
P
o
S
(
C
O
R
F
U
2
0
1
7
)
0
3
6

On the Cosmological Frame Problem

Sotirios Karamitsos
School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
E-mail: apostolos.pilaftsis@manchester.ac.uk

Apostolos Pilaftsis∗

School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
E-mail: sotirios.karamitsos@manchester.ac.uk

We introduce a fully-frame covariant formalism for inflation by taking into account conformal
transformations in addition to field reparameterizations. We begin by providing a brief overview
of frame problems in the history of science before outlining the crux of the frame problem in
inflationary cosmology. After introducing the concept of frame tensors in curved field space, we
demonstrate how the quantum perturbations and the observables sourced by them can be made
frame covariant. We then specialize to two-field models, examining the impact of isocurvature
effects on the inflationary observables in a frame-covariant manner. We study the phenomenology
of two particular models, a minimal polynomial model and a nonminimal model inspired by
Higgs inflation. We observe that in the latter scenario, isocurvature effects are greatly enhanced.
Moving beyond the tree-level approximation, we outline how our approach may be extended at the
quantum level through the Vilkovisky–De Witt formalism and the generalization of frame tensors
to configuration space, leading to a fully frame-invariant effective action. Finally, we summarize
our findings and present possible future directions of research on the topic of frame covariance.

Corfu Summer Institute 2017 ’School and Workshops on Elementary Particle Physics and Gravity’
2-28 September 2017
Corfu, Greece

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:apostolos.pilaftsis@manchester.ac.uk
mailto:sotirios.karamitsos@manchester.ac.uk


P
o
S
(
C
O
R
F
U
2
0
1
7
)
0
3
6

On the Cosmological Frame Problem Apostolos Pilaftsis

1. Brief Historical Background

The question of whether a particular frame of reference is inherently better suited for de-
scribing the world dates back to antiquity [1]. One of the first instances of this issue was born
out of the clash between the geocentric and heliocentric models of the solar system. Anaximander
from 6 century (c) BC and other pre-Socratic philosophers suggested that the Earth sits stationary at
the center of the universe, while the planets, the Sun, and the stars revolve around it. Ptolemy later
in 2c AD refined the ideas of geocentrism by positing that the trajectories of celestial bodies trace an
epicycle around a point which in turn orbits the Earth, a system which became the golden standard
for cosmology throughout the Middle Ages and most of the Renaissance [2]. In 16c AD, how-
ever, Tycho Brahe’s measurements of planetary motion and Galileo’s observations of the phases of
Venus cast doubts on the validity of the Ptolemaic model. A heliocentric model was first proposed
by Aristarchus in 3c BC and further elaborated by Seleucus in 2c BC, possibly using trigonometric
methods [1]. But, the heliocentric model, which was criticised by Aristotle and others, went largely
unnoticed until 15c AD when it was geometrically formulated by Copernicus. In 16c AD, it was
further developed by Kepler in form of his titular laws of planetary motion. Even though Brahe
attempted to reconcile the two models in his so-called Tychonic model, it was not until 17c AD
that Newton’s law of universal attraction provided a solid theoretical underpinning for Kepler’s
laws. Then, geocentric models were finally eclipsed and the heliocentric system saw widespread
acceptance.

The history of the geocentric and heliocentric systems was characterized by the gradual real-
ization of the idea that the Earth does not occupy a special place in the Universe, often referred
to as the Copernicean principle. We may view this principle as a statement of the fact that no
observer is more privileged than any other, an idea which was crucial in the development of Ein-
stein’s theory of relativity. We may glimpse this notion as early as in the Tychonic model, in which
the Earth is orbited by the Sun which is in turn orbited by Mercury and Venus, as well as the rest
of the planets in their own orbits. This model is related to our modern picture of the solar system
by means of a coordinate transformation, and as such, the two are entirely equivalent in the sense
that it is impossible to distinguish between them via observations. While certain frames might be
more “physically appealing” (for instance, the non-inertial Earth frame of reference in the Tychonic
model necessarily requires the consideration of fictitious forces), there is no reason to prefer one
system over the other apart from convenience and ease of calculation.

In this report, we extend the notion of frame equivalence to frame covariance in the context
of scalar-curvature theories with the aim of resolving the frame problem in inflationary cosmol-
ogy. The action of such theories can be written in the Jordan frame SJF[gµν ,ϕ] or the Einstein
frame SEF[gµν ,ϕ] depending on whether the minimal coupling f (ϕ) is made explicit:

SJF[gµν ,ϕ] =
∫

x

[
−1

2
f (ϕ)R +

1
2
(∇µϕ)2 − V (ϕ)

]
,

SEF[g̃µν , ϕ̃] =
∫

x

[
−1

2
M2

P R̃ +
1
2
(∇µ ϕ̃)2 − Ṽ (ϕ̃)

]
.

(1.1)

A frame transformation makes it possible to go from a theory with a field-dependent effective
Planck mass squared f (ϕ) to one with a constant M2

P. Dicke [3] recognized that this procedure is
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essentially a unit transformation. In the same way that no observer enjoys an inherent privilege,
there should also be no preferable system of units, and hence we may conclude that different frames
should be physically indistinguishable. However, this is not always made manifest, especially when
the units are field-dependent (as reflected in the dependence of f (ϕ) on the fields). In particular,
when we compute the conventional one-particle irreducible effective action Γ beyond the tree-
level approximation in different frames (e.g. Einstein versus Jordan frame), this generically leads
to two different effective actions, as schematically illustrated in Figure 1. This issue has been
extensively discussed in the recent literature [4–12]. Whilst it is commonly accepted that different
frames are classically equivalent [4–8], there is still no consensus how this property can be made
manifest or whether it persists after quantization [9–12]. We call this problem the cosmological
frame problem [7, 13].

– Einstein versus Jordan Frame

Action in Enstein Frame: SEF[gµν, ϕ] =
∫
x

[
− 1

2M
2
PR + 1

2(∂µϕ)
2 − V (ϕ)

]

Action in Jordan Frame: SJF[g̃µν, ϕ̃] =
∫
x

[
− 1

2f(ϕ̃)R̃ + 1
2(∂µϕ̃)

2− Ṽ (ϕ̃)
]

Frame equivalence =⇒ SJF[g̃µν, ϕ̃] = SEF[gµν, ϕ] [R. H. Dicke ’62]

S
JF

S
EF

Γ
JF, div
1−loop Γ

EF, div
1−loop

“Quantization”

field parametrization

field parametrization

Field reparametrization

Field reparametrization

ΓJF
1−loop[g̃µν, ϕ̃] 6= ΓEF

1−loop[gµν, ϕ]: Effective action is frame dependent.

Corfu 2017 On the Cosmological Frame Problem A. Pilaftsis

Figure 1: Illustration of quantization in different frames. The conventional effective action formal-
ism leads to ΓJF

1−loop[gµν ,ϕ] 6= ΓEF
1−loop[g̃µν , ϕ̃], even though SJF

1−loop[gµν ,ϕ] = SEF
1−loop[g̃µν , ϕ̃].

In order to address the cosmological frame problem, we closely follow [13] and introduce
the concept of frame covariance in curved field space in Section 2, incorporating conformal trans-
formations into the well-known reparametrization covariant formalism. In Section 3, we examine
how quantum perturbations can be made covariant, leading to manifestly invariant cosmological
observables. We move on to study two-field models in Section 4, taking a look at the effects of
curved field space on the isocurvature modes and specializing to a minimal polynomial model and
a nonminimal model inspired by Higgs inflation. Finally, we illustrate the utility of this covariant
formalism by straightforwardly extending it beyond the tree level through the Vilkovisky–De Witt
formalism in Section 5 before outlining our conclusions and potential directions for future research
in Section 6.

2. Frame Covariance in Curved Field Space

Standard Big-Bang cosmology is plagued by a number of problems, the most prominent
of which are the near-flatness of our Universe and the largeness of the causal horizon, both of
which require a high degree of fine tuning of the initial conditions of the Universe. A period
of accelerated expansion in the early Universe not only resolves these issues in a natural way,
but also provides a quantitative framework for explaining the origin of anisotropies in the CMB.

2



P
o
S
(
C
O
R
F
U
2
0
1
7
)
0
3
6

On the Cosmological Frame Problem Apostolos Pilaftsis

A particularly interesting class of inflationary models is scalar-curvaure multifield inflation. In
scalar-curvature models, we assume that only scalar fields are light enough to drive inflation and
that they are not necessarily minimally coupled to the Ricci scalar. Such theories are described by
the following classical action written in the Jordan frame:

S≡
∫

d4x
√−g

[
− f (ϕ)

2
R+

kAB(ϕ)

2
gµν(∇µϕ

A)(∇νϕ
B)−V (ϕ)

]
. (2.1)

In this notation, uppercase indices A,B, . . . run over the different fields, ϕ without indices collec-
tively stands for all the inflaton fields when appearing as an argument, gµν is the metric function,
g≡ detgµν , and R is the Ricci scalar. The model functions f (ϕ),kAB(ϕ), and V (ϕ) can be selected
to specialize to a wide array of models. It is possible to rewrite the action by applying a frame
transformation, which consist of a conformal transformation:

gµν → g̃µν = Ω
2gµν ,

ϕ
A → ϕ̃

A = Ω
−1

ϕ
A ,

(2.2)

followed by a field reparametrization:

ϕ
A → ϕ

Ã = ϕ
Ã(ϕ) ,

dϕ̃ Ã

dϕB → ϕ
Ã = Ω

−1KÃ
B .

(2.3)

Under a frame transformation (2.2) and (2.3), the model functions transform as

f̃ (ϕ̃) = Ω
−2 f (ϕ) ,

k̃ÃB̃(ϕ̃) =
[
kAB(ϕ)−6 f Ω

−2
Ω,AΩ,B +3Ω

−1 f,AΩ,B +3Ω
−1

Ω,A f,B
]

KA
Ã

KB
B̃ ,

Ṽ (ϕ̃) = Ω
−4V (ϕ) .

(2.4)

These transformation rules may be used to show that the action S is form invariant, i.e.

S[g̃µν , ϕ̃ , f̃ (ϕ̃) , k̃ÃB̃(ϕ̃) , Ṽ (ϕ̃)] = S[gµν , ϕ , f (ϕ) , kAB(ϕ) ,V (ϕ)] . (2.5)

Thus, theories related by a frame transformation define an equivalence class, which is our starting
point for introducing the idea of frame covariance.

Turning our attention to kAB, we observe that, although it does not transform covariantly, we
may use it to introduce a tensorial quantity which does, the field space metric GAB:

GAB ≡
kAB

f
+

3
2

f,A f,B
f 2 . (2.6)

This quantity transforms as follows under a frame transformation:

G̃ÃB̃ = Ω
2 GAB KA

Ã
KB

B̃ . (2.7)

The above transformation motivates us to define frame tensors in field space by their transformation
properties under a frame transformation:

X̃ Ã1Ã2...Ãp

B̃1B̃2...B̃q
= Ω

−(wX+p−q)(KÃ1
A1

KÃ2
A2
. . .KÃp

Ap
) XA1A2...Ap

B1B2...Bq
(KB1

B̃1
KB2

B̃2
. . .KBq

B̃q
) , (2.8)

3
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where the conformal weight wX of a quantity X describes how the quantity scales under conformal
transformations, whereas the scaling dimension describes how it scales under frame transforma-
tions, including field reparametrizations. Values of wX and dX are given in Table 1 for various
covariant quantities. Using this definition of a frame tensor given in (2.8), we may define fully
frame-covariant differentiation with respect to the fields as follows:

∇CXA1A2...Ap
B1B2...Bq

≡ XA1A2...Ap
B1B2...Bq,C−

wX

2
f,C
f

XA1A2...Ap
B1B2...Bq

+ Γ
A1
CDXDA2...Ap

B1B2...Bq
+ · · · +Γ

Ap
CDXA1A2...D

B1B2...Bq

− Γ
D
B1CXA1A2...Ap

DB2...Bq
−·· ·−Γ

D
BqCXA1A2...Ap

B1B2...Bq
.

(2.9)

This form for the derivative respects both field reparametrizations (thanks to the terms in the last
two lines) and conformal transformations (thanks to the second term in the first line). We may
further define frame-covariant differentiation with respect to an arbitrary parameter λ as follows:

Dλ XA1A2...Ap
B1B2...Bq

≡ dϕC

dλ
∇CXA1A2...Ap

B1B2...Bq
. (2.10)

Using the frame-covariant forms of derivatives given in (2.9) and (2.10), we may write down the
scalar field equations of motion and the Friedmann equation under the assumption of a FRW metric
given by gµν = diag(N2

L ,−a2,−a2,−a2), where the covariant Hubble parameter is H = (Dta)/a
and U ≡V/ f 2:

DtDtϕ
A +3H(Dtϕ

A)+ f GABU,B = 0 , (2.11)

H2 =
1
3

(
GAB(Dtϕ

A)(Dtϕ
B)

2
+ fU

)
. (2.12)

We may also write the frame-invariant form of the number of e-folds:

N ≡
∫ t

tend

dt ′H(t ′) . (2.13)

The equations of motion are manifestly frame-covariant, and are crucial in determining the evolu-
tion of the perturbations that form the seeds for the observable cosmological anisotropies, which
will be the topic of the next section.

3. Frame Invariant Cosmological Observables

The cosmological perturbations that eventually go on to source the profile of the Cosmic Mi-
crowave Background (CMB) are seeded by the correlation functions of the primordial perturbations
of the metric and the scalar fields. Metric perturbations can be parametrized to first order in the
scalar-vector-tensor decomposition in the Newtonian gauge as follows:

gµνdxµdxν = (1+2Ψ)N2
L dt2 − a2[(1−2Φ)δi j +hi j

]
dxidx j. (3.1)

We may further define the frame-covariant extensions of the gauge-invariant Mukhanov-Sasaki
variables [14, 15]:

QA ≡ δϕ
A +
Dtϕ

A

H Φ . (3.2)

4
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X conformal weight (wX ) scaling dimension (dX )
dxµ 0 0
dϕA 0 1
dϕA 0 −1
gµν −2 −2
gµν 2 2
NL,a −1 −1
H= (Dta)/a 1 1
f 2 2
GAB 0 −2
GAB 0 2
U ≡V/ f 2 0 0
XA1A2...Ap

B1B2...Bq
wX wX + p−q

∇AXA1A2...Ap
B1B2...Bq

wX wX −1+ p−q

Dλ XA1A2...Ap
B1B2...Bq

wX −dδλ wX −dδλ + p−q

Table 1: Conformal weights and scaling dimensions of various frame-covariant quantities.

The concept of the field space arises naturally when looking at the trajectories which satisfy the
equations of motion (2.11) and when viewing the fields ϕA as coordinates parametrizing a mani-
fold [16,17]. The simplest choice for the metric is given by (2.6), which also naturally leads to the
definition of the field-space connection ΓA

BC and the line element dσ2 = GAB dϕAdϕB. The field
space formalism is useful in the presence of isocurvature perturbations. We can decompose the
perturbations QA along the curvature (parallel) and isocurvature (perpendicular) directions using
the vielbein fields:

eA
σ =

Dtϕ
A

Dtσ
, eA

s1
= − (s1)

ABU,B√
(s1)ABU,AU,B

= −ωA

ω
. (3.3)

We focus on the “first” isocurvature mode Qs1 as it is the only mode which couples to the curvature
mode. The acceleration vector is denoted by ωA, and the projection operator to the isocurvature
subspace is given by

(s1)
AB ≡ GAB− eA

σ eB
σ . (3.4)

In order to make contact with observations, we turn our attention to the comoving curvature per-
turbationR and the comoving isocurvature perturbations S(i):

R ≡ H
Dtσ

Qσ , S(i) ≡ H
Dtσ

Qsi . (3.5)

BothR and S(i) are gauge- and frame-invariant. The curvature perturbationR is of particular inter-
est to us, as it remains constant on superhorizon scales and sources the (dimensionless) observable
scalar spectrum PR through its two-point function:

2π2

p3 PR δ
(3)(p+q) ≡ 〈Rp|Rq〉 , (3.6)

5
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whereRp is the Fourier transform of the perturbation. Solving and quantizing the perturbed equa-
tions of motion [18], we find the following expressions for the power spectra under the (covariant)
slow-roll approximation DtDtϕ

A�H(Dtϕ
A):

PR =
H2

8π2 f (ϕ)ε̄H
, PT =

2
π2
H2

f (ϕ)
, (3.7)

in terms of the frame-invariant Hubble slow-roll parameter ε̄H ≡ −DNH/H. In the multifield
case, isocurvature modes evolve outside the horizon and because they are coupled to the curvature
modes, the power spectrum (3.7) evaluated at horizon exit differs from the observable spectrum at
horizon re-entry [19]. To first order, we may neglect the corrections to the power spectrum that are
of the order of the slow-roll parameters [20] and write

PR(t) =
[
1+T 2

RS(t∗, t)
]
PR(t∗) , (3.8)

where T 2
RS(t∗, t) is the entropy transfer function, t∗ is the time at horizon exit and t is the time at

observation.
We may now write down frame-invariant expressions for the standard inflationary observables

in terms of the power spectra PR and PT . These are the scalar spectral index nR, the tensor spectral
index nT , and tensor-to-scalar ratio r:

nR−1≡ d lnPR
d lnk

∣∣∣∣
k=aH

, nT ≡
d lnPT

d lnk

∣∣∣∣
k=aH

, r ≡ PT

PR
, (3.9)

where we evaluate every parameter at the time of horizon exit k = aH in all expressions for the
observables. We also define the runnings of the spectral indices as follows:

αR ≡
dnR
d lnk

∣∣∣∣
k=aH

, αT ≡
dnT

d lnk

∣∣∣∣
k=aH

, (3.10)

as well as the non-linearity parameter fNL [21], given by:

fNL =
5
6

N,AN,B(∇A∇BN)

(N,AN,A)2 , (3.11)

where the frame-covariant derivativeDN with respect to the number N of e-folds is defined with the
help of (2.10). We wish to write explicit expressions for these observables in terms of the potential
slow-roll parameters, defined through the following hierarchy:

ε̄U,1 ≡ ε̄U ,

...

ε̄U,n ≡ −
(ε̄U,n−1),A

ε̄U,n−1
GABU,B

U
,

(3.12)

where ε̄U,1 ≡ ε̄U , ε̄U,2 ≡ η̄U and ε̄U,3 ≡ ξ̄U . Thus, the cosmological observables in the slow-roll
approximation become

nR = 1−2ε̄U + η̄U −DN ln
(
1+T 2

RS
)
, nT =−2ε̄U , r = 16ε̄U(cosΘ)2 ,

αR =−2ε̄U η̄U − η̄U ξ̄U +DNDN ln
(
1+T 2

RS
)
, αT =−2ε̄U η̄U .

(3.13)

6
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In a similar vein, we may obtain a simple formula for fNL by substituting the following expression
for N,A in (3.11):

N,A =
U U,A

U,BU ,B . (3.14)

We have thus written down concise expressions for the cosmological observables. We now special-
ize to models with only two scalar degrees of freedom, examining the effects of entropy transfer on
the observables before looking at particular examples of two-field models.

4. Two-Field Models

Turning our attention to the entropy transfer between the modes, we find that solving the
superhorizon equations of motion is in general very difficult. We may, however, derive approxi-
mately analytic results for two-field models. In this case, the isocurvature modes are fully encoded
in S ≡ S(1), and the superhorizon equations of motion simplify to [22–24]:

DNR = −2ω S ,

DNS = −B(N)S ,
(4.1)

where the turn rate ω (which is the norm of the acceleration vector ωA) controls the rate of isocur-
vature transfer and the model-dependent parameter B(N) controls the generation of isocurvature
modes. To lowest slow-roll order, the acceleration vector is

ω
A = (lnU),B ∇B

[
(lnU),A√

2ε̄U

]
. (4.2)

In the constant slow-roll approximation where ω =ω∗ and B=B∗ are evaluated at horizon crossing,
the transfer function TRS becomes

TRS(N∗,N) ≈ 2ω∗
B∗

[
e−B∗(N−N∗)−1

]
. (4.3)

We may apply the above results to two particular models, starting with a minimal two-field
model described by the following action:

L=−M2
PR
2

+
1
2
(∇ϕ)2 +

1
2
(∇χ)2− λϕ4

4
− m2χ2

2
, (4.4)

where m is a mass parameter and λ is a quartic coupling [25]. Solving the equations of motion
for different boundary conditions, the field trajectories change as shown in Figure 2. By matching
the value of PR to the observed scalar power spectrum Pobs

R = (6.41± 0.18)× 10−9 at the 68%
confidence level [26], we may single out a particular observationally viable trajectory as seen in
Figure 3. We further define the sensitivity parameter Q∗ of the trajectory at N∗ with respect to
the boundary conditions at N0 as the ratio of the density of trajectories on the two isochrones as
follows:

Q∗ ≡
√
|det[ΓIJ]N∗ |/

∫
N=N∗

√
|det[ΓIJ]N∗ |√

|det[ΓIJ]0|/
∫

N=0

√
|det[ΓIJ]0|

, (4.5)

7
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Figure 2: Field space trajectories and isochrone curves for the minimal model.

0 0.5 1 1.5 2 2.5

1 · 10−8

2 · 10−8

3 · 10−8

4 · 10−8

5 · 10−8

ϕ0/MP

PR ≈ PR∗
P obs
R

Figure 3: Power spectrum normalization for the minimal model with λ = 10−12 and m/MP = 10−6

at N = 60 for different boundary conditions in terms of ϕ0.

where the induced metric is given by [ΓIJ]N = GAB
(
∇Iϕ

A
N
) (

∇JϕB
N
)

and ϕA =ϕA
N is the parametriza-

tion of the isochrone curve at N e-folds. In Figure 4 we plot lnQ∗ as a function of ϕ0, and we
summarize the predictions of this model in Table 2 and compare our predictions to the currently
observed values.

We extend the model described by (4.4) by including a minimal coupling ξ between one of
the fields and the Lagrangian, as inspired by Higgs inflation [27, 28].

L = −(M2
P +ξ ϕ2)R

2
+

1
2
(∇ϕ)2 +

1
2
(∇χ)2− λ (ϕ2− v2)2

4
− m2χ2

2
, (4.6)

The field trajectories for this model are as shown in Figure 5, whereas the sensitivity parameter Q∗
can be seen in Figure 6. Similar to the minimal model, we plot the normalization of the nonminimal
model in Figure 7, observing that the inclusion of entropy transfer effects is crucial in normalizing

8
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ϕ0/MP

ln
Q

∗

Figure 4: Sensitivity parameter Q∗ for the minimal model at N = 60 to boundary conditions given
by ϕ0.

ϕ0/MP = 0.495 PLANCK 2015
r 0.501 ≤ 0.12 (95% CL)
nR 0.906 0.968±0.006 (68% CL)
αR −0.00288 −0.003±0.008 (68% CL)
αT −0.0019 −0.000167±0.000167 (68% CL)
fNL 0.0129 0.8±5.0 (68% CL)

Table 2: Observable inflationary quantities for the minimal two-field model at N = 60. The value
of αT is derived from the consistency relation [20] with transfer angle Θ = 0.

ϕ0/MP = 1.391+0.243
−0.343 PLANCK 2015

r 0.1204+0.0053
−0.0049 ≤ 0.12 (95% CL)

nR 0.955+0.005
−0.002 0.968±0.006 (68% CL)

αR −0.0004+0.00005
−0.00006 −0.008±0.008 (68% CL)

αT −0.000276+0.000003
−0.000003 −0.000155±0.00016 (68% CL)

fNL 0.0693+0.00003
−0.00002 0.8±5.0 (68% CL)

Table 3: Observable inflationary quantities for the nonminimal model at N = 60.

it to observations. Finally, Table 3 shows the values of the observables for the observationally
viable band of trajectories (ignoring the trivial ϕ4 trajectory).

5. Beyond the Tree-Level Approximation

We have demonstrated how the frame-covariant approach ensures that observables are frame
independent at the classical level. With this formalism as our starting point, we wish to extend
frame covariance beyond the tree level. To do so, we use the effective action formalism, beginning
with the generating functional W [J] written in terms of the source fields Ja:

exp
{

i
h̄

W [J]
}
≡ ln

∫
[Dφ ] exp

[
i
h̄

(
S[φ ]+ Jaφ

a
)]

, (5.1)
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Figure 5: Field space trajectories and isochrone curves for the nonminimal model.
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Figure 6: Sensitivity parameter Q∗ for the nonminimal model to boundary conditions given by ϕ0.

where the quantum field φ a = φ A(xA) lives in configuration space and contracted indices are both
summed and integrated over. The effective action Γ[ϕ] is then given by

exp
(

i
h̄

Γ[ϕ]

)
=
∫
[Dφ ] exp

{
i
h̄

[
S[φ ]+Γ,a

(
ϕ

a−φ
a)]
}
, (5.2)

where Γ,a ≡ δΓ[ϕ]/δϕa = −Ja. The presence of the term
(
ϕa− φ a

)
means that the action Γ[ϕ]

is not frame-invariant, since the fields do not transform as vectors. This may be remedied in the
Vilkovisky–De Witt formalism, which replaces ϕa by a two-point function Σa(ϕ,φ). This function
is a frame-invariant scalar under a reparametrization of the quantum field φ , whereas it transforms
as a vector under a reparametrization of the background field ϕ . We may thus modify the integro-
differential equation (5.2) in order to return the Vilkovisky–De Witt effective action [29–31]:

exp
(

i
h̄

Γ[ϕ]

)
=
∫
[Dφ ]M[φ ] exp

{
i
h̄

[
S[φ ] + (∇aΓ)Σ

a(ϕ,φ)
]}

. (5.3)
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Figure 7: Power spectrum normalization for the nonminimal model with parameter values m =

5.6× 10−6MP, λ = 10−12, and ξ = 0.01 for different boundary conditions in terms of ϕ0 and the
corresponding horizon crossing values ϕ∗.

The measure is given byM[ϕ] ≡ √detGab, and the configuration space metric (which is used to
define the frame-covariant functional derivative) is given by

Gab ≡ GABδ (xA− xB) =

(
kAB

f
+

3
2

f,A f,B
f 2

)
δ (xA− xB) . (5.4)

In order to proceed any further, we perform a perturbative h̄-expansion of the frame-invariant
Vilkovisky–De Witt effective action

Γ[ϕ] = ∑
n

h̄n
Γn = Γ̃[ϕ̃], (5.5)

where Γ0[ϕ] = S[ϕ]. This finally returns the following explicit form for the 1PI effective action:

Γ1[ϕ] = −
i
2

tr lnGab +
i
2

tr ln
(

∇a∇b S[ϕ]
)

=
i
2

tr ln
(

∇
a
∇b S[ϕ]

)
. (5.6)

We may compute the corrected model parameters to higher orders in h̄ by iteratively solving (5.3).
At the one-loop order, we may explicitly calculate the frame-invariant correction Γ1[ϕ] to the clas-
sical action Γ0[ϕ] = S[ϕ] through (5.6).

6. Conclusions and Future Directions

We have developed a fully frame-covariant formalism of inflation for multifield scalar-curvature
theories at the classical level, extending it beyond the tree level so as to include radiative correc-
tions. Making use of notions known from differential geometry, we have adopted an approach in
which the scalar fields take on the role of generalized coordinates of a manifold, and the equa-
tions of motion describe a trajectory within the field space. We have studied isocurvature effects
and seen that they are significant in non-minimal two-field models. We have promoted field space
frame covariance to frame covariance in the configuration space of quantum fields by virtue of the
Vilkovisky–De Witt formalism. Possible future research paths include applying the frame covariant
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approach to F(R) and F(ϕ,R) theories, as well as extending to include matter and quantum gravity
effects. The curvature of the field space in non-minimal theories should also have an impact on
cosmological observables at higher-loop orders, and these effects could have significant theoretical
and phenomenological implications for theories beyond the Standard Model.
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