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1. Introduction

In ordinary Quantum Field Theory (QFT) the Schwinger-Dyson equations account for the
non-perturbative description of propagations and interactions, expressed in terms of equations of
motion for the Green’s functions. Non-perturbative methods usually yield an infinite tower of
coupled Schwinger-Dyson equations, which is rarely solvable. Some matrix models (or rather,
matrix quantum field theories) [1] escape this feature. The solvability of the real quartic matrix
model heavily (but not exclusively) relies on the N2−2g-expansion of the Green’s functions in the
matrix size, N, which allows to derive a closed equation for the two-point function in the planar
(g = 0) sector and thereafter determine the higher-point functions by algebraic recursions. The
extension of these non-perturbative approach to other kind of theories that also possess an inverse-
N expansion is therefore intriguing, since there it is natural to test for solvability, at least in the
large-N limit. To such family belong (random) tensor models.

The matrix model description of 2D-quantum gravity [2] inspired tensor models [3] and ran-
dom tensors [4]. A colored structure on the tensors [5] led to their 1/N-expansion. Beyond the
random geometry and quantum gravity [6, 7, 8] applications that tensor models had, the large-
number-of-particles limit of the Sachdev-Ye-Kitaev (SYK) [9] also unexpectedly received a tensor
model description [10, 11, 12, 13] 1 and has become a tool in holography.

This short article only describes non-perturbative QFT aspects of (complex) tensor models;
the reader is referred to the previous sources for a deeper physical approach.

For a scalar theory with cubic and quartic interactions, for sake of concreteness, the Schwinger-
Dyson equations (SDE) are recursions that describe the insertions of the n-point and (n+1)-point
functions into the (n−1)-point function one has then terms of the form (see e.g. [14] and [15, Fig.
1] ) The 1PI 2-point function Γ(2), for instance, satisfies:

Γ(2) = ( )−1 − 1
2 Γ(3) − 1

2 Γ(3)

Γ(3)

− 1
2 − 1

6 Γ(4) . (1.1)

Due to the intricate combinatorics of the interaction vertices in matrix and tensor field theories
(TFT), the analogue of equation (1.1) turns out to be more complicated. As a matter of fact, rank-D
tensor models have a propagator composed of D parallel lines (nevertheless, denoted by ) each
of which transmits momentum independently from the others, known as coloring (see Sec. 2 or [16,
Fig. 2]). In particular, a quartic interaction vertex involves a choice of which of those colors are
transmitted upwards, which downwards, which forwards in the small blob, V , of the sunset-term:

?V . (1.2)

For D= 3 and the 2-point function, notice that for the vertex V of the sunset-diagram, the following
might happen:

1See V. Rivasseau’s article in these proceedings.
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• V can be any of { c c}c=1,2,3 or V = for real or O(N) tensor models initiated by Carrozza
and Tanasă [17], and used by Klebanov and Tarnopolsky [12] in the context of the SYK-like
tensor models

• or V = c c for c = 1,2,3 for complex or U(N) tensor models. The black-white bipartiteness
reflects the presence of both the tensor field and its conjugate. Rather U(N)-invariant theories
are the TFT we shall deal here with.

Higher-point functions follow an even more complicated schema. Either way, accordingly, the
Green’s functions need further specification and, in fact, the classification of the correlation func-
tions for higher-rank theories is the following:

• for real matrix theories, there are as many connected k-point functions [1] as integer partitions
of k. Then, there are three 3-point functions, five 4-point functions, seven 5-point functions,
and so on.

• for complex tensor models the connected k-point functions are classified by (possibly dis-
connected) D-colored2 graphs in k vertices [16]. In particular k = 2` should be even. Each
edge in these graphs is of certain color a, and this enforces momentum-transmission3 of this
very color. Therefore, the Feynman graph structures with four legs can encode momentum-
transmission according to 1 1 , 2 2 , 3 3 or (as pictured in Fig. 1)

1

t
1

.

In particular, in order to obtain the analogue of eq. (1.1) in a D-dimensional QFT-context, say,
for quartic tensor field theories of rank-D, one needs to specify which of the four 4-point function
we are inserting into the 2-point function. The aim of this paper is to explain how to achieve this
and to arrive at analytic SDE for every (connected) correlation function. The methods exposed here
are based on [16] and [18].

23

1

2 3

1

31

2

3 1

2

Jx J̄y

J̄x Jy
0

0 0

0 0

0

Figure 1: Connected 4-point ϕ4
3 -Feynman graph with disconnected boundary. The dashed (or 0 color)

transmits simultaneously the three colors. Hence, momentum transmission is encoded by 0a-bicolored paths
between external legs. This draws a graph, the boundary graph, which in this case is disconnected. Thus,
this graph contributes to the 4-point function G(4)

m|m or G(4)
disconn. (see also Table 1 for notation).

Remark. We do not use Einstein’s implicit summation notation.

2. The strategy

The idea of the utilization of a matrix Ward identity (based on the Ward identity [19]) in order
to derive the SDE of matrix models is due to Grosse and Wulkenhaar [1, 20].

2This is a common abbreviation in the tensor model jargon, for “vertex-bipartite regularly edge-D-colored graphs”.
3We call the index that is transmitted “momentum” because these models are originated in certain Group Field

Theory context, whose Fourier dual has the structure of a TFT; if one interpret the group manifolds as direct space, then
the indices are the momenta.

2



P
o
S
(
C
O
R
F
U
2
0
1
7
)
1
4
7

The full Schwinger-Dyson tower for random tensor models Carlos Ignacio Pérez Sánchez

2.1 Complex tensor models

Complex tensor models, colored tensor models and random tensor models [7] study fields
ϕx ∈ C (x ∈ I1× . . .× ID ⊂ ZD) whose indices4 transform independently under elements of U(N)

of the product group HD = U(N)D. This means that

ϕx1...xD 7→ ϕ
′
x1...xD

= ∑
ya

[Wa]xayaϕx1...ya...xD , ϕ̄x1...xD 7→ ϕ̄
′
x1...xD

= ∑
ya

[W a]xaya ϕ̄x1...ya...xD ,

for each Wa in the a-th factor U(N) of HD, for any a = 1, . . . ,D. Each of the factors (and of the
location of the tensor indices) is referred to as a color5. Interactions of this kind of theories are
HD-invariants. We restrict to models for which any (graph)-vertex lies on a subgraph of the type

1

D

2

a a... for certain color a. For D = 3, this constrains the interactions of models to the list

a a , , , , , . . .(for any color a). (2.1)

Other type of interactions need another methods. The origin of this restriction is technical and will
be explained in Section 2.2. Here, we treat models with pillow-like interactions, but otherwise
without any restriction in their rank. Pillows are melonic6 graphs of four vertices. These are
{ 1 1 , 2 2 , 3 3}, for rank-3 models,

{
1 1 , 2 2 , 3 3 , 4 4

}
for rank-4 models, etc. When the

rank is clear, we denote by Va the pillow with preferred color a (e.g. 1 1 =V1).

2.2 The usefulness of the Ward-Takahashi Identity

We consider the quartic tensor model with interaction Sint = λ ∑
D
c=1Vc with a kinetic Laplacian-

like kernel E, which possibly breaks the HD-symmetry in the quadratic invariant Tr2(ϕ̄ ,ϕ)→ S0 =

Tr2(ϕ̄ ,Eϕ). Functional integration of the partition function yields

Z[J, J̄;E] =C exp
(
−λ ∑

3
a=1Va

)∣∣∣∣
(ϕ ,ϕ̄)→( δ

δ J̄ , δ

δJ )

Zfree[J, J̄;E] .

Any analytic Schwinger-Dyson equation begins by deriving with respect to the sources. By deriv-
ing with respect to J̄s we get [16, 18]

δ logZ[J, J̄;E]
δ J̄s

=
1
Es

{
Js−

1
Z[J, J̄;E]

(
∂Sint(ϕ , ϕ̄)

∂ ϕ̄s

)∣∣∣∣
(ϕ ,ϕ̄)→( δ

δ J̄ , δ

δJ )

Z[J, J̄;E]
}

. (2.2)

By assumption (Sec. 2.1), the term in round parenthesis contains, after evaluation of the sources,
the subgraph

1

D

2

a a... , and thus a derivative of the form

Lmana ≡ ∑
pâ∈Z

[
δ 2Z[J, J̄;E]

δJp1...pa−1ma pa+1...pDδ J̄p1...pa−1na pa+1...pD

]
(2.3)

4We think of the large-N limit, so we write, instead of Ia, directly Z.
5For historical reasons [21].
6That is, with vanishing Gurău-degree [7], but this is concept is not essential here because the present results entail

no 1/N-truncation.
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acted on by more derivatives. This term resembles the LHS appearing in the Ward-Takahashi
Identity (WTI)

∑
pâ∈Z

[
δ 2Z[J, J̄;E]

δJp1...pa−1ma pa+1...pDδ J̄p1...pa−1na pa+1...pD

×Emana;pâ

]
= DJ,J̄ Z[J, J̄;E] (2.4)

obtained by Ousmane-Samary [22] from the U(N)-invariance (this group being the a-th factor of
HD) of the path integral. Here, Emana;pâ ≡Ep1···ma···pD−Ep1···na···pD , pâ≡ (p1, . . . , pa−1, pa+1, . . . , pD)

and DJ,J̄ is a first order differential operator in the sources. It would be useful to reduce the deriva-
tives by using this WTI; however, it also implies the difference of the kernels. We restrict, therefore,
to models that satisfy that:

for any color a, Emana;qâ = Eq1···ma···qD−Eq1···na···qD does not depend on qâ. (♦)

We thus write only Emana;pâ =: Emana from now on. The condition ♦ allows one to get the term
Emana out of the sum and solve for Lmana . We remark that the non-triviality of this task relies
on the skew-symmetry of the indices of Emana . This means that we need to find the term that is
proportional to δmana in Lmana (see eq. (2.3)). This is a functional that we denote by Y (a)

ma [J, J̄ ] (and
name, sloppily, Y -term). After complete knowledge about this Y -term has been obtained we say
the WTI is full. The first full WTI was found for O(N) matrix models [1, Sec. 2].

3. The full Ward-Takahashi identity

For arbitrary rank-D U(N) tensor models the full WTI reads [16]:

Lmana =
(

δmanaY
(a)
ma [J, J̄]

)
·Z[J, J̄ ;E]+ ∑

pâ∈ZD−1

1
Emana

(
J̄mapâ

δ

δ J̄ napâ

− Jnapâ

δ

δJ mapâ

)
Z[J, J̄;E] .

In the next subsections, we explain how to define the correlation functions, and, subsequently, how
to obtain the Y -term.

3.1 The expansion of the free energy in boundary graphs

The (connected) correlation functions of TFTs will be defined as derivatives with respect to
sources, as in usual QFT. Nevertheless, the naive Ansatz

logZ[J, J̄] ?
= ∑

x,y
G(2)(x,y)Jy1y2y3 J̄x1x2x3 + ∑

w,x,y,z
G(4)(w,x,y,z)Jx1x2x3 J̄w1w2w3Jy1y2y3 J̄z1z2z3 +O(4)

is, due to the color structure, an oversimplification that impairs the derivation of analytic Schwinger-
Dyson equations for the thus defined G(2`)-functions. The right expansion takes into account the

4
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transmission of momentum inside classes of Feynman graphs, and is given by

logZ[J, J̄] = ∑
x

G(2)(x)Jx1x2x3 J̄x1x2x3 +∑
x,y

G(4)
disconn.(x,y)Jx1x2x3 J̄x1x2x3Jy1y2y3 J̄y1y2y3 (3.1)

+∑
x,y

G(4)
1 (x,y)Jy1y2y3 J̄x1y2y3Jx1x2x3 J̄y1x2x3 +∑

x,y
G(4)

2 (x,y)Jy1y2y3 J̄y1x2y3Jx1x2x3 J̄x1y2x3

+∑
x,y

G(4)
3 (x,y)Jy1y2y3 J̄x1x2y3Jx1x2x3 J̄y1y2x3 +O(6)

The sub-indices of the 4-point functions G(4) will be clear soon. This expansion can be conve-
niently (compactly) organized by, again, colored graphs. This would yield an algorithmic deriva-
tion of the Y -term. Notice the effect of the the double derivative on the source-term

∑
pâ

δ

δJmapâ

δ

δ J̄napâ
∑

x1,··· ,y,···x`
G(2`)(x1, . . . ,y, . . .x`)[Jx1 · · ·Jy · · ·Jx` ] · [J̄··· · · · J̄...ya... · · · J̄··· ] . (3.2)

Namely, from this equation it is clear that Y (a)
ma has contributions from ‘hitting’ two sources J and

J̄ that are connected by an a-colored edge in the boundary graph (in this term, as a matter of fact,
J̄...ya... and Jy). In order to understand this, we find convenient to recall what happens in the for
matrix field theories. If this is superfluous for the reader, Sec. 3.1.1 could be skipped.

3.1.1 The free energy for real matrix models

As pointed out in the introduction, the correlation functions (the momenta of the free energy
logZmatrix) of a general real matrix model are classified by integer partitions of k. If these partitions
are indexed by α ∈ {1, . . . ,P(k)}), the free energy is expanded as

logZmatrix[J] =
∞

∑
k=1

P(k)

∑
α=1

1
σ(α)

G(k)
α ? j(α) = ‘sum over triangulation of boundaries (circles)’. (3.3)

This is shorthand but is not a formal expression. An integer partition α = (n1, . . . ,nB(α))∈Z≥0 of k

(i.e. k =∑
B(α)
r=1 nr with nB(α) 6= 0, and ni < n j if i< j) determines B(α) boundaries, nr of which carry

r sources attached. Thus, ( j(α))(p1, . . . ,pB(α)) := ∏
B(α)
r=1 Jpr

1 pr
2
Jpr

2 pr
3
· · ·Jpr

nr pr
1

and pr = (p1
1, . . . , pr

nr
).

The star, ? , point-wise sums the product (G(k)
α · j(α)) is over the arguments (p1, . . . ,pB(α)). Further,

σ(α) is a symmetry factor.
The topological significance of this expansion is clear: Equation (3.3) is a sum over triangula-

tions of the boundary of the surfaces that the ribbon graphs triangulate. That is, α determines for
nr circles a precise ‘triangulation by r intervals’. Based on this, one can derive the free energy for
complex tensor models. The useful concept there is that of a boundary graph.

3.1.2 The free energy of complex tensor models

The expansion of the free energy also has a geometrical meaning. It is an expansion over
all triangulations of boundaries, but in higher dimensions. For D = 3, these are triangulations of
closed, orientable surfaces. In fact, these are triangulable by bipartite 3-colored graphs and the sum
turns out to be over all the boundary graph that are triangulated by a particular model Sint. The

5
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CORRELATION FUNCTIONS

Order Graph notation Simplified notation

2-pt function G
(2)

1

G(2)

4-pt functions G
(4)
a a G

(4)
Va

G
(4)
|

1

|
1

| G
(4)
m|m

CORRELATION FUNCTIONS

Order Graph notation Simplified notation

6-pt functions G(6)
a

G
(6)
Qa

G
(6)

G
(6)
K3,3

G(6)

cb

G
(6)
Fa;bc

G
(6)
|

1

|a a | G
(6)
m|Va

G
(6)
|

1

|
1

|
1

| G
(6)
m|m|m

Table 1: Correlation functions of the ϕ4
3 -theory until order six

boundaries are characterized in [16]. The general expansion for any rank reads:

logZ tensors[J, J̄;E] =
∞

∑
`=1

∑
B is boundaryofSint
#Vertices(B)=2`

1
|Autc(B)|G

(2`)
B ? j(B) . (3.4)

The elements of this formula are:

• to each boundary graph B, j associates a function j(B) : MD×`(Z)→C in the sources given
by

( j(B))(X)≡
`

∏
α=1

Jxα J̄yα (X),being xα , (α = 1, . . . ,`) the columns of X , (3.5)

and {yα(X)}α is the set of (unordered) momenta yα that one gets in the J̄-sources at the
external legs of a Feynman graph G with ∂G = B by ‘injecting momenta the xγ ’ (γ =

1, . . . ,`) at the external legs marked by J-sources (see Fig. 1). We choose the notation
B∗(X) = (y1, . . . ,y`) (see [16] for the detailed construction). For instance7, j( 1 1)(x,z) =
Jz1z2z3 J̄x1z2z3Jx1x2x3 J̄z1x2x3 , since ( 1 1)∗(x,z) = (x1,z2,z3 , z1,x2,x3)

• one then sums the product G(2`)
B (X) · ( j(B))(X) over all momenta X ∈MD×`(Z); the star ?

abbreviates this sum

• finally, one divides by the order of the automorphism group Autc(B) of the graph B. The
automorphism group will be important in the following section.

Since from now on we work only with TFTs, we omit the subindex ‘tensors’ in the partition
function Ztensors. For rank-3 models, the most general expansion is

logZ[J, J̄ ] = G(2) ? j(m)+
1
2!

G(4)
m|m ? j(m|m)+

1
2

3

∑
c=1

[
G(4)

Vc
? j
(

Vc
)
+

1
3

G(6)
Qc

? j(Qc)+G(6)
Fc

? j(Fc)

+
1
2

G(6)
m|Vc

? j(m|Vc)

]
+

1
3

G(6)
K3,3

? j(K3,3)+
1
3!

G(6)
m|m|m ? j(m|m|m)+O(8) . (3.6)

7Recall that we do not use Einstein’s sum convention.
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As shown in [16] (relying on [23]) for rank-D models with all8 the pillows Sint = λ ∑
D
c=1Vc, for any

D-colored graph B, even if B is disconnected, G(2`)
B ≡/ 0 holds. Table 1 shows the transition from

the original source [16] notation to the compact one used here.

3.2 Graph calculus

The free energy is generated by graphs. Since this is not a formal expansion, a tool should
be developed in order to read off the coefficients (functions) of the graphs. This is the graph
calculus [16], which consists in deriving functionals A [J, J̄ ] with respect to ( j(B))(X), where B

is a boundary graph, and by momenta X = (x1, . . . ,x`) (2`= # vertices of B). We restrict X to

FD,` := {(x1, . . . ,x`) ∈MD×`(Z) |xα
c 6= xν

c if α 6= ν (α ,ν = 1, . . . ,`), for all c = 1, . . . ,D} ,

the space of momenta away from the ‘colored diagonals’. One then sets ∂A [J, J̄ ]/∂B to be the
function that at X ∈FD,` takes the value

δ 2`A [J, J̄ ]
δ j(B)(X)

∣∣∣∣
J=J̄=0

.

An important result is the independence of graphs, meaning that if C is another graph ∂C /∂B

is non-zero only if the graphs B and C are isomorphic. If that is the case, the derivative ∂C /∂B is
found to be a group action by Autc(B). Concretely, if C = (c1, . . . ,ck) ∈MD×k(Z) and X ∈FD,`,

∂C (C)

∂B(X)
=


δ`k ·

(
∑

σ̂∈Autc(B)

δ
cσ(1),...,cσ(k)

x1,x2,...,x`

)
if B ∼= C ,

0 if B � C .

where9 σ̂ ∈ Autc(B) denotes the lift of a permutation σ ∈ Sym(`) to the10 corresponding element
of the automorphism group Autc(B). Now we are in position to define the correlation functions by

G(2`)
B ≡ ∂ logZ[J, J̄ ;E]

∂B
. (3.7)

Example 3.1 (Meaning of ∂/∂ ). If A [J, J̄ ] is a functional and X = (x1,x2,x3) ∈F3,3, one has

∂A [J, J̄ ]
∂

(X) =
δ 6A [J, J̄ ]

δJx1δJx2δJx3δ J̄y1δ J̄y2δ J̄y3

∣∣∣∣
J=0=J̄

=
δ 6A [J, J̄ ]

δJx1δJx2δJx3δ J̄x1
1x2

2x3
3
δ J̄x2

1x3
2x1

3
δ J̄x3

1x1
2x2

3

∣∣∣∣
J=0=J̄

,

since

( )∗{x1,x2,x3}= {y1,y2,y3}=
{[ x1

1
x2

2
x3

3

]
,
[ x2

1
x3

2
x1

3

]
,
[ x3

1
x1

2
x2

3

]}
.

8Actually D−1 of the pillows suffice, but that theory is ugly.
9Also, the delta δ`k is somehow redundant (as it is a consequence of having isomorphic graphs).

10The colored automorphisms are rigid enough to be specified by only a permutation of the white (or black) vertices
[16].
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The effect of the operator ∂/∂ acting on the free energy is to generate a boundary-torus, since
is a graph triangulating T2. The double action of (say) ∂ 2/∂ ∂

1

on logZ —denoted by G(8)

1
|

according to eq. (3.7) — is to select, from among all the spaces generated by the tensor model in
question, only the bordisms from the sphere to the torus, that respect the particular triangulation
given by

1

and .

3.3 The Y-term

From the given expansion of the free energy one can derive the Y -term. In order to do so, we
need to introduce the functions ∆ma,rG

(2`)
B . These are the coefficients in eq. (3.2), after hitting the

r-th white vertex xr and the vertex yµ(r,a) connected to it by a a-colored vertex in the boundary
graph. To wit, when the two derivatives act on Jxr and J̄...xr

a... in

∑
pâ

δ

δJmapâ

δ

δ J̄napâ
∑

x1,··· ,xr ,···x`
G(2`)

B (x1, . . . ,xr, . . .x`)[Jx1 · · ·Jxr · · ·Jx` ] · [J̄··· · · · J̄...xr
a... · · · J̄··· ] , (3.8)

two vertices of the boundary graph are removed. The surviving sources have then the form

( j(B	 er
a))(x

1, . . . , x̂r, . . . ,x`)

for certain residual graph denoted11 by B	 er
a. Its coefficient is the function δmana∆ma,rG

(2`)
B , by

definition of ∆ma,r. Notice that ∆ma,rG
(2`)
B has `−1 arguments in ZD. In this notation, the explicit

Y -term consequently reads [16]:

Y (a)
ma [J, J̄] = ∑

qc,qb

G(2)(ma,qc,qb)+
1
2

2

∑
r=1

(
∆ma,rG

(4)
m|m +

3

∑
i=1

∆ma,rG
(4)
i

)
? j
(
m
)

+
1
3

3

∑
r=1

3

∑
i=1

(
∆ma,rG

(6)
Qi

)
? j
(
Vi
)
+

1
3

3

∑
r=1

(∆ma,rG
(6)
K3,3

)? j
(
Va
)

+ ∑
c 6=a

{(
∆ma,1G(6)

Fc;ba

)
? j
(
Vb
)
+
(
∆ma,2G(6)

Fc;ba

)
? j
(
Vb
)

(3.9)

+
(
∆ma,3G(6)

Fc;ba

)
? j
(
Va
)}

+
(
∆ma,1G(6)

Fa;bc

)
? j
(
Vc
)
+
(
∆ma,2G(6)

Fa;bc

)
? j
(
m|m

)
+
(
∆ma,3G(6)

Fa;bc

)
? j
(
Vb
)
+

1
3!

3

∑
r=1

(
∆ma,rG

(6)
m|m|m

)
? j
(
m|m

)
+ ∑

i=1,2,3

{1
2
(
∆ma,1G(6)

m|Vi

)
? j
(
Vi
)
+

1
2 ∑

r=2,3

(
∆ma,rG

(6)
m|Vi

)
? j
(
m|m

)}
+O(6) .

the notation Fa;bc means the graph Fa =
cb

(b 6= a 6= c 6= b) with a left-to-right ordering of the
white vertices. Also, the graph-subindex notation (i.e. switching back to the left columns of Table
1) might be helpful in order to understand how this expression was computed.

11See [16] for a deeper discussion and a more explicit definition. To explain the notation, an example would be

useful: for Ea =
cb one has Ea	 e1

a = c , Ea	 e2
a =

1

t
1

and Ea	 e3
a = b . Also, in [16] the explicit formula for

∆ma,rG(2`)
B is given, instead of the rather abstract definition given here.
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4. The tower of Schwinger-Dyson equations

With the Y -term known, it is clear that one can express it as a sum over graphs in the form
Y (a)

ma [J, J̄ ] = ∑D f
(a)
D ,ma

? j(D). The graph calculus allows to compute these f-functions. In order to
state the SDE tower, we only need a last graph operation, the swap ςa.

Let ςa(B;v,w) swap of the a-colored edges at two black vertices v,w of a colored graph B.
Examples of this operation are12

ςa( ;v,w) = a

cb

and ςb( a

cb

; left,down) =
1

t c .

In order to derive the SDE for G(2`)
B one has to choose a black vertex of B; thus, in particular, if

B has no automorphisms (as e.g. Fc in rank 3) there are ` independent SDE for G(2`)
B . Derivatives

with respect to the graphs ςa(B; i,n)≡ ςa(B; yi, yn), n 6= i, appear in the SDE.

Let B be a connected boundary graph of the quartic rank-D model with pillow interactions,
Sint = λ ∑

D
c=1Vc. Let B have 2` vertices. The (2`)-point Schwinger-Dyson equations correspond-

ing to B are [18, Prop. 3.1](
1+

2λ

Es

D

∑
a=1

∑
qâ

G(2)
...

1

(sa,qâ)

)
G(2`)

B (X) (4.1)

=
δ`,1

Es
+

(−2λ )

Es

D

∑
a=1

{
∑

σ̂∈Autc(B)

σ
∗f(a)B,sa

(X)+∑
n6=i

1
Eyn

a,sa

Z−1
0

∂Z[J,J]
∂ςa(B; i,n)(X)

−∑
ba

1
Esa ba

[
G(2`)

B (X)−G(2`)
B (X|sa→ba)

]}
(X ∈FD,`),

with s = yi picked from B∗(X) = (y1, . . . ,y`), 1≤ i≤ ` . Here σ ∈ Sym(`) acts by permuting the
arguments of f(a)B,sa

. More explicit formulæ are given in [18] for ranks three, four and five.

5. Conclusions

The tools leading to the tower of SDE for arbitrary-rank TFTs with pillow interactions have
been exposed. The kernel in the kinetic term should satisfy the mild condition♦. The scope of this
method is boarder than only pillow interactions (e.g. for rank-3 TFTs, the list 2.1). The obtained
equations are for (connected) correlation functions with connected boundary graph. The general
result for arbitrary, disconnected graphs is work in progress, as is the extension of the present meth-
ods to fermionic fields and to O(N) TFTs [17], aiming at SYK-like tensor models.

12Notice that in ςa( ;v,w) there is no dependence on the choice of the vertices v and w, due to the symmetries of
the graph .
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