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1. Introduction

Recently, deviations from the Standard Model (SM) have been reported in several B meson
decays such as B → K(∗)µ+µ− and B → D(∗)τν̄ which have been receiving increased attention.
A tremendous amount of studies have been made for addressing the anomalies in the data set of
b → sµ+µ−, including the observables RK(∗) = B(B → K(∗)µ+µ−)/B(B → K(∗)e+e−) (see e.g.,
Refs. [1, 2, 3, 4, 5] for earlier works) and in the observables RD(∗) = B(B̄ → D(∗)τν̄)/B(B̄ →
D(∗)ℓν̄) (see e.g., Refs. [6, 7, 8, 9, 10] for earlier works) in various types of models.

We briefly look at situations. Results of global fits of the b → sµ+µ− data tell us that a new
vector boson (or a vector leptoquark) which couples with corresponding left-handed components
of quarks and leptons is a good candidate for explanation. Here, consistency in gauge anomaly
cancellation puts a restriction on the choice of quantum numbers of fermions (see e.g., [11]). Also
we point out that, in explanations with fundamental vector boson and/or vector leptoquark, we need
additional (vector-like) quarks and scalars (see e.g., [12]). On the discrepancy in RD(∗) , explanations
by the exchange of scalars were shown to be disfavored by the Bc meson data, while vector bosons
and leptoquarks would still have a chance (see [13] based on the discussions in [14, 15]).

To shed light on the idea that vector-like compositeness or hypercolor (HC) addresses such
anomalies provides us a new point of view [16]. In the scenario where vector-boson and vector-
leptoquark candidates are naturally realized as ‘vector-ρ mesons’ of a hidden strongly-coupled
vector-like gauge theory, where the theory is manifestly anomaly-free. Here, the composite vector
particles can contain couplings with the SM fermions in a gauge-invariant way, which is described
by the language of hidden-local symmetry (HLS) (see a review, e.g., [17]).

2. Model Description

2.1 One-family model of HC

We introduce the one-family model of the HC and provide outline the HC model scenario.
The gauge group of the strongly-coupled HC interaction (at around a TeV scale) is assumed to be
SU(NHC) with NHC ≥ 3, where the eight HC fermions (F) belong to the fundamental representa-
tion. Among the HC fermions, namely HC quarks and HC leptons, their representations under the
SU(3)c, SU(2)W and U(1)Y gauge groups are identical with those of the quark doublets and lepton
doublets, respectively. The summary of the charge assignment is listed in Table 1. The HC sector
possesses the approximate global “chiral” U(8)FL ×U(8)FR symmetry, which is explicitly broken
in part by the SM gauging and possible vectorlike fermion masses.

At the scale ΛHC (ΛHC = O(1−10) TeV) the HC gauge interaction gets strong to develop the
nonzero “chiral” condensate ⟨F̄AFB⟩ ∼ Λ3

HC ·δ AB, where A and B represent indices for SU(8) fun-
damental representations. The emergence of the condensation generates breakdown of the “chiral”
symmetry in the eight HC fermions down to the vectorial one: SU(8)FL ×SU(8)FR → SU(8)FV . As
a result of the spontaneous breaking, the 63 Nambu-Goldstone (NG) bosons emerge, which will
be pseudoscalars by the explicit breaking terms including the SM gauge interactions and possibly
present vectorlike fermion mass terms like m0

F F̄F like in the quantum chromodynamics (QCD).
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SU(NHC) SU(3)c SU(2)W U(1)Y

QL/R =

(
U
D

)
L/R

NHC 3 2 1/6

LL/R =

(
N
E

)
L/R

NHC 1 2 −1/2

Table 1: The SM charge assignment for eight HC fermions FL/R = (Q,L)T
L/R in the one-family model.

By naively scaling the hadron spectroscopy in QCD, we may find 63 composite vectors (HC ρ
mesons) as the next-to-lightest HC hadrons. Thus the low-energy effective theory of the HC sector
would be constructed from the 63 HC pions (∼ F̄Aiγ5FB) and also 63 HC rho mesons (∼ F̄AγµFB).

2.2 HLS formulation

The effective Lagrangian for those vectors (and pions) can be formulated based on the HLS
formalism, which has succeeded in QCD rho meson physics. Based on the nonlinear realization of
the HLS and the “chiral” SU(8)FL ×SU(8)FR symmetry, the Lagrangian is written as

L =−1
2

tr[ρ2
µν ]+ f 2

π tr[α̂2
⊥µ ]+

m2
ρ

g2
ρ

tr[α̂2
||µ ]+ · · · , (2.1)

in a manner invariant under the SU(8)FL ×SU(8)FR × [SU(8)FV ]HLS symmetries, including the terms
of the lowest derivative order. Here we define

ρµν = ∂µρν −∂νρµ − igρ [ρµ ,ρν ] , (2.2)

α̂⊥µ =
DµξR ·ξ †

R −DµξL ·ξ †
L

2i
, α̂||µ =

DµξR ·ξ †
R +DµξL ·ξ †

L

2i
, (2.3)

DµξR(L) = ∂µξR(L)− igρρµξR(L)+ iξR(L)Rµ(Lµ) , (2.4)

with the HLS gauge coupling gρ , the HC pion decay constant fπ , the HC ρ meson mass scale mρ ,
and the external gauge fields Rµ and Lµ that are associated by (external) gauging the “chiral”
symmetry (see Table 1). Under the HLS and the “chiral” symmetry, the transformation properties
for basic variables – ξL,R (nonlinear bases), ρµ (HLS field), and α̂⊥µ , α̂||µ (covariantized Maurer–
Cartan one forms) – are described as

ξL → h(x) ·ξL ·g†
L(x) , ξR → h(x) ·ξR ·g†

R(x) , (2.5)

ρµ → h(x) ·ρµ ·h†(x)+
i

gρ
h(x) ·∂µh†(x) , ρµν → h(x) ·ρµν ·h†(x) , (2.6)

α̂⊥µ → h(x) · α̂⊥µ ·h†(x) , α̂||µ → h(x) · α̂||µ ·h†(x) , (2.7)

where h(x) ∈ [SU(8)FV ]HLS and gR,L(x) ∈ [SU(8)FR,L ]gauged. The nonlinear bases ξL and ξR can be
parametrized by the NG bosons π for the “chiral” symmetry and P for the HLS. Hence, they are
parametrized as

ξR
L
= eiP/ fP · e±iπ/ fπ , (2.8)
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composite vector constituent color isospin

ρα
(8)a

1√
2
Q̄γµλ aταQ octet triplet

ρ0
(8)a

1
2
√

2
Q̄γµλ aQ octet singlet

ρα
(3)c

(
ρ̄α
(3)c

)
1√
2
Q̄cγµταL (h.c.) triplet triplet

ρ0
(3)c

(
ρ̄0
(3)c

)
1

2
√

2
Q̄cγµL (h.c.) triplet singlet

ρα
(1)′

1
2
√

3
(Q̄γµταQ−3L̄γµταL) singlet triplet

ρ0
(1)′

1
4
√

3
(Q̄γµQ−3L̄γµL) singlet singlet

ρα
(1)

1
2(Q̄γµταQ+ L̄γµταL) singlet triplet

Table 2: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons L =

(N,E). Here λ a (a = 1, · · · ,8) are the Gell-Mann matrices, τα SU(2) generators defined as τα = σα/2 (α =

1,2,3) with the Pauli matrices σα , and the label c stands for the QCD-three colors, c = r,g,b. The numbers
attached in lower scripts (1,3,8) correspond to the representations under the QCD color, i.e., singlet, triplet
and octet for (1,3,8).

where the HLS decay constant fP is related to the HC rho mass as mρ = gρ fP and then the Ps
are eaten by the HLS gauge boson ρµ due to the Higgs mechanism. Hereafter, we take the unitary
gauge (P ≡ 0). We easily decompose the 63 degrees of freedom into individual particles, where
the detail for the ρ mesons is shown in Table 2. The similar classification is found in the π mesons.

2.3 Direct couplings to SM particles

To discuss gauge-invariant effective interactions between the ρ mesons and the SM fermions,
we write down the fermions as an eight-dimensional vector on the base of the fundamental repre-
sentation of SU(8),

fL =

(
q
l

)
L

, fR =

(
q
l

)
R

, (2.9)

where q and l are SU(2)FL,FR doublets for the quark and lepton fields. The SM-covariant derivatives
that act on the f -fermion multiplets are then expressed as the 8×8 matrix forms:

Dµ fL = 18×8 · (∂µ fL)− i [L f
µ ]8×8 · fL ,

Dµ fR = 18×8 · (∂µ fR)− i [R f
µ ]8×8 · fR , (2.10)

with[
L f

µ

]
8×8

=

(
12×2 ⊗gsGa

µ
λ a

2 +
(
gWWµτα + 1

6 gY Bµ
)
⊗13×3 06×2

02×6 gWW α
µ τα − 1

2 gY Bµ ·12×2

)

=
√

2gsGa
µT(8)a +

2√
3

gY BµT(1)′ +2gWW α
µ T α

(1),[
R f

µ

]
8×8

=

(
12×2 ⊗gsGa

µ
λ a

2 +gY Qq
em Bµ ⊗13×3 06×2

02×6 gY Ql
em Bµ

)
, (2.11)

where Gµ ,Wµ and Bµ are the SU(3)c × SU(2)W ×U(1)Y gauge fields along with the gauge cou-
plings gs, gW and gY , respectively (see the caption of Table 2 for notations). Qq,l

em are the electro-
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magnetic charges defined as

Qq
em =

(
2/3 0
0 −1/3

)
, Ql

em =

(
0 0
0 −1

)
. (2.12)

We may relate the charges of the HC fermions with those of the SM quark and lepton charges,
involving the HC-quark and -lepton numbers. Then the nonlinear bases ξL,R in Eq. (2.5) transform
under the HLS and the SM gauge group G = SU(3)c ×SU(2)W ×U(1)Y as

ξL → h(x) ·ξL · [g†
L(x)]G , ξR → h(x) ·ξR · [g†

R(x)]G . (2.13)

From Table 1, one thus finds that the external gauge fields Lµ and Rµ , coupled to the nonlinear
bases ξL,R as in Eq. (2.8), are identified with those coupled to the SM fermions as described in
Eq.(2.10). When we focus on the vector ρ mesons and the external SM gauge bosons, the 1-forms
in Eqs. (2.3) and (2.4) are represented as

α̂||µ = L f
µ −gρρµ + · · · , α̂⊥µ = 0+ · · · . (2.14)

We may define the dressed fields for the left-handed SM fermions,

ΨL ≡ ξL · fL , ψL ≡ ξR · fL , (2.15)

which transform as

ΨL → h(x) ·ΨL , ψL → h(x) ·ψL . (2.16)

These transformations allow us to write down the HC ρ couplings to the left-handed SM fermions
in the HLS-invariant way as

Lρ f f = gi j
1L

(
Ψ̄i

Lγµ α̂||µΨ j
L

)
+gi j

2L

(
Ψ̄i

Lγµ α̂||µψ j
L +h.c.

)
+gi j

3L

(
ψ̄ i

Lγµ α̂||µψ j
L

)
, (2.17)

where i and j label the generations of the SM fermions (i, j = 1,2,3).
Using Eqs. (2.10) and (2.14), one can thus extract the HC ρ and VSM (SM gauge boson)

couplings to the left-handed SM fermions. As a result, we have

L direct
V fL fL

= gi j
L · q̄ i

Lγµ

[
gsGµ

a

(
12×2 ⊗

λa

2

)
+

(
gWW α µ σα

2
+

gY

6
Bµ 12×2

)
⊗13×3 −gρρµ

QQ

]
q j

L

+ gi j
L · l̄ i

Lγµ

[
gWW α µ σα

2
− gY

2
Bµ 12×2 −gρρµ

LL

]
l j
L

− gi j
L gρ ·

[
q̄ i

Lγµ ρµ
QL l j

L +h.c.
]
, (2.18)

where gi j
L = (g1L + 2g2L + g3L)

i j; ρµ
QQ, ρµ

LL, and ρµ
QL are combinations of the HC ρ mesons as

defined as

ρ =

(
(ρQQ)6×6 (ρQL)6×2

(ρLQ)2×6 (ρLL)2×2

)
, (2.19)
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with

ρQQ =

[√
2ρα

(8)a

(
τα ⊗ λ a

2

)
+

1√
2

ρ0
(8)a

(
12×2 ⊗

λ a

2

)]

+

[
1
2

ρα
(1) (τ

α ⊗13×3)+
1

2
√

3
ρα
(1)′ (τ

α ⊗13×3)+
1

4
√

3
ρ0
(1)′

(
12×2 ⊗13×3

)]
,

ρLL =
1
2

ρα
(1) (τ

α)−
√

3
2

ρα
(1)′ (τ

α)−
√

3
4

ρ0
(1)′

(
12×2

)
,

ρQL = ρα
(3)c (τ

α ⊗ ec)+
1
2

ρ0
(3)c

(
12×2 ⊗ ec

)
,

ρLQ =
(

ρQL

)†
. (2.20)

Note that the VSM- fL- fL term in Eq. (2.18) is not the normal SM interactions but additional contri-
butions in this model. ec represents the three-dimensional unit vector in color space (see also the
caption of Table 2). This type of vector interactions where only the left-handed part is active is one
of the desirable cases pointed out, e.g., in Ref. [18].

3. Addressing flavor anomalies

As can be seen in Eq. (2.18), our model involves lots of new interactions at the tree level, most
of which are obviously already disfavored. In particular, it is easily expected that couplings to the
first and second generations are severely constrained. To avoid such matters as well as to address
the flavor anomalies in B decays, the reasonable setup may be given as [19]

gi j
L =

 0 0 0
0 0 0
0 0 g33

L


i j

. (3.1)

and flavor-changing effects are assumed to be induced from the mixing effects from the gauge basis
to the mass basis

(uL)
i =U iI(u′L)

I, (dL)
i = DiI(d′

L)
I, (eL)

i = LiI(e′L)
I, (νL)

i = LiI(ν ′
L)

I, (3.2)

where U , D, and L are three-by-three unitary matrices and the spinors with the prime symbol denote
the fermions in the mass basis (I being the associated index),

D =

 1 0 0
0 cosθD sinθD

0 −sinθD cosθD

 , L =

 1 0 0
0 cosθL sinθL

0 −sinθL cosθL

 . (3.3)

The Cabibbo–Kobayashi–Maskawa (CKM) matrix element is then given by VCKM ≡U†(1+∆W )D≃
U†D with ∆33

W ≤ O(10−3) taken into account. Employing Fierz transformations, the operators are

5
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simplified into six types:

O i jkl
4q(1) =

(
q̄i

Lγµq j
L

)(
q̄k

Lγµql
L

)
, O i jkl

4q(3) =
(

q̄i
Lγµσαq j

L

)(
q̄k

Lγµσαql
L

)
, (3.4)

O i jkl
4ℓ(1) =

(
l̄i
Lγµ l j

L

)(
l̄k
Lγµ ll

L

)
, O i jkl

4ℓ(3) =
(

l̄i
Lγµσα l j

L

)(
l̄k
Lγµσα ll

L

)
, (3.5)

O i jkl
2q2ℓ(1) =

(
q̄i

Lγµq j
L

)(
l̄k
Lγµ ll

L

)
, O i jkl

2q2ℓ(3) =
(

q̄i
Lγµσαq j

L

)(
l̄k
Lγµσα ll

L

)
, (3.6)

along with the Wilson coefficients having the form g2
ρ gi j

L gkl
L /m2

ρ . Here we assume that all of the
masses of the ρ vector mesons are degenerated, which is justified with accuracy [16]. The above
operators contribute to the following phenomena:

• O2q2ℓ(n): B̄ → D(∗)τν̄ , B̄ → K(∗)µ+µ−, B̄ → K(∗)νν̄ , and τ → ϕ µ ,

• O4q(n) : Bs–B̄s mixing,

• O4ℓ(n) : τ → 3µ .

In Fig. 1, we summarize the situation in the parameter point, |gρg33
L |= 1 and mρ = 1TeV, as a

function of the mixing angles θD and θL, where we find the region where we can realize the target
magnitude (where we adopted the value in [18] derived through their global fit) for addressing the
anomaly in the b → sµ+µ− data consistently. Here, we should swallow the parameter tuning in
θD as ≲ O(10−2) to avoid a sizable tree-level contribution to the Bs–B̄s mixing. The bound from
τ → 3µ restricts the valid range of θL to the tau-philic region (θL ≲ π/8) or the mu-philic region
(θL ∼ π/2). We provide two comments. With smaller values of |gρg33

L | with keeping mρ = 1TeV
and θD ≲ O(10−2), explanations are still possible since the τ → 3µ constraint is relaxed (where a
larger θL gets to be allowed). When θL ∼ π/2, (almost) no constraint comes from τ → 3µ and then
we can address the RK(∗) anomaly in a wide part of such parameter space.

We briefly comment on the contribution to the RD(∗) variables. It was pointed out that the
vanishing contribution is observed for the degenerated HC ρs due to the global SU(8) structure.
Thereby, we cannot address the anomaly in RD(∗) in the setup.

4. Constraint from 13 TeV LHC dilepton searches

The latest null results in the new physics searches in the dilepton final states in the Large
Hadron Collider (LHC) would put a significant bound on the parameter space of the present sce-
nario. We derived analytical formulas of the cross sections of the processes bb̄ → ρ ′s → ττ̄/µµ̄ .
For simplicity, we focus on the ‘maximal’ cross section without suppression from the lepton mix-
ing angle (θL = 0 for ditau channel and θL = π/2 for dimuon channel) and the quark mixing angle
(θD = 0). For numerical calculations, we use the CUBA package [20] with the Mathlink protocol
in Mathematica.

Our results are summarized in Fig. 2. In the tau-philic case, when mρ ≳ 1TeV, the constraint
on the RK(∗) anomaly explanation is still week, where only possibilities near the ‘maximized gρL’
are discarded. The evaluated bound on the dimuon case is much more stringent, where the con-
figuration with gρg33

L = 1 is excluded if mρ ≲ 4TeV. However, from the right panel of Fig. 1,
we recognize that addressing the anomaly is still possible if |gρg33

L | × (1TeV)/mρ ≲ 0.15 since

6
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τ
→

3
µ

τ → φµ

b → sµµ

b → sνν̄

∆Ms

Figure 1: Allowed regions in the (θL,θD) plane in the HC ρ model for mρ = 1TeV and gρ g33
L = 1. The

b → sµ+µ− anomaly can be explained in the blue region while the constraints from ∆Ms, B(τ → 3µ),
B(τ → ϕ µ), and B(B → K(∗)νν̄) are satisfied in the magenta, cyan, green, and gray regions, respectively
(left panel); The allowed range in terms of |gρ g33

L |/mρ and θD for the fixed value θL = π/2. The color
convention is the same as in the left panel (right panel) [16].

|gρg33
L |× (1TeV)/mρ = 0.25 at the benchmark point (mρ ,gρg33

L ) = (4TeV,1). Further data accu-
mulation is (also) required for testing the whole region for explaining the anomaly shown in Fig. 1
in the mu-philic regime.

5. Miscellaneous issues

In this part, we provide comments on miscellaneous issues and points in the original pa-
per [16].

• Part of the HC ρ mesons (ρ0 µ
(8)a,ρ

α µ
(1) ,ρ

0 µ
(1)′) mix with the SM gauge bosons (Ga µ ,W α µ ,Bµ),

which is apparent from the mass terms in Eq. (2.1),

m2
ρ

g2
ρ

tr[α̂2
||µ ] ⊃

m2
ρ

g2
ρ

tr
[
(L f

µ −gρρµ)
2
]

=
1
2

m2
ρ

g2
ρ

[
g2

ρ

(
ρα µ
(8)a

)2
+g2

ρ

(
ρα µ
(1)′

)2
+
(

gρρ0 µ
(8)a −

√
2gsGa µ

)2
+
(

gρρα µ
(1) −2gWW α µ

)2

+

(
gρρ0 µ

(1)′ −
2√
3

gY Bµ
)2

+2g2
ρ

(
ρα µ
(3)cρα

(3)c µ +ρ0 µ
(3)cρ0

(3)c µ

)]
. (5.1)

This means that the ρ mesons have generation-independent “SM-gauge” interactions through
the mass mixing, where typical magnitudes of the mixing angle are estimated as gs,W,Y/gρ

7
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Figure 2: Constraints on σ(pp → τ+τ−) [left panel] and σ(pp → µ+µ−) [right panel] in θD = θL = 0
are calculated, where the CMS and ATLAS experimental results are from Refs. [21, 22]. The red curves
show ‘maximized gρL’ being consistent with the requisites from flavor issues [16], where the value of gρL is
tuned as |gρL|= 1.0× (mρ/1TeV). The expected exclusions are estimated simply by scaling the integrated
luminosity.

(irrespective of the values of gi j
L in Eq. (2.18)). Under nonzero mixings, small mass splittings

emerge among the ρ mesons. In our analysis, we have focused on the case gs,W,Y/gρ ≪ 1
(where all of ρs are degenerated).

• The existence of the above-mentioned VSM-ρ mixing leads to additional contributions to
elecroweak precision variables if gρ takes a finite value. We showed that such corrections
are almost irrelevant as long as gρ is ∼ 6 (the corresponding value of the QCD) or greater.

• The present HC theory consists of the one-family content with the number of HC fermions
NF = 8, where the masses of HC pions having the SM charges could be enhanced by the
amplification of the explicit breaking effect, as discussed in [23] and references therein. Ac-
cording to [23], the size of colored HC pion masses from the QCD gluon exchange contribu-
tion is evaluated as M2

π(3),(8)
∼C2αs(Mπ)Λ2

HCln
(
Λ2

UV/Λ2
HC
)
, with C2 =

4
3 (3) for color-triplet

(octet) HC pions, where ΛUV denotes some ultraviolet high-energy scale up to which the HC
theory is valid. Taking αs(Mπ) ∼ 0.1 and ΛUV ∼ 1016 GeV as our benchmark, the π(3) and
π(8) masses are estimated as Mπ(3) ∼ 3 TeV and Mπ(8) ∼ 4 TeV, respectively, for ΛHC ∼ 1 TeV.

Due to the enhancement in the electroweak gauge interactions, the color-singlet pions π±,3
(1)′

and π±,3
(1) are also uplifted as Mπ±,3

(1)′
∼ 2TeV and Mπ±,3

(1)
∼ 2TeV, respectively.

• No such enhancement happens in the remaining SM-gauge-sterile HC pion π0
(1)′ , where its

mass scale is roughly estimated as Mπ0
(1)′

∼ O( fπ) = O(100)GeV ( fπ : HC pion decay con-

stant). Through the Wess–Zumino–Witten terms, the process GG → π0
(1)′ → γγ is induced

and the constraint from the LHC diphoton searches looks nontrivial. We showed that we can
evade the bound by arranging the parameters fπ and Mπ0

(1)′
.
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6. Summary

We analyzed the flavor structure of composite vector bosons arising in a model of vectorlike
confinement – often called hypercolor – with eight flavors that form a one-family content of HC
fermions, namely HC quark doublets and lepton doublets. This theory is apparently gauge anomaly
free, and if the HC quarks and leptons hold the quantum numbers of the SM quarks and leptons, re-
spectively, a desirable interaction pattern (left-handed: active, right-handed: sterile) for addressing
the anomaly in the b → sµ+µ− data is realized. We showed that the RK(∗) anomaly can be suitably
addressed in the scenario, while only minuscule contributions to the observables RD(∗) occur due to
the structure of the SU(8) flavor symmetry.
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