase shifts are produced more accurately with the new
lattice interactions than those in our previous calculations.

2. Lattice Hamiltonian

In the calculation, the normal-ordered transfer matrix is defined as

M =: exp[−Hαt ] :, (2.1)

where the :: symbols denote normal ordering where the annihilation operators are on the right and
creation operators are on the left. αt = at/a is the ratio between the temporal lattice spacing, at ,
and the spacial lattice spacing, a.

The lattice Hamiltonian H is formed by a free Hamiltonian, short-range interactions, and long-
range interactions,

H = Hfree +V short
2N + V long

2N . (2.2)

2.1 Free Hamiltonian

For the free Hamiltonian we use an O(a4)-improved action of the form [9],

Hfree =
49

12mN
∑
n

a†(n)a(n)− 3
4mN

∑
n,i

∑
〈n′ n〉i

a†(n′)a(n)

+
3

40mN
∑
n,i

∑
〈〈n′ n〉〉i

a†(n′)a(n)− 1
180mN

∑
n,i

∑
〈〈〈n′ n〉〉〉i

a†(n′)a(n), (2.3)

where mN is the nucleon mass.

2.2 Short-range interactions

Up to next-to-next-to-next-to-leading order in chiral effective field theory, the short-range
nucleon-nucleon interaction reads,

V short
2N =V (Q/Λχ )

0

contact +V (Q/Λχ )
2

contact +V (Q/Λχ )
4

contact . (2.4)

At leading order, we have two non-locally smeared contact operators saturating the two lowest
partial waves,

V (Q/Λχ )
0

contact =C(Q/Λχ )
0

1S0
V1S0,(Q/Λχ )0 +C(Q/Λχ )

0

3S1
V3S1,(Q/Λχ )0 , (2.5)
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where

V1S0,(Q/Λχ )0 = ∑
Iz=−1,0,1

[
O0,sNL

0,0,0,0,1,Iz
(n)
]†

O0,sNL
0,0,0,0,1,Iz

(n), (2.6)

and

V3S1,(Q/Λχ )0 = ∑
Jz=−1,0,1

[
O0,sNL

1,0,1,Jz,0,0(n)
]†

O0,sNL
1,0,1,Jz,0,0(n). (2.7)

The contact operators at orders (Q/Λχ)
2 and (Q/Λχ)

4 can be written in a similar manner, refer to
[10] for the specific expressions.

We also include an SU(4)-invariant short-range operator at LO which is very important for
nuclear binding [5, 11],

VSU(4) =
CSU(4)

2
: ∑
n′,n,n′′

∑
i′, j′

asNL†
i′, j′ (n

′)asNL
i′, j′(n

′) fsL(n
′−n) fsL(n−n′′) ∑

i′′, j′′
asNL†

i′′, j′′(n
′′)asNL

i′′, j′′(n
′′) :, (2.8)

where the smearing function fsL(n) is defined as

fsL =


1, |n|= 0,
sL, |n|= 1,
0, otherwise.

(2.9)

The index i corresponds to nucleon spin while j corresponds to nucleon isospin. The dressed
creation operator asNL† and annihilation operator asNL are defined respectively as

asNL
i, j (n) = ai, j(n)+ sNL ∑

|n′|=1
ai, j(n+n′) , (2.10)

and
asNL†

i, j (n) = a†
i, j(n)+ sNL ∑

|n′|=1
a†

i, j(n+n′) . (2.11)

The dressed creation (annihilation) operator is used to create (annihilate) not only the nucleon
placed at the exact lattice site but also the nucleons located at its nearest-neighbor lattice sites. In
this manner, some of the lattice artifacts induced by the nonzero lattice spacing can be removed.

2.3 Long-range interactions

In chiral effective field theory, the long-range nucleon-nucleon interaction arise from the pion-
exchange potential,

V long
2N =V (Q/Λχ )

0

OPE +V (Q/Λχ )
2

TPE +V (Q/Λχ )
3

TPE +V (Q/Λχ )
4

TPE . (2.12)

The one-pion exchange potential VOPE has the form

VOPE =− g2
A

8F2
π

∑
n′,n,S′,S,I

: ρS′,I(n′) fS′S(n′−n)ρS,I(n) :, (2.13)

where fS′S is defined as

fS′S(n′−n) =
1
L3 ∑

q

Q(qS′)Q(qS)exp[−iq · (n′−n)−bπ(q2 +M2
π)]

q2 +M2
π

, (2.14)

and each lattice momentum component qS is an integer multiplied by 2π/L. The specific expres-
sions of the two-pion-exchange potentials at NLO, N2LO, and N3LO can be found in [10].
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3. Galilean Invariance Restoration (GIR)

Due to the nonlocal smearing parameter sNL we use to construct the non-locally smeared
operators and the lattice artifacts, the Galilean invariance is breaking for the new lattice interaction.
To restore the Galilean invariance, we introduce the Galilean invariance restoration terms for each
partial wave channels. For example, the GIR operator for the 1S0 channel reads [12]

V
1S0
GIR = C

1S0
GIR,0 ∑

n
∑

Iz=−1,0,1

[
O0,sNL

0,0,0,0,1,Iz
(n)
]†

O0,sNL
0,0,0,0,1,Iz

(n)

+C
1S0
GIR,1 ∑

n
∑
|n′|=1

∑
Iz=−1,0,1

[
O0,sNL

0,0,0,0,1,Iz
(n+n′)

]†
O0,sNL

0,0,0,0,1,Iz
(n)

+C
1S0
GIR,2 ∑

n
∑

|n′|=
√

2
∑

Iz=−1,0,1

[
O0,sNL

0,0,0,0,1,Iz
(n+n′)

]†
O0,sNL

0,0,0,0,1,Iz
(n), (3.1)

whereas that for the 1P1 channel is

V
1P1
GIR = C

1P1
GIR,0 ∑

n
∑

Jz=−1,0,1

[
O0,sNL

0,1,1,Jz,0,0(n)
]†

O0,sNL
0,1,1,Jz,0,0(n)

+C
1P1
GIR,1 ∑

n
∑
|n′|=1

∑
Jz=−1,0,1

[
O0,sNL

0,1,1,Jz,0,0(n+n′)
]†

O0,sNL
0,1,1,Jz,0,0(n)

+C
1P1
GIR,2 ∑

n
∑

|n′|=
√

2
∑

Jz=−1,0,1

[
O0,sNL

0,1,1,Jz,0,0(n+n′)
]†

O0,sNL
0,1,1,Jz,0,0(n). (3.2)

Using these GIR operators, we can restore Galilean invariance for each channel by finely tuning
CGIR,i(i = 0,1,2) with the constraint,

CGIR,0 +6CGIR,1 +12CGIR,2 = 0, (3.3)

which is the requirement that the GIR correction should be vanishing for zero total momentum.

4. Scattering on the lattice

In our calculation, we use two different approaches to calculate the neutron-proton scattering
phase shifts, the Lüscher’s formula and the spherical wall method.

4.1 Lüscher’s formula

In [13], Lüscher derived a simple formula connecting the two-body S-wave scattering phase
shift δ0 with the energy levels calculated in the lattice framework, which reads

exp(2iδ0(k)) =
ζ00(1;q2)+ iπ3/2q
ζ00(1;q2)− iπ3/2q

, (4.1)

where

q =
kL
2π

, (4.2)
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and

ζ00(s;q2) =
1√
4π

∑
n∈Z3

(n2−q2)−s (4.3)

is the zeta function which is convergent when Re(s) > 3/2, and can be analytically continued
to s = 1. Later, this formula was generalized to moving frames with center-of-mass momentum
P = (2π/L)k [14, 15, 16],

δ0(k) = arctan

(
γqπ3/2

ζ d
00(1;q2)

)
(4.4)

where

ζ
d
00(s;q2) =

1√
4π

∑
r∈Pd

(r2−q2)−s, (4.5)

is the generalized zeta function. The summation region Pd is defined as

Pd =
{

r ∈ R3|r = γ
−1(n+d/2),n ∈ Z3} , (4.6)

where γ is the Lorentz factor and γ−1n is the shorthand notation for γ−1n‖+n⊥.

4.2 Spherical wall method

To calculate the scattering phase shifts and mixing angles using the spherical wall method, we
first construct radial wave functions through the spherical harmonics with quantum numbers (l, lz)
[17, 18],

|r〉l,lz = ∑
r̂′

Yl,lz(r̂
′)δ|r′|=r

∣∣r′〉 , (4.7)

where r̂′ runs over all lattice sites having the same radial lattice distance. Using this definition for
the radial wave function, the Hamiltonian matrix over a three-dimensional lattice can be reduced
to a one-dimensional radial Hamiltonian, Hr,r′ → Hr,r′ .

The phase shifts and mixing angles can be extracted from the radial wave function in the region
where the NN force is vanishing. In this range, the wave function is a superposition of the incoming
plane wave and outgoing radial wave which can be expanded as [17, 10]

〈r|k, l〉= A jh
(1)
l (kr)+B jh

(2)
l (kr), (4.8)

where h(1)l (kr) and h(2)l (kr) are the spherical Hankel functions. k =
√

2µE with µ the reduced mass
and E the relative energy of the two-nucleon system. The scattering coefficients A j and B j satisfy
the relations,

B j = S jA j, (4.9)

where S j = exp(2iδ j) is the S-matrix and δ j is the phase shift. The phase shift is determined by
setting

δ j =
1
2i

log
(

B j

A j

)
. (4.10)
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In the case of the coupled channels with j > 0, both of the coupled partial waves, l = j− 1 and
l = j+ 1, satisfy Eq. (4.9), and the S-matrix couples the two channels together. Throughout this
work we adopt the so-called Stapp parameterization of the phase shifts and mixing angles for the
coupled channels [19],

S =

 cos(2ε)exp
(

2iδ 1 j
j−1

)
isin(2ε)exp

(
iδ 1 j

j−1 + iδ 1 j
j+1

)
isin2ε exp

(
iδ 1 j

j−1 + iδ 1 j
j+1

)
cos(2ε)exp

(
2iδ 1 j

j+1

)  . (4.11)

5. Neutron-proton scattering phase shifts

5.1 S-wave neutron-proton scattering phase shifts using Lüscher’s formula

To obtain results for a wide energy range, we use several cubic boxes with volumes V =

(14a)3, (16a)3, and (18a)3. To study the finite volume effects, larger cubic boxes with volume
of V = (24a)3, (26a)3 and (28a)3 are also used for the same calculations. We first perform the
calculation in the rest-frame, and then boost the proton-neutron system to moving frames with
momenta P = (2π/L)k. The results for 1S0 and 3S1 are shown in Figs. 1 and 2, respectively. The
plots in top row are the LO results while those in the bottom row are the N3LO results. The left
two columns are the results using the smaller boxes whereas the right two columns are the results
using the larger boxes. ‘w/o’ means without GIR corrections whereas ‘w/’ denotes the results after
restoring the Galilean invariance.

Our results indicate that there are small Galilean invariance breaking effects for the new lattice
formulation due to the nonlocal smearing and lattice artifacts. The Galilean invariance can be
restored after including the Galilean invariance restoration operators.
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Figure 1: (Color online) Neutron-proton scattering phase shifts of 1S0 as a function of the relative momenta
between the proton and neutron. The Lüscher formula is used to extract the scattering phase shifts. Refer to
the text for an explanation of the difference between different plots.
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Figure 2: (Color online) Neutron-proton scattering phase shifts of 3S1 as a function of the relative momenta
between the proton and neutron. The Lüscher formula is used to extract the scattering phase shifts. Refer to
the text for an explanation of the difference between different plots.

5.2 Neutron-proton scattering phase shifts using spherical wall method

In Fig. (3), we show the neutron-proton scattering phase shifts calculated using the spherical
wall method. To calculate the estimated theoretical uncertainties, we follow the prescription in
Refs. [20, 21] where the theoretical uncertainty for some observable X(p) at order NmLO and
momentum p is given by

∆XNmLO(p)=max
(

Qm+2 ∣∣XLO(p)
∣∣ ,Qm

∣∣XLO(p)−XNLO(p)
∣∣ , · · · ,Q1

∣∣∣XNm−1LO(p)−XNmLO(p)
∣∣∣) .

(5.1)
Our results indicate that with only a few exceptions, the error bands for each order generally overlap
with each other and cover the empirical phase shifts, which provides a promising sign of conver-
gence of the chiral effective field theory expansion on the lattice.

6. Spectrum of the light and medium-mass nuclei

We calculate the nuclear binding of the light- and medium-mass nuclei using the new lattice
interaction, and provide some preliminary results in Fig. (4) [22]. From the results, one can see
that the binding energy of the light nuclei are much more accurate than our previous calculations.
We should emphasize that in these calculations only the two-body interaction is applied. Hope-
fully, these discrepancy can be fixed by including the three-body interaction. Such calculations are
undergo.

7. Summary and outlook

We have proposed a new lattice formulation of the chiral NN force which is more efficient
than the one we used in our previous calculations. The results are more accurate. We also calculate

6
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Figure 3: (Color online) The neutron-proton scattering phase shifts and mixing angles versus the relative
momenta. The black solid line and diamonds denote the phase shift or mixing angle from the Nijmegen
partial-wave analysis (NPWA) and lattice calculation at N3LO, respectively. See the text for an explanation
of the error bands.

Figure 4: Spectrum of the light and medium-mass nuclei. In the calculations only the two-body interactions
are applied.
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the binding energy of the light- and medium-mass nuclei, the results are promising. In summary,
the new lattice interactions are far more efficient and accurate in reproducing physical data than
previous lattice interactions. It is very helpful for our future Monte Carlo simulations.
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