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1. Introduction

Let us consider pure SU(N) Yang-Mills (YM) theories in d > 4 dimensions. Such theories
are perturbatively non-renormalizable but lattice regularizable. If there are n + 1 dimensionful
parameters, the phase diagram is n-dimensional, equal to the number of dimensionless ratios or
"couplings" that one can form. In a lattice regularization the number of nodes in a given direction
is one of these couplings. For example in the simplest (periodic) case it governs finite temper-
ature phase transitions. A mass in lattice spacing units is another dimensionless coupling and a
dimensionless matter, gauge or matter-gauge coupling is another.

We now make two assumptions. The first is that when a phase transition (PT) is approached
along a physical trajectory on the phase diagram the system tends to become scale invariant. The
second is that phase transitions possess "shadows", meaning that when the nature of the system
changes under the tuning of certain couplings, the new system has some memory of the physics
that the original presence of the phase transition used to impose on it before the tuning took place.

These properties have far reaching consequences for systems that obey them. One immediate
consequence of the first assumption is that the lattice spacing decreases towards a PT, indepen-
dently of its order. In particular when it is of second order the continuum limit can be taken and
the effective theory in many cases is a Conformal Field Theory (CFT). When it is of first order the
lattice spacing does not go to zero, the effective theory is one with a finite cut-off and therefore
not a CFT; instead it is a theory with (spontaneously) broken conformal symmetry. In order to
start appreciating the second postulate let us first consider SU(2) YM in d =5 at zero temperature.
Regularizing on a 5d isotropic and periodic hypercubic lattice reveals a first order quantum phase
transition separating a Confined from a Coulomb phase. Now let us start shrinking the fifth dimen-
sion. On the lattice this can be done only in discrete steps, by decreasing the number of lattice
nodes Ns. Nevertheless, below some critical Ns, the PT disappears and the system starts behaving
four-dimensional, but with Kaluza-Klein states. For N5 = 0 it becomes exactly 4d by definition,
with only a Confined phase. The shadow of the 5d PT then involves a dynamically generated scale,
say Ap. The scale breaks the classical conformal symmetry of the 4d theory and separates a strong
coupling regime from an asymptotically free regime. This was an example where the tuning of the
coupling governing the system’s dimensionality, removes the PT.

Another, but more elusive consequence of the combination of the two postulates is a severe
constraint on the dynamics near a PT. Let us assume that we are on the renormalized trajectory
AC on Fig. [ somewhere near C, a point on the PT. Because of our first postulate there is some
other point on the trajectory BC on the other side of the PT that has the same value(s) of the lattice
spacing(s). Then if the relations between the physical observables defining the trajectories and the
lattice spacings on either side is (functionally) invertible, we will have the relation

A=P-51=P-5. (1.1

In the above A is the 1 x g dimensional matrix of lattice spacings (we take into account the possibil-
ity of anisotropic lattices with g different lattice spacings), P,, i = 1,2 is a 1 X p; dimensional matrix
of observables defining the trajectory on the side of the PT labelled by i and S; is a p; X ¢ dimen-
sional matrix, function of the dimensionless couplings. Eq. (ITl) can easily be over-constrained
so it is non-trivial if there is a solution. For physical systems it is however self evident that there
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should be one. The conclusion is that the dynamics on the two sides are necessarily correlated.
This becomes particularly interesting when the phases on the two sides of the PT are very different
and the PT is of second order. Then, the dynamics of the system on either side must be such that
on the PT (point C in Fig. ) they both end up being describable by the same CFT. The situation is
not less interesting when the PT is of first order. In order to comprehend a bit better the situation
let us assume that phase 1 where point A is located is a Higgs phase, while phase 2 where point B
is located is a Confined phase. Then the effective theory describing the Confined phase possesses a
dynamical scale by dimensional transmutation which constrains the value of the cut-off in the effec-
tive theory describing the Higgs phase near the PT. This does not allow the cut-off in the effective
Higgs sector take too large values, as the maximum value of the cut-off on the PT is constrained
by the intrinsically low value of the Ap parameter of the Confined phase. This fact, together with
the rather natural tuning of the couplings that is necessary to perform so that one remains on the
physical trajectory can be viewed as an alternative (e.g. to supersymmetry) resolution to the Higgs
sector’s naturalness problem.

To appreciate even more the constrained dynamics near phase transitions that follows from
our two postulates, let us try to stretch the situation to its extreme. Let us imagine that instead of a
maximum number of three phases that meet at the "triple” point M on Fig. [l there are many more
phases meeting at some point on the phase diagram and we can approach this multiple meeting
point along physical trajectories from any phase. Then the system when brought near the multiple
point should "feel" the presence of the other nearby phases and its dynamics is more constrained the
more phases meet at the multiple point. This translates into constraints on the quantum behaviour
of its physical observables via the first of our postulates. Note that the constrained dynamics is
achieved in this case by dynamics as opposed to constrained dynamics obtained by increasing the
global symmetries. This is just the multiple point principle of [M], expressed here as a consequence
of our first postulate.

Now global symmetries also constrain the dynamics of a system. One of the many ways to
increase the global symmetries is to add extra matter with appropriate couplings in a way that makes
the system supersymmetric or to tune couplings so that the operation changes its dimensionality.
Such operations however (we saw an example above) may alter the phase diagram itself at the same
time and it could happen that some or all of the phase transitions may disappear. The shadow of
the disappearing phase transitions in this case may include some sort of a strong-weak coupling
duality. Moreover if at the end all that remains on the phase diagram is an isolated point of second
order phase transition, we may have a supersymmetric CFT with very constrained dynamics.

Next we present a model where at least some of the basic features presented above can be
demonstrated.

2. NPGHU and its effective action

In [0] we anticipated some of the properties described in the previous section using a par-
ticular lattice model [B]. We call this model one of "Non-Perturbative Gauge-Higgs Unification
(NPGHU)" because the Brout-Englert-Higgs (BEH) mechanism involved is a quantum effect and
can be seen non-perturbatively on the lattice. The basic construction is a 5d lattice with large and
periodic four dimensions each represented by L lattice nodes and a fifth dimension which is an
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interval. In the bulk there is a pure SU(2) gauge theory and at the two ends of the interval, on
the 4d boundaries, only a U(1) subgroup coupled to a complex scalar survive. The dimensionless
couplings that parametrize the phase diagram are the number of nodes in the fifth dimension Ns,
the lattice gauge coupling 3 and the anisotropy y. The anisotropy appears because we have taken
the lattice spacing in the four-dimensional sense a4 to be different than the lattice spacing in the
fifth dimension as. Then ¥ = as/as. We will be interested in the ¥ < 1 regime where the phase
diagram looks like in Fig. [ and is rather insensitive to N5. The phase where point A belongs is a
Higgs phase and the one where point B belongs is the "Hybrid" phase. The curves passing through
M are lines of phase transitions. The curves AC and BC are physical trajectories or "Lines of Con-
stant Physics (LCP)". Indeed, as the point C is approached from point A, all masses decrease in
units of a4, confirming the first of our assumptions. We will be eventually interested to under-
stand the vicinity of the point C where the quantum Higgs-Hybrid phase transition takes place.
In the Higgs phase and near the PT into the Hybrid phase the boundary decouples from the bulk
independently of Ns, which remains five-dimensional.[Hl] We will call this regime of Dimensional
Reduction via Localization (as opposed to compactification) the DRL regime. In the Hybrid phase
the system decomposes into 4d slices which means that on the boundary we have at the classical
level a massless scalar QED while in the bulk an array of 4d SU(2) gauge theories. The line of
PT in the orbifold phase diagram separating the Confined and Hybrid phases from the Higgs phase
(the line that passes through points M and C) is inherited from the periodic 5d system and it is there
because of the orbifold’s bulk. Upon introducing the non-periodic boundary conditions, the PT line
separating the Confined and Hybrid phases appears. It must be there because in the DRL regime
the phase diagram must reproduce the phase diagram of the Abelian-Higgs model (with a charge
2 Higgs). As a result, the Abelian-Higgs model inherits the structure of its phase diagram from
the 5d orbifold due to dimensional reduction in the DRL regime. To use our terminology, the 4d
Abelian-Higgs phase diagram is the shadow of the 5d orbifold phase diagram. Note that in order
that this is realized it is necessary to introduce an anisotropy parameter in the orbifold lattice.

To proceed with some technical details we have to specify the methods involved in the analysis.
There are two ways to attack the model quantitatively on the lattice. One is via a Mean-Field
(MF) expansion and the other via Monte Carlo (MC) simulations. The former approach should
be considered as an approximation to the latter. The advantage of the MF is that it gives a semi-
analytical control and its disadvantage that it sees the Higgs-Hybrid PT as second order while in
reality it is of first order, as the MC method reveals. For all other phase transitions the two methods
agree. This gives us the opportunity to turn the failure of the MF prediction to our favour by
considering the effective action near such quantum phase transitions to be a spontaneously broken
CFT instead of a real CFT; the latter is the limit that the leading order MF expansions sees. It
is important to know the dynamically generated Higgs potential on the boundary as the PT is
approached. Within the MF approach this can be made possible by defining observables called
"cumulants". These are gauge invariant scalar operators built from powers of Higgs-like lattice
operators extending in the fifth dimension but starting and ending on the boundary. As such they
can be considered as boundary operators. They are L-dependent. The work of Liischer, Weisz and
Wolff on "step scaling" [@] teaches us how B functions associated with such finite size couplings
can be extracted. The method can be actually applied to the model and it will hopefully allow us to
"see" the shape of the effective scalar potential, at least in the vicinity of the PT.[B]



Towards the effective action of Non-Perturbative Gauge-Higgs Unification (or on RG flows near quantum
phase transitions) Nikos Irges

We would like to have also a continuum effective description of the physics near quantum
phase transitions. In this respect, our available tools are very limited at present. Understanding
the physics near the Higgs-Hybrid phase transition involves at least a partial understanding of the
RG flows in the system. Starting from the 5d weak coupling or "trivial fixed point" regime, in
an infinite 5d volume, we have a bulk which is a pure SU(2) gauge theory and a massless scalar
QED with vanishing quartic interaction on the boundary. To leading order in a cut-off expansion
the bulk is decoupled from the boundary and at the classical level there is no SSB. Regarding the
bulk, even though it involves a perturbatively non-renormalizable theory, the running of the gauge
coupling can be computed.[d] On the boundary on the other hand, at the classical level we have two
separate CFT’s, as both a free abelian gauge boson and a free scalar are CFT’s in d = 4 but the cou-
pled system is not a CFT because non-trivial B-functions develop at 1-loop. This means that on the
boundary, in the approximation where it is decoupled from the bulk, we have spontaneous breaking
of the conformal symmetry at the quantum level. At next to leading order, when the coupling of the
bulk to the boundary is turned on, we expect in addition the spontaneous breaking of the boundary
U(1) gauge symmetry. This can be made quantitatively precise only when the bulk to bound-
ary coupling is specified. It should be obvious from the previous discussion that we can define
this coupling via the allowed by gauge invariance higher dimensional operators of the 5d orbifold
action.[[[] This will basically yield the Wilson operators already mentioned above with coefficients
that can be defined order by order in perturbation theory. Quantizing the action augmented with
the Wilson operators guarantees the breaking of the gauge symmetry, provided that these operators
break the global symmetry that replaces the center symmetry along the orbifold direction.[H] As
a result, we will obtain a continuum effective description of the system near its trivial fixed point
that, among other things, will serve as perhaps the simplest example of a model with a correlated
radiative breaking of conformal and gauge symmetries. This is a computation currently in progress
[T], using the €-expansion and exploiting an appropriate limit of the gauge invariant 1-loop effec-
tive action of the Abelian-Higgs model.[[A] In the presence of a boundary-bulk coupling SSB will
be of course communicated to the bulk. At the end of the 1-loop computation we will have RG
flow lines starting from the vanishing 5d coupling point and extending somewhere in the interior
of the phase diagram, up to the point where the perturbative expansion breaks down. Because of
perturbative non-renormalizability it is not clear where this point is. In fact this RG flow by itself
is rather incomplete. To make it more meaningful, more has to be done.

One can attempt to do the same but this time starting from the bulk phase transition, in the
DRL regime. Now in a continuum approach we have an array of 4d slices. The MF and MC
analyses instruct us to define an array of weakly interacting softly broken 4d CFT’s. Taking into
account that the MF is an approximation to the MC approach, we can attempt to find first what the
array of the 4d CFT’s are. Then the broken version with a finite cut-off could arise as it did near
the trivial point, namely via a soft (radiative) breaking parametrized by couplings between the 4d
slices. The effect of these couplings should be such that at the end in the bulk a 5d SU(2) Yang-
Mills theory should be recovered while the boundary should remain four-dimensional. It is amusing
to notice that the resulting effective action will bare a similarity to "clockwork" models.[[3d] The
RG flow line emanating from the phase transition can now be attempted to be connected to the one
emanating from the trivial point. Global symmetries could be a useful guide for this operation.
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Figure 1: Schematic phase diagram of the 5d orbifold lattice model.
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