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1. Introduction

Multi-Higgs doublet models (MHDMs) are a well motivated Beyond Standard Model (BSM)
scenario. One of its advantages over the Standard Model (SM) is the possibility for CP violation
(CPV) arising from the scalar sector, explicitly or through vacuum expectation values (VEVs) that
lead to Spontaneous CP violation (SCPV).

I will cover here the following:

1. Method to test for SCPV,

2. Method to find the VEVs,

3. For each potential, find the VEVs and if there is SCPV.

This proceedings entry is based on several works [1, 2, 3] studying the invariant approach to
scalar potentials. The references therein are more complete. Some of methods used were developed
significantly in [4, 5, 6]. The basis-independent approach I describe here is extremely powerful.
An approach using the special Higgs basis is discussed in [7].

To start, we recast any potential of interest into a standard form. I consider here only renor-
malisable potentials that contain only quadratic and quartic terms (but generalising the potential to
include e.g. cubic terms is fairly straightforward), and write:

V = ϕ
∗aY b

a ϕb +ϕ
∗a

ϕ
∗c Zbd

ac ϕbϕd , (1.1)

where the Z tensor by construction is symmetric under exchange of the two upper indices, and also
under exchange of the two lower indices. For the particular case of MHDMs, the n Higgs doublets
Hiα = (hi,1,hi,2), where α = 1,2 denotes the SU(2)L index and i goes from 1 to n, can be arranged
as follows

ϕ = (ϕ1,ϕ2, . . . ,ϕ2n−1,ϕ2n) = (h1,1,h1,2, . . . ,hn,1,hn,2) . (1.2)

In writing the potential in the standard form, invariance under symmetries does not need to be
specified, as it is encoded in the Y and Z tensors. For example, SU(2)L invariance restricts the
quadratic terms to be −m2

∑α hαh∗α : Y 1
1 = Y 2

2 =−m2, Y 2
1 = Y 1

2 = 0.
In terms of notation, I highlight the differences between complex conjugation, performing a

basis change, or applying a general CP transformation. Complex conjugation sends the scalars into
their conjugates. I denote this with raising/lowering indices

ϕa 7→(ϕa)
∗ ≡ ϕ

∗a , (1.3)

ϕ
∗a 7→(ϕ∗a)∗ ≡ ϕa . (1.4)

The potential is real (V =V ∗), implying that complex conjugation also raises and lowers the indices
of the Y and Z tensors:

(Y a
b )
∗ = Y b

a , (1.5)

(Zac
bd)
∗ = Zbd

ac . (1.6)
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I denote a basis change, acting on the scalars ϕa, with matrix V :

ϕa 7→V a′
a ϕa′ (1.7)

ϕ
∗a 7→ϕ

∗a′V †a
a′ . (1.8)

The notation with raised and lower indices is convenient, as the effect of the basis change on the
tensors is simply applying the V matrix for each index:

Y b
a 7→V a′

a Y b′
a′ V †b

b′ (1.9)

Zbd
ac 7→V a′

a V c′
c Zb′d′

a′c′ V
†b

b′V
†d

d′ . (1.10)

A general CP transformation corresponds to sending each of the ϕa scalars to conjugate scalars,
but in general there is an associated unitary matrix that I denote as X :

ϕa 7→ϕ
∗a′Xa

a′ (1.11)

ϕ
∗a 7→X†a′

a ϕa′ . (1.12)

The use of raised and lowered indices is going to be quite convenient.
If X is the unit matrix, then I have a trivial CP transformation which I refer to as CP0. As a

non-trivial example of such a general CP transformation, take 3 scalars (ϕ1,ϕ2,ϕ3). One may have
a CP transformation with X matrix:

X23 =

1 0 0
0 0 1
0 1 0

 , (1.13)

thus sending (ϕ1,ϕ2,ϕ3) 7→ X23(ϕ
∗1,ϕ∗2,ϕ∗3) = (ϕ∗1,ϕ∗3,ϕ∗2).

Sometimes, general CP transformations are referred to as generalised CP transformations. The
former nomenclature has the advantage that its spelling remains invariant under changes between
U.K. and U.S. English.

2. Spontaneous CP violation and new minima

With the notation set, I now discuss specific potentials with 3 or 6 scalars which are invariant
under certain discrete symmetries. For my purposes here it is sufficient to know the respective
expressions (from which the corresponding Y and Z tensors can be obtained).

The simplest of the potentials that I will consider here is the potential invariant under ∆(6n2),
n > 3, specified in the expression:

V∆(6n2)(ϕ) =V0(ϕ)≡− m2
ϕ ∑

i
ϕiϕ

∗i + r

(
∑

i
ϕiϕ

∗i

)2

+ s∑
i
(ϕiϕ

∗i)2 . (2.1)

This potential is invariant under both trivial CP transformation CP0 and CP with X23 (i = 1,2,3).
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Containing V0(ϕ), the potential invariant under A4 is:

VA4(ϕ) =V0(ϕ)+c
(
ϕ1ϕ1ϕ

∗3
ϕ
∗3 +ϕ2ϕ2ϕ

∗1
ϕ
∗1 +ϕ3ϕ3ϕ

∗2
ϕ
∗2)

+c∗
(
ϕ
∗1

ϕ
∗1

ϕ3ϕ3 +ϕ
∗2

ϕ
∗2

ϕ1ϕ1 +ϕ
∗3

ϕ
∗3

ϕ2ϕ2
)
. (2.2)

VA4(ϕ) is invariant under CP without any constraints, although it is not invariant under CP0 in
general - under CP0, each of the terms multiplied by c goes to a corresponding term multiplied by
c∗, so this potential is only invariant under CP0 if c is real (c = c∗) . But for any c, the potential
remains invariant under the general CP transformation associated with the X23 matrix in eq.(1.13):
as (ϕ1,ϕ2,ϕ3) 7→ X23(ϕ

∗1,ϕ∗2,ϕ∗3) = (ϕ∗1,ϕ∗3,ϕ∗2), of the three terms multiplied by c, the last
(in red) remains invariant, and each of the other two terms goes into each other (the same applies for
the terms multiplied by c∗). The potential is invariant under a CP transformation, and is therefore
CP conserving.

Also containing V0(ϕ), the potential invariant under ∆(27) is:

V∆(27)(ϕ) =V0(ϕ)+d
(
ϕ1ϕ1ϕ

∗2
ϕ
∗3 + cycl.

)
+d∗

(
ϕ
∗1

ϕ
∗1

ϕ3ϕ2 + cycl.
)
, (2.3)

where cycl. denotes the cyclic permutation of the 3 indices, e.g. (ϕ1 + cycl.) = (ϕ1 +ϕ2 +ϕ3).
V∆(27)(ϕ) has CPV in general. It becomes CP conserving for special values of the parameters, e.g.
it is invariant under both CP0 and CP with X23 if d is real (d = d∗).

In order to study the CP properties of these and other potentials, it is necessary to consider that
any general CP transformation that leaves the potential invariant guarantees the potential conserves
CP. It is therefore convenient to employ methods based on basis invariants, I, that are independent of
V (basis change) and X (general CP transformation). Such basis invariants can be built from Y and
Z tensors (and also VEVs of the fields) by contracting all indices - as V and X are unitary matrices,
the basis invariants will no longer depend on them as they cancel throughout. For example, two
basis invariants can be obtained by tracing the indices of a single Z tensor

Zab
ab and Zab

ba . (2.4)

They are of course invariant under basis change, e.g. we see from eq.(1.10):

Zab
ab 7→V a′

a V b′
b Za′b′

a′b′ V
†a

a′V
†b

b′ = Za′b′
a′b′ = Zab

ab . (2.5)

The invariance under basis change generalizes for any combinations, as long as all indices are
contracted. Analogously, the dependence on X when performing a general CP transformation is
cancelled.

The number of basis invariants grows quickly as more tensors are combined, as all n upper
indices can be contracted with all n lower indices in n! ways (corresponding to each element of the
permutation group Sn). There are already 4! = 24 possibilities with two Z tensors. But due to the
properties of the Z tensor and because many of the contractions can be expressed in terms of other
invariants, of the 24 there are just two independent ones, e.g.:

Zab
bdZcd

ac and Zab
cd Zcd

ab . (2.6)
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Many invariants are equivalent, or products of smaller invariants.
Further, many basis invariants are CP-even (all examples so far). To study CP properties, I

want to use CP-odd invariants (CPIs)
I = I− I∗ . (2.7)

Diagrams, and particularly a technique using coupling matrices introduced by [1], help find cases
with I 6= I∗. These CPIs can test if a potential has explicit CPV (without worrying about Xs).
Indeed, a non-vanishing CPI guarantees there is explicit CPV. Several CPIs are listed in [1] (all
CPIs up to 6 Z tensors). Using the CPIs one can very elegantly study the explicit CPV properties
of potentials, such as the multi-Higgs potentials with triplets of ∆(3n2) and ∆(6n2) analysed in [1].

In contrast, Spontaneous CPIs (SCPIs) are built from basis invariants J:

J = J− J∗ , (2.8)

where J involves the VEVs, va ≡ 〈ϕa〉. These SCPIs can test if a VEV has SCPV, in a specific CP
conserving potential. Indeed, a non-vanishing SCPI guarantees the corresponding VEV violates
CP spontaneously, for the CP conserving potential being studied.

A particularly useful SCPI is obtained from the basis invariant that I denote as J(3,2) (for 3 Z
tensors and 2 pairs of VEVs):

J(3,2) ≡ Za1a2
a4a5

Za3a4
a2a6

Za5a6
a7a8

va1va3v∗a7v∗a8 = , (2.9)

where in the associated diagram, which I sometimes refer to as the penguin diagram due to its
resemblance to the flightless bird (see figure 1), the dots denote a Z tensor, the crosses denote a
VEV, and the arrows indicate a contraction from an upper to a lower index. J(3,2)

∗
is obtained by

exchanging all upper and lower indices, and is associated with the diagram where all arrows are
reversed, which is not equivalent (so the corresponding SCPI is indeed CP-odd).

Figure 1: The penguin diagram, as first depicted on a whiteboard.

As an example of the application of SCPIs, consider briefly the MHDM for 2 Higgs doublets
H1, H2, when CP0 (trivial CP) is imposed to make the potential CP conserving (SCPV makes sense
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if the potential is CP conserving):

J
(3,2)

CP0
= F(a1,a2,b,b′,c1,c2,d,〈hi, j〉)[〈h2,1〉〈h1,1〉∗+ 〈h2,2〉〈h1,2〉∗−h.c.] , (2.10)

where F(a1,a2,b,b′,c1,c2,d,〈hi, j〉) is a function of the coefficients a1,a2,b,b′,c1,c2,d of the quar-
tic terms of the potential, shown in the appendix in eq.(A.1). Most relevant is the functional depen-
dence on the VEVs (in red), where the SCPI shows that SCPV depends on relative phase between
〈H1〉 and 〈H2〉 (note 〈h1,1〉= 〈h2,1〉= 0 for charge preserving VEVs).

I consider now V∆(27)(ϕ) again, in eq.(2.3). It contains V0(ϕ) (eq.(2.1)), which has two quar-
tics, with coefficients r and s, and additionally the coefficient d. As I already mentioned, V∆(27)(ϕ)

has CPV in general, and is invariant under CP0 if d is real. When applying the SCPI to the potential
(meaning one uses the corresponding Z tensor), the general structure is thus:

J (3,2) = A(d)Q(|vi|)+B(d,s)R(vi) , (2.11)

where A(d) = 0 for some CP symmmetris, R(vi) 6= 0 for VEVs that violate those; and B(d,s) = 0
for some other CP syms., Q(|vi|) 6= 0 for VEVs that violate those. Even without specifying the
functions, this structure is already automatically tracking that there are different CP symmetries
making one of the two terms in the expression vanish. And further, that depending on the CP
symmetry chosen, the term that does not vanish depends on the VEVs in such a way that, if the
VEV conserves that CP symmetry, the remaining term also vanishes. This is not a coincidence, as
a non-vanishing SCPI guarantees that there is SCPV.

In order to analyse this further, here is the expression

J (3,2) =
1
4
(d∗3−d3)Q(|vi|)

+
1
2
(dd∗2−2d∗s2 +d2s)(v2v3v∗21 + v1v3v∗22 + v1v2v∗23 )

−1
2
(d2d∗−2ds2 +d∗2s)(v∗2v∗3v2

1 + v∗1v∗3v2
2 + v∗1v∗2v2

3) , (2.12)

where Q(|vi|) is a quartic function of the absolute values of the VEVs. If I impose CP0, I force d to
be real, d = d∗. Clearly this simplifies the expression:

J
(3,2)

CP0
=

1
2
(d3−2ds2 +d2s)[

(v2v3v∗21 + v1v3v∗22 + v1v2v∗23 )− (v∗2v∗3v2
1 + v∗1v∗3v2

2 + v∗1v∗2v2
3)
]

(2.13)

and I now focus on the VEV dependence. We can consider the different candidate VEVs of this
potential (which of these candidates are the actual VEVs depends on the region of the param-
eter space). Both these candidates include the geometrical phase, ω ≡ ei2π/3, ω , whose value
is independent of the quartic coefficients, and are: 〈ϕ〉 = (1,ω,ω2) which conserves CP, and
〈ϕ〉 = (ω,1,1). That 〈ϕ〉 = (ω,1,1). violates CP (with a geometrical phase) is certain, as it
gives a non-zero value when inserted into J

(3,2)
CP0

in eq.(2.13). This is a case of spontaneous geo-
metrical CP violation (SGCPV). Conversely, it may appear strange that the other VEV candidate
is CP conserving, as it has complex phases and we are considering CP0, which is clearly violated
by the complex phases. This illustrates the convenience of the invariant approach, as if there is no
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SCPV, all CPIs must vanish and the result is, of course, basis independent. As it turns out, this
CP conserving VEV with complex phases is equivalent to the real VEV (1,1,1), in the sense that
they are related to by a ∆(27) transformation which leaves the potential invariant. The VEVs thus
related have the same value for the potential and are said to belong to the same orbit [2, 3]. More
generally, a general CP symmetry (related to CP0 by a ∆(27) transformation) both leaves the po-
tential invariant and is still preserved by the VEV (1,ω,ω2). One unbroken general CP symmetry
is sufficient to guarantee CP is preserved in vacuum (even though CP0 is broken).

In order to test candidate VEVs for SCPV, I need to know them in the first place. For the
case of ∆(27) discussed above, they were already known. A method of decreasing symmetry was
proposed in [2, 3], and using it the previously known VEVs were confirmed and new minima were
found, in particular for potentials with two triplets of ∆(3n2) and ∆(6n2) (with n = 2,3 and n > 3).
For one triplet of A4,S4,∆(27),∆(54), this simple method reproduces results in [8]

To illustrate the idea, lets consider the simpler potential for ∆(6n2) with n > 3, in eq.(2.1),
which had not been analysed previously. The VEV candidates were found to be

v1(1,0,0), v2(1,1,0), v3(1,1,1) , (2.14)

as follows.
I consider first that part of the potential is invariant under the larger U(3) symmetry.

V0 =VU(3)+V∆(6∞2)×U(1) . (2.15)

Under just the U(3) part of the potential, there would be a single orbit connected by the continuous
symmetry. VEVs with the same magnitude but different directions have the same value of the
potential. The remaining terms

V∆(6∞2)×U(1) = s(ϕ1ϕ
∗1

ϕ1ϕ
∗1 +ϕ2ϕ

∗2
ϕ2ϕ

∗2 +ϕ3ϕ
∗3

ϕ3ϕ
∗3) , (2.16)

do distinguish the directions and splits the single U(3) orbit into 3 classes of directions:

{

eiη

0
0

 ,

 0
eiη

0

 ,

 0
0

eiη

},{
eiη

eiζ

0

 ,permut.},{

eiη

eiζ

eiθ

 ,permut.} , (2.17)

where permut. signifies the possible permutations. Note there are relations between the magni-
tudes, but not the phases.

To clarify this it is simpler to consider briefly a case where there are only 2 generations, where
what I would look as VEV candidates would be the extrema of s(|ϕ1|4+ |ϕ2|4) for fixed magnitude
v. Parametrising the direction with an angle θ , I find the candidates v(cosθ ,sinθ) to be, depending
on the sign of the s coefficient:
positive s, VEV ∝ (1,1)/

√
2→V ∼+2v4/4,

negative s: VEV ∝ (1,0) or (0,1)→V ∼−v4.
This can be visualized in figure 2.

Using this method, the orbits are progressively split, by starting with the larger symmetry and
adding terms that are only invariant under the smaller symmetry. For two triplets of ∆(3n2) (with

6
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Figure 2: Calculation of extrema for 2 generation example.

n > 3), the method reveals some candidate VEVs like

(eiη ,0,0),(eiη ′ ,0,0)→ (1,0,0),(1,0,0)

(eiη ,eiζ ,eiθ ),(eiη ′ ,eiζ ′ ,eiθ ′)→ (1,1,1),(1,eiζ ′ ,eiθ ′).

For the last case, the phases (in red) are physical. Following the method, I minimize the phase-
dependent part of potential to fix the phases. That reveals new VEVs with geometrical phases

(1,1,1),(1,ω,ω2) and (1,1,1),(1,ω2,ω).

Do these VEVs have SCPV?
I use the same SCPI, now applied to the respective potential (the potential is shown in the

appendix in eqs.(A.2, A.3)):

J (3,2) =− 1
16

s̃2[r̃2(−4s−4s′+2s̃1− s̃2 +3r̃2)− s̃2
3]WCP0

− 1
8

is̃3
[
s̃2

3−3r̃2
2
]
WCP23

− 1
16

is̃2s̃3[−4s−4s′+2s̃1− s̃2](...) , (2.18)

where

WCP0 ≡ [(v1v′∗1v′2v∗2 + v2v′∗2v′3v∗3 + v3v′∗3v′1v∗1)−h.c.] ,

and CP0 forces s̃3 = 0 (this is the coefficient of one of the quartics terms, the only one with a
complex phase present, see eq.(A.2)).

Given the dependence:

WCP0 ≡ [(v1v′∗1v′2v∗2 + v2v′∗2v′3v∗3 + v3v′∗3v′1v∗1)−h.c.] , (2.19)

7
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we see that

W (3,2)
CP0

[v(1,1,1),v′(1,ω,ω2)] = 3(ω−ω
2)v2v′2 6= 0 . (2.20)

A non-zero SCPI means there is SCPV. This means there are new cases of SGCPV in ∆(3n2)×CP0,
for six scalars. The analogous version for Higgs doublets reveals the same for the corresponding
6HDM. A fuller analysis including tables of highlighting such cases is present in [3].

3. Conclusion

In conclusion, I presented work where the formalism for CPIs and SCPIs, and for finding
candidate minima was developed. Using these methods for explicit and spontaneous CP violation,
one can analyse any potential when brought to standard form. The CP properties of 3HDM and
6HDM symmetric under ∆(3n2) and ∆(6n2) groups were verified, for new minima that were found,
which include new cases with SGCPV.

A. Potentials

V (H1,H2) = m2
1 H†

1 H1 +m2
12 eiθ0 H†

1 H2 +m2
12 e−iθ0 H†

2 H1 +m2
2 H†

2 H2 +

+a1

(
H†

1 H1

)2
+a2

(
H†

2 H2

)2

+b
(

H†
1 H1

)(
H†

2 H2

)
+b′

(
H†

1 H2

)(
H†

2 H1

)
+

+c1 eiθ1
(

H†
1 H1

)(
H†

2 H1

)
+ c1 e−iθ1

(
H†

1 H1

)(
H†

1 H2

)
+

+c2 eiθ2
(

H†
2 H2

)(
H†

2 H1

)
+ c2 e−iθ2

(
H†

2 H2

)(
H†

1 H2

)
+

+d eiθ3
(

H†
1 H2

)2
+d e−iθ3

(
H†

2 H1

)2
. (A.1)

V1(ϕ,ϕ
′) = + r̃1

(
∑

i
ϕiϕ

∗i

)(
∑

j
ϕ
′
jϕ
′∗ j

)
+ r̃2

(
∑

i
ϕiϕ

′∗i

)(
∑

j
ϕ
′
jϕ
∗ j

)

+ s̃1 ∑
i

(
ϕiϕ

∗i
ϕ
′
i ϕ
′∗i)

+ s̃2
(
ϕ1ϕ

∗1
ϕ
′
2ϕ
′∗2 +ϕ2ϕ

∗2
ϕ
′
3ϕ
′∗3 +ϕ3ϕ

∗3
ϕ
′
1ϕ
′∗1)

+ i s̃3

[
(ϕ1ϕ

′∗1
ϕ
′
2ϕ
∗2 + cycl.)− (ϕ∗1ϕ

′
1ϕ
′∗2

ϕ2 + cycl.)
]
. (A.2)

V∆(3n2)(ϕ,ϕ
′) = V0(ϕ)+V ′0(ϕ

′)+V1(ϕ,ϕ
′), (A.3)
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