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The predictions for the differential cross section and the deuteron tensor analyzing power T22 in

nucleon-deuteron elastic scattering based on two chiral models of the nucleon-nucleon interaction

are presented and compared with each other and with the data. The recent models at the fifth order

of the chiral expansion from the Moscow(Idaho)-Salamanca group and from the Bochum group

are used. At the energy of the incoming nucleon E=65 MeV both potentials yield similar data

descriptions, however the differences between both models become more significant at E=200

MeV. At the latter energy the dependence of predictions on the used value of the regularization

parameter becomes important. In particular, this cutoff dependence is much smaller in the case of

the semilocally momentum space regularized potential from the Bochum group.
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1. Introduction

Various attempts to model nuclear forces were undertaken in the past. The purely phenomeno-

logical and semiphenomenological models were used at the beginning of these investigations but

these models, which dominated the last few decades of the 20th century, were based on single or

multiple boson exchanges. They managed to describe nuclear data with high precision, yielding

χ2/data’99 ≈ 1.35 and 1.01 in the case of the two most advanced models, i.e. AV18 [1] and CD

Bonn [2], respectively. Nevertheless, the new approaches, which could deliver even more insight

into the underlying physics, were sought. Most efforts were focused on models based on the Chiral

Effective Field Theory (χEFT) as they ensure a connection to Quantum Chromodynamics and its

symmetries and in addition allow a derivation of nuclear two- and many-body forces in a consis-

tent way. At medium energies, where the nucleonic and pionic degrees of freedom are taken into

account, two groups have dominated studies of the nucleon-nucleon (NN) interaction: the Bochum-

Bonn group and the Moscow(Idaho)-Salamanca collaboration. Both groups have constructed their

versions of the NN force and recent models were published in 2018 and 2017, respectively.

The model presented by E.Entem, R.Machleidt and Y.Nosyk in Ref. [3] combines contribu-

tions to the nuclear force from the fifth order of the chiral expansion (N4LO) and even supplements

them by the sixth order contact F-wave contributions. The resulting potential is relatively soft, non-

local and a nonlocal regulator is used in the regularization procedure. More details on this force can

be found in Refs. [3] and [4]. In particular, in Ref. [3] the authors discuss χ2/data values depending

on the regularization parameter Λ, the order of chiral expansion, the energy range and the isospin

channel. As an example we mention that at N4LO and Λ = 500 MeV, the neutron-proton data up

to 290 MeV are described with χ2/data=1.10.

The newest χEFT based model of the NN interaction was worked out by P.Reinert, E.Epelbaum

and H.Krebs and published in Ref. [5]. This model is a successor of the model presented in [6, 7],

where for the first time the semilocal regularization was applied. While in [6, 7] the regulariza-

tion was performed in coordinate space, in the model of Ref.[5] the semilocal regularization was

realized in momentum space. This explains the "SMS" term in the name of the model of Ref. [5],

which stands for the semilocal momentum-space (regularized potential). However, beside the regu-

larization also other improvements have been introduced in the SMS potential. The most important

ones are: fixing the pion-nucleon low energy constants using the Roy-Steiner analysis [8], re-

moving redundant structures in the higher orders of the chiral expansion, and using the Granada

self-consistent data base [9] to fix free parameters of the potential. Note that in Ref. [5] the N4LO

and N4LO+ (i.e. N4LO plus additional terms from N5LO) forces are discussed separately, but

due to the above-mentioned inclusion of the N5LO F-wave contact terms the N4LO potential of

Ref. [3] corresponds rather to the N4LO+ force of Ref. [5] than to the pure N4LO interaction from

the Bochum group. For further features of the SMS model and a detailed presentation of χ2/data

values we refer the reader to Ref. [5]. To give a comparison with the Moscow(Idaho)-Salamanca

force we flash only one example of Λ = 450 MeV N4LO+ neutron-proton force which describe

data up to 300 MeV with χ2/data=1.06.

While both models, [3] and [5], start from the same Lagrangian, various additional assump-

tions and technical steps taken to obtain the final form of the potential make the descriptions of the

NN data for these models different. It seems that especially the nonequivalent ways of regulariza-
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tion give an important contribution to the final difference. In this paper we compare predictions

for the nucleon-deuteron (Nd) elastic scattering process for the both models discussed here. We

restrict ourselves to two energies of the incoming nucleon: 65 MeV and 200 MeV and neglect the

three-nucleon force as well as the Coulomb interaction in the Hamiltonian. While a full analysis of

the data description is possible only after including the consistent three-nucleon force, a compari-

son based on two-body interaction only is a first step in this direction. Note also that up to now no

three-nucleon interaction consistent to the Moscow(Idaho)-Salamanca model [3] has been derived

and we are not aware of any ongoing or planned work in this direction. In contrast, the derivation of

the three-nucleon potential consistent with the SMS NN interaction is much more advanced within

the LENPIC collaboration.

Nd scattering is an important tool to study properties of the NN potential as it is a simplest

reaction in which the off-shell properties of interaction influence observables. A comprehensive

discussion of both Nd elastic scattering and the deuteron breakup predictions based on various

semiphenomenological NN models is given in [10]. We also refer the reader to the more recent

papers [11, 12, 13, 14] showing, among other things, the application of the chiral interaction with

the coordinate space semilocal regularization [6, 7] to the Nd scattering. From these and similar

studies it is clear, that a description of 3N observables is a challenging test for models of two- and

three-nucleon forces.

The next section gives a short description of our way to obtain the Nd observables, and in

Section 3 we present our results on the cross section and the deuteron tensor analyzing power T22.

2. Formalism

To obtain predictions for the Nd elastic scattering observables we use the Faddeev formalism

presented in [15], applied to 3N continuum with realistic NN potentials in [16] for the first time,

and discussed in detail in [10] and [17].

The NN potential enters this formalism through the t-operator generated via the Lippmann-

Schwinger equation. The transition operator for elastic nucleon-deuteron scattering, U , is given

as [18]

UΦ = PG−1
0 Φ+PT Φ+V (1)(1+P)Φ+V (1)(1+P)G0T Φ , (2.1)

where the auxiliary state T Φ fulfills the three-nucleon Faddeev equation

T Φ = tPΦ+(1+ tG0)V
(1)(1+P)Φ+ tPG0T Φ+(1+ tG0)V

(1)(1+P)G0T Φ , (2.2)

with Φ being the initial state composed of the deuteron wave function and a momentum eigenstate

of the projectile nucleon. Further G0 is the free 3N propagator, P ≡ P12P23 +P13P23 is the permuta-

tion operator given in terms of the transpositions Pi j, which interchange particles i and j, and V (1)

is a part of three-nucleon force symmetrical under the exchange of nucleons 2 and 3.

Neglecting the three-nucleon force Eqs. 2.1 and 2.2 simplify to

UΦ = PG−1
0 Φ+PT Φ (2.3)

and

T Φ = tPΦ+ tPG0T Φ , (2.4)
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which we solve in the present studies. We do this in the momentum space using 3N partial-wave

states | p,q,α〉 in the jJ-coupling [10, 17, 18]

| p,q,α〉 ≡| pq(ls) j(λ
1

2
)I( jI)JMJ〉 | (t

1

2
)T MT 〉 , (2.5)

where p and q are magnitudes of the Jacobi momenta and α denotes a set of discrete quantum

numbers built in the following way: the spin s of the subsystem composed from nucleons 2 and 3

is coupled with their orbital angular momentum l to the subsystem total angular momentum j. The

spin 1
2

of the spectator particle 1 couples with its relative orbital angular momentum λ to the total

angular momentum of nucleon 1, I. Finally, j and I are coupled to the total 3N angular momentum

J with the projection MJ . For the isospin part, the total isospin t of the (23) subsystem is coupled

with the isospin 1
2

of the spectator nucleon to the total 3N isospin T with the projection MT .

In the practical realization we take into account all two-body channels up to the two-nucleon

total angular momentum jmax = 5 and the three-nucleon total angular momentum Jmax =
25
2

. Such

a number of partial waves is sufficient to achieve convergence of predictions at the energies for

which results are presented here. To be more quantitative, we estimate the uncertainty of the

predictions due to the restrictions to the mentioned above partial waves to remain below 0.5%,

depending on observables and energy. Some discussion of the convergence can be found in [10]

and more recently in [19] where for the deuteron breakup process predictions based on the partial

wave decomposition scheme are compared to results obtained without partial wave decomposition,

however only in the first-order approximation to the scattering amplitude.

3. Results

In Figs. 1 and 2 we compare predictions for the differential cross sections and the deuteron

tensor analyzing power T22 at two laboratory energies of the incoming nucleon: E=65 MeV (Fig. 1)

and E=200 MeV (Fig. 2). Beside the data we show predictions obtained with the two studied

here interactions at N4LO / N4LO+. In both cases we use the value of the regulator parameter

Λ = 500 MeV, however we remind the reader that different methods of regularization are used in

these two models.

At E=65 MeV practically no difference between predictions based on the two models is seen

for both observables. The observed discrepancies with the cross section data are well understood

as a result of neglecting the three-nucleon interaction and the Coulomb force in our calculations.

Similar discrepancies are also observed in the case of the semiphenomenological potentials. Also

for the T22 the chiral predictions resemble the results obtained previously with the other potentials.

However, for this observable the nature of the discrepancy around θ ≈ 145◦ is still unclear. At

E=200 MeV a difference between predictions is visible already for the cross section. The SMS

model is closer to the data at the minimum of the cross section, so it leaves less room for the three-

nucleon force action. In turn, at backward scattering angles the Moscow(Idaho)-Salamanca model

is closer to the data. For T22 both models give similar predictions but are not able to describe the

data, which points to possible three-nucleon force effects. Despite the observed discrepancies and

considering the absence of the three-nucleon force both models give a reasonable data description.

In Figs. 3-6 we show the dependence of predictions on the used value of the regulator for the

same potentials, energies and observables as discussed above. Fig. 3 and 4 shows predictions at
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Figure 1: The differential cross section for elastic nucleon-deuteron scattering (left) and the deuteron tensor

analyzing power T22 (right) at the laboratory nucleon energy E=65 MeV. The dashed black curve represents

predictions of the N4LO+ SMS model from the Bochum group with Λ = 500 MeV and the red line shows

predictions of the N4LO Moscow(Idaho)-Salamanca potential with the same value of the Λ regulator. The

experimental data for the cross section are from: [20] (pd black pluses) and [21] (nd orange circles). The

data for the T22 are from [22] (pd black pluses), [23] (pd orange circles) and [24] (pd blue squares).
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Figure 2: The same as in Fig. 1 but at E=200 MeV. Curves are the same as in Fig. 1. The experimental data

for the cross section are from: Ref. [25] (pd, E = 198 MeV, violet squares), Ref. [26] (pd, E = 180 MeV,

orange x’s), and Ref. [27] (pd, E = 198 MeV, black circles). T22 data are from Ref. [28] (pd E = 186.6 MeV

turquoise squares) and Ref. [29] (pd E = 200 MeV black circles).

E=65 MeV for the SMS model and the Moscow(Idaho)-Salamanca potential, respectively. Fol-

lowing the suggestions of the authors of these interactions we take the following values of the

regulators: Λ ∈ {400,450,500,550} MeV for the SMS model and Λ ∈ {450,500,550} MeV in the

second case.

At E=65 MeV for the SMS potential practically no cutoff dependence is observed. The predic-

tions based on the Moscow(Idaho)-Salamanca force show only slight cutoff dependence in the case

of T22, where the curve representing predictions obtained with Λ = 450 MeV is slightly separated

from the others. But still, the spread of the predictions remains no bigger than the experimental

uncertainties. At E=200 MeV the SMS potential continues to work very well for the cross section,
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but some cutoff dependence appears for the deuteron tensor analyzing power. The picture is much

less in favour of the Moscow(Idaho)-Salamanca model. Fig. 6 shows clearly that various values

of the regulator strongly influence the predictions obtained with this potential both for the cross

section as well as for T22.
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Figure 3: The differential cross section for elastic nucleon-deuteron scattering (left) and the deuteron tensor

analyzing power T22 (right) at the nucleon laboratory energy E=65 MeV. The predictions have been obtained

with the N4LO+ SMS potential. Curves represent predictions obtained with the following values of the

regulator parameter Λ: 400 MeV (black), 450 MeV (red), 500 MeV (green), and 550 MeV (blue). The

experimental data are the same as in Fig. 1.
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Figure 4: The differential cross section for elastic nucleon-deuteron scattering (left) and the deuteron tensor

analyzing power T22 (right) at the laboratory nucleon energy E=65 MeV. The predictions have been obtained

with the Moscow(Idaho)-Salamanca N4LO potential of Ref. [3]. Curves represent predictions obtained with

the following values of the regulator parameter Λ: 450 MeV (black), 500 MeV (red), and 550 MeV (blue).

The experimental data are the same as in Fig. 1.

In conclusion we can state that the Nd elastic scattering data descriptions delivered by the

two recently derived chiral NN forces: the N4LO+ SMS model from Bochum group [5] and the

N4LO Moscow(Idaho)-Salamanca potential [3] are of similar quality. The comparison to data

provides a reasonable picture for these two potentials and agrees also with a description provided
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Figure 5: The same as in Fig. 3 but at E=200 MeV. Curves are the same as in Fig. 3. The experimental data

are the same as in Fig. 2.
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Figure 6: The same as in Fig. 4 but at E=200 MeV. Curves are the same as in Fig. 4. The experimental data

are the same as in Fig. 2.

by the semiphenomenological two-nucleon forces. However, the much weaker cutoff dependence

observed for the SMS force is a big asset of this model. It remains to check in the future if this

property will be present also when the consistent three-nucleon force is taken into account.
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