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Note to the reader

These notes are based on a series of 5 hours of lectures taught at the XIII Modave Summer
School in Mathematical Physics. The main purpose of the notes is to familiarize graduate students
with the notion of bulk reconstruction in the context of AdS/CFT. In no way do these notes cover the
complete scope of the research field nowadays called bulk reconstruction, and the topics presented
here are just a selection made by the author. For a further in depth study of this interesting subject,
the author would like to refer to the bibliography included here and the bibliographies of the cited
papers.

1. A brief history of bulk reconstruction

Two decades after its discovery, the AdS/CFT duality [1, 2] has grown into a research topic on
its own away from its string theory origins, and more broadly speaking has led to a new perspective
on both gravitational and gauge theory physics. It postulates a duality between a conformal field
theory in d dimensions and a gravitational theory that leads to an asymptotically AdS spacetime in
d +1 dimensions. The conformal field theory is visualized as living on the boundary of the grav-
itational spacetime. For that reason the AdS/CFT duality is also called holographic dictionary. A
duality implies that the AdS Hilbert space of physical states should be isomorphic to the CFT one
and that the algebra of operators A (Ô) of the two theories should be isomorphic as well. Local
bulk operators φ̂ should therefore be expressable solely in terms of CFT operators Ô. The purpose
of bulk reconstruction is to clarify that map between bulk and boundary operators. Suppose the
boundary theory is known, which means all of its operators and correlation functions are known,
then the theory is said to be completely ‘solved’. Knowing the map between bulk and boundary
operators would therefore mean that also the gravitational theory has been fully ‘solved’.

The bulk reconstruction program has been initiated in the early days of AdS/CFT duality [3, 4]
where the CFT correlation functions were interpreted as gravitational S-matrix elements in a bub-
ble of AdS space, and local bulk operators were linked to boundary operators via bulk-boundary
propagators. A few years later, the study of bulk reconstruction was developed more rigourously
by Hamilton, Kabat, Lifschytz and Lowe in a series of seminal papers [7, 8, 9, 10]. The authors ex-
plicitly solved the bulk equations of motion of a free scalar with sourceless boundary conditions1

and expressed the solution by inverting a mode expansion as an integral of local CFT operators
smeared over an appropriate boundary region with a kernel called the smearing function.

The HKLL2 smearing function procedure that reproduces a bulk operator as a set of non-
locally smeared CFT operators has several shortcomings. A big part of these lectures will consist
of a derivation and discussion of the HKLL reconstruction program and its problems. Finding an
answer to these shortcomings has sparked a lot of interest in the bulk-reconstruction research area
and will be a central subject of these lectures. It was pointed out in [13] that in fact the HKLL

1We will review in the next sections what is meant with this statement.
2for Hamilton, Kabat, Lifschytz and Lowe.
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reconstruction scheme leads to a paradox once multiple possible reconstruction regions are con-
sidered. To get around the paradox, the authors of [13] conjectured we should view the AdS/CFT
dictionary as a quantum error correcting code (QECC). For some time the AdS/CFT community
has been unfamiliar with quantum error correcting codes which are a standard subject in quantum
information theory. The link between AdS/CFT and quantum information theory has in fact been
pointed out in many recent works [14, 15, 16]. The underlying idea in much of this work is that the
bulk geometrizes the entanglement structure of the boundary state and most examples are based
on a tensor network construction of the boundary state. In these lectures we will very shortly re-
view what tensor networks are and how they are linked to holography. We will then proceed by
discussing the paradox put forward in [13] and discuss the quantum error correcting properties of
AdS/CFT. To do so we will make use of a particular tensor network, put forward in [17]. This code
consists of very particular tensors such that the resulting network acquires part of the AdS isometry
group. It can be shown for such networks that the entanglement entropy can be computed by the
area of an extremal surface in the network, which is an essential feature of AdS/CFT. Secondly,
this network precisely has the conjectured quantum error correcting properties.

The essential property of QEC in the context of bulk reconstruction is the fact that operators
that are distinct on the boundary Hilbert space cannot be distinguished on the effective field the-
ory subspace and therefore have the same action on the latter. An important aspect that has been
completely left out of the story of reconstruction is the built in gauge symmetry that is present in
holographic theories. In fact, as it turns out, gauge symmetry displays the same essential feature as
a QEC [20, 21, 22]. We will study the very simple toy model of [20] to exemplify these features.
Although the picture of the effect of gauge symmetry on the reconstruction has not completely
been worked out yet, it would provide a much more natural explanation for the apparent paradox
with HKLL than an artificial reinterpretation of the holographic dictionary as a quantum error cor-
recting code. We will illustrate how gauge invariance can lead to the QEC properties of the bulk.
Another important aspect is the diffeomorphism symmetry. Well defined bulk operators are neces-
sarily diffeomorphism invariant. This invokes the need for gravitational dressing [23, 24] and we
will show that the dressing turns local bulk operators effectively into non-local ones. The dressing
can be combed [25] such that the operator only has support on a particular boundary region. The
gravitational dressing in a large N holographic theory is 1/N2 suppressed. Local bulk operators
that only differ in their gravitational dressing and the associated boundary region of support are
therefore equivalent at the classical level. This connects to the paradox of [13].

Finally, in AdS3/CFT2 one does not need to resort to HKLL in order to reconstruct bulk opera-
tors. In this setting, restricting to pure d = 2+1 gravity without matter, it can be argued that a bulk
operator at a point creates a state in the CFT called a cross-cap state [26, 27, 28, 29, 30]. The cross-
cap states actually change the topology of the underlying complex manifold on which the CFT is
defined and create a non-orientable surface which is obtained by Z2 identifications on the original
manifold. Bulk operators would therefore always act very non-local on the boundary according to
this proposal. Nevertheless, this mapping between bulk operators and cross-cap operators also has
a couple of clear advantages. It is possible to define bulk operators in such a way that they coincide
with HKLL at leading order in 1/N, but are gravitationally dressed at the non-perturbative level
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and the dressing can be derived. They also provide operators which are independent of the back-
ground geometry and it can be shown that standard bulk correlators are reproduced from cross-cap
correlation functions. We will review these features in the lecture notes here.

The lectures will focus on the reconstruction of bulk operators from the CFT, and to explain a
duality between gravitational and gauge theories, explaining the isomorphism between the operator
algebras is enough, but for the gravity theory to really be holographic, one expects the geometry
itself to be emergent from the CFT. A remaining question then is what the governing principle
is according to which the spacetime is emergent. The modern point of view is that the spacetime
might emerge from the entanglement in the boundary [5, 6]. Even before the discovery of AdS/CFT,
Hawking [31] and Bekenstein [32] connected gravity to thermodynamics. They discovered that
the area of a black hole is proportional to its thermal entropy. In 2006, Ryu & Takayanagi [5]
formulated a similar idea in the context of AdS/CFT: the entanglement entropy of a subsystem
A on the boundary is proportional to the area of a surface in the bulk that is homologous to the
boundary subsystem and that ends on the boundary of that subsystem ∂A

SA ≡−Tr(ρA logρA) =
A

4GN
. (1.1)

Since a gravitational spacetime can be sliced into surfaces, this leads to the idea that gravity could
be emergent from the CFT by “geometrizing" its entanglement structure and has sparked a tremen-
dous amount of literature over the past ten years.

The entanglement entropy has been studied in various kinds of static and dynamic backgrounds
and more general surfaces have been matched to entanglement entropy related quantities like dif-
ferential entropy [33, 34] or entwinement [35, 36]. In fact, the study of entanglement entropy and
related quantities in order to study the emergence of geometry has grown into such a broad subject
that it would take at least a series of lectures on its own. For that reason, we choose not to elaborate
on this aspect of reconstruction.

We should also emphasize that the lecture notes contain by no means a discussion on every
possible procedure of reconstructing the bulk. A few examples of other methods that will not be
discussed here, but have been proposed in the literature are reconstruction with use of the modular
Hamiltonian [37] and the light-cone cut approach to reconstruction [38].

The outline of the lectures is as follows: we will review the basics of AdS/CFT and discuss a
scalar field in AdS. Readers familiar with the basics can safely skip this section and go to section 3
where the HKLL formalism for reconstructing local bulk operators is presented. Then in section 4
we derive the paradox associated with HKLL and discuss the resolution through quantum error
correction. Because QEC is necessarily tied to information theory which is often studied through
tensor networks, we also give a very brief and qualitative discussion of tensor networks. Section 5
relates the QEC properties of holography to the built-in gauge invariance of holographic theories
and contains a derivation of gravitational dressing in the particular case where the dressing oper-
ator is a gravitational Wilson line. Finally, in section 6 we construct bulk operators as operators
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that create cross-cap states in the boundary CFT. Both in section 3 and 6 we moreover show that
the bulk-boundary correlator is correctly reproduced. Our concluding remarks are presented in
section 7.

2. An AdS/CFT reminder

The AdS/CFT duality originates from string theory. It was argued [1, 51] that D-branes on
which open strings end, when N of them are stacked together and an SU(N) gauge group emerges,
are also the sources of closed string excitations. Open strings describe the SU(N) gauge sector
while closed string excitations give rise to gravitation. The equivalence of branes as gravitating ob-
jects and as sources of SU(N) fields leads to a duality between gravity and gauge theory. Consider
the example of N stacked D3 branes. At low energies and in the limit N→+∞ the open string de-
scription reduces to a SU(N), N = 4 SYM theory in d = 3+1 dimensions. The same system in the
closed string description at low energies gives rise to an AdS5×S5 spacetime. The S5 is decoupled
from AdS5 and represents only the internal R-symmetry of the SU(N) gauge theory. Moreover,
the d = 3+ 1 N = 4 SYM theory is conformally invariant, so we have an AdS5/CFT4 duality.
Because the gravitational spacetime is of 1 dimension higher than the gauge theory spacetime, we
call the gravitational spacetime the bulk. Since the asymptotic boundary of d+1-dimensional AdS
is d-dimensional Minkowski spacetime, we can define the CFT on the asymptotic boundary of
the bulk spacetime. The boundary is only defined asymptotically, so an IR regulator needs to be
defined in the bulk. This IR bulk cut-off is dual to the UV-cutoff of the CFT, which is why the
AdS/CFT duality is also calledfootnote UV/IR duality.
Another useful example is that of N1 D1-branes and N5 D5-branes. This system reduces to an
AdS3×S3×T 4 spacetime on the one hand and a d = 1+1 orbifold CFT with target space(
T 4
)N1N5 /SN1N5 on the other hand. Although we will not use the string theory details, it is good

to know there exists a string theory realization of an AdS3/CFT2 duality as well. This is useful
because we will very often in this course specialize to the duality in d = 2. The examples so far are
dualities involving AdS, but the conjecture can be generalized to asymptotically AdS spacetimes.
An example of this is a black hole spacetime with asymptotic AdS boundary conditions. Such a
spacetime is thought to be dual to a thermal state of the corresponding CFT.

The string theory details are not needed for a lot of the computations in AdS/CFT. For ex-
ample, for computing correlation functions it is enough to know the CFT fusion coefficients. The
correlation functions are dual to gravitational amplitudes. Similarly, it is not necessary to know the
precise string theory embedding to be able to reconstruct bulk local operators from the dual CFT.
To set the scene for the HKLL program, we start with a discussion of various useful coordinate sets
in AdS, and mention a couple of relevant CFT facts.

2.1 AdS

2.1.1 Coordinate systems

Anti-de Sitter space in d +1 dimensions is specified as a hyperbolic surface in a d +2 dimen-
sional Minkowski space of metric ds2 = −dX2

0 −dX2
1 +dX2

2 + . . .+dX2
d+1. The hyperboloid that

4



P
o
S
(
M
o
d
a
v
e
2
0
1
7
)
0
0
5

Modave lectures on bulk reconstruction in AdS/CFT Tim De Jonckheere

specifies AdS is
−X2

0 −X2
1 +X2

2 + . . .X2
d+1 =−R2 (2.1)

with R the AdS radius which will be set to unity most of the times. A set of useful coordinates that
cover the full AdS spacetime are the global coordinates, which when d = 2 are

X0 =
√

r2 +R2 cos(t/R),
X1 =

√
r2 +R2 sin(t/R),

X2 = r sinϕ,

X3 = r cosϕ.

(2.2)

The anti de Sitter space looks like a cylinder in these coordinates with t the time running upwards,
ϕ the angular coordinate and r the radial coordinate. The metric in these coordinates is

ds2 =−( r2

R2 +1)dt2 +
dr2

r2

R2 +1
+ r2dϕ

2 (2.3)

or with r = R tanρ

ds2 =
R2

cos2 ρ

(
−dt2 +dρ

2 + sin2
ρdϕ

2) (2.4)

Another famous set of coordinates are the Poincaré coordinates
X0 =

R2y
2

(
1+ 1

R4y2

(
R2 + x2− t2

))
,

X1 =
t

Ry ,

X2 =
x

Ry ,

X3 =
R2y
2

(
1− 1

y2R4

(
R2− x2 + t2

))
.

(2.5)

The metric in these coordinates is simply ds2 = 1
y2

(
−dt2 +dy2 +dx2

)
. Poincaré coordinates only

cover a patch of AdS.

Lastly, a set of coordinates that is particularly useful for bulk reconstruction are the Rindler
coordinates 

r2 = ξ 2
[
cosh2 ( χ

R

)
+ sinh2 (η

R

)]
+R2 sinh2 ( χ

R

)
,

tanϕ =

√
ξ 2+R2 sinh( χ

R )
ξ cosh( η

R )
,

cos2
( t

R

)
=

(ξ 2+R2)cosh2( χ

R )
ξ 2[cosh2( χ

R )+sinh2( η

R )]+R2 cosh2( χ

R )
.

(2.6)

with associated Rindler metric

ds2 =−
(

ξ

R

)2

dη
2 +

dξ 2

1+ ξ 2

R2

+

(
1+

ξ 2

R2

)
dχ

2. (2.7)

The embedding coordinates are now expressed as
X0 = ξ sinh

(
η

R

)
,

X1 = ξ cosh
(

η

R

)
,

X2 =
√

R2 +ξ 2 sinh
(

χ

R

)
,

X3 =
√

R2 +ξ 2 cosh
(

χ

R

)
.

(2.8)

The Rindler patch covers (X1)2− (X0)2 ≥ 0 which is half of the AdS space. There is a Rindler
horizon at X0 =±X1 when t→±∞.
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2.1.2 Scalar field in AdS

Consider a free scalar field on AdS. Its equations of motion are

(
�−m2)

φ = 0 (2.9)

This can easily be solved in terms of a mode expansion which is what we will do later on in these
notes. For later purpose we will parametrize m2 = ∆(∆−d).

The goal of these lectures is not just to solve for the field but also to compute amplitudes on
AdS. A simple example is the scalar amplitude 〈φ(ρ1,ϕ1, t1)φ(ρ2,ϕ2, t2)〉 which is just the Green’s
function on AdS. Because of the O(d,2) isometry group of AdS, the Green’s function can only
depend on an invariant distance function3 σ between the two insertion points of the scalar field
with

σ =
cos(t1− t2)− sinρ1 sinρ2 cos(ϕ1−ϕ2)

cosρ1 cosρ2
. (2.10)

Going to Euclidean signature, writing out the EOM on AdS and performing a pull-back to σ , one
arrives at the ODE [9]

(
σ

2−1
)

G
′′
E +(d +1)σG

′
E −∆(∆−d)GE = 0 (2.11)

but with a δ -function source at σ = 1. When d = 2 we can easily solve the equation. By redefining
z = σ2 this is turned into the hypergeometric equation, outside the z = 1 point (such that the delta
function is neglected).

z(1− z)
d2GE

dz2 +

(
1
2
−2z

)
dGE

dz
− 1

4
∆(2−∆)GE = 0 (2.12)

with solution GE(z) = z−
∆

2 2F1
(

∆

2 ,
1+∆

2 ,∆, 1
z

)
. We have picked the solution to be singular at z= 1 to

recover the δ -function. We substitute back z=σ2, define the geodesic distance ξ = ln
(

σ +
√

σ2−1
)

and evaluate the hypergeometric function for these particular arguments to obtain

GE(ξ ) =
e−∆ξ

e−2ξ −1
. (2.13)

In the limit where one of the fields approaches the boundary, we retrieve the Euclidean bulk-
boundary propagator in AdS

GE,b∂ (ρ, t1,ϕ1; t2,ϕ2) =

(
cosρ

cosh(t1− t2)− sinρ cos(ϕ1−ϕ2)

)∆

. (2.14)

3The expression for the invariant distance can be obtained by starting from the distance in Minkowski space in
embedding coordinates and pulling back to the AdS hyperboloid expressed in global coordinates.
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2.2 CFT

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal
transformations, i.e. x′µ = x′µ(x) such that g′ρσ (x

′) ∂x
′ρ

∂xµ

∂x
′σ

∂xν = Λ(x)gµν(x) with Λ a local scale fac-
tor.

It is possible to formulate CFT’s in any dimension d, but in d = 2 the conformal symme-
try is enhanced to a local conformal symmetry transformation with arbitrary (anti-) holomorphic
symmetry generators, namely ds2 = dz′dz̄

′
with{
z′ = z+ ε(z),
z̄′ = z̄+ ε̄(z̄).

(2.15)

Because these infinitesimal transformations are just reparametrisations of the z coordinate the gen-
erator of the conformal transformations is just the stress tensor. Because the holomorphic structure
is preserved in d = 2, the only non-trivial stress energy components are Tzz = T (z) and Tz̄z̄ = T̄ (z̄).
The stress tensor can be decomposed into a Laurent mode expansion

T (z) = ∑
n∈Z

Lnz−n−2,

T̄ (z̄) = ∑
n∈Z

L̄nz̄−n−2.
(2.16)

The Ln, L̄n modes are called Virasoro modes and satisfy the Virasoro algebra [11].

[Ln,Lm] = (n−m)Lm+n +
c

12
(
n3−n

)
δn+m,0. (2.17)

Operators that are covariant under conformal transformations are called primary operators. They

transform as O∆(z, z̄) =
(

∂ z′
∂ z

)h(
∂ z̄′
∂ z̄

)h̄
O∆ (z(z′), z̄(z̄′)) with ∆ = h+ h̄ the same ∆ as ∆(∆−2) = m2.

In case we specify to a dilatation z′ = λ z, the prefactor is just λ ∆ hence ∆ is called the scaling
dimension.

Conformal symmetry is very restrictive. It puts a lot of constraints on correlation functions.
Therefore it is easier to “solve" CFT’s then the less constrained QFT’s. The two-point function is
even completely fixed by conformal symmetry. Suppose we are interested in 〈O∆1(x1, x̄1)O∆2(x2, x̄2)〉.
It’s behavior under translations fixes it to only depend on |x1− x2|. Dilatations then fix it to

〈O∆1(x1, x̄1)O∆2(x2, x̄2)〉=C∆1∆2 |x1− x2|−∆1−∆2 . (2.18)

The behavior under special conformal transformations and a proper normalization then leads to
C∆1∆2 = δ∆1∆2 . The two-point function is completely fixed. Likewise the three-point function can
be completely fixed up to a constant which is called the fusion coefficient and which is theory
dependent. The three point function reads

〈O∆1(w1)O∆2(w2)O∆3(w3)〉=
CO∆1 O∆2 O∆3

|w12|∆1+∆2−∆3 |w13|∆1+∆3−∆2 |w23|∆2+∆3−∆1
, (2.19)

The power of conformal field theories is that all higher point functions are fixed as soon as the
fusion coefficients are determined.

7
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2.3 AdS/CFT

A bulk field in AdS φ(x, t,y) in Poincaré coordinates has the near boundary expansion [12]

φ(x, t,y→ 0) = φ0(x, t)yd−∆ + φ̃(x, t)y∆. (2.20)

The first term diverges near the boundary and when plugged into the scalar action, φ0 can be
matched with the CFT source J(x, t) dual to a scalar operator O∆(x, t). The second term vanishes
near the boundary but contains the leading behavior of the scalar field in the absence of sources.
Likewise it can be shown [2, 50] that φ̃ = 〈O∆(x, t)〉. These results are rederived in appendix A.
The near boundary behavior further implies that in absence of a source

G∂∂ ,∆ = 〈φ(x1, t1,y1→ 0)φ(x2, t2,y2→ 0)〉AdS ∼ 〈O∆(x1, t1)O∆(x2, t2)〉CFT. (2.21)

where the∼ symbol means that it matches the CFT two-point function up to a normalization factor,
which is slightly tricky in AdS/CFT [52]. The CFT two-point function matches a regularized
version of the boundary-boundary propagator in AdS. An explicit check shows the result matches
with the boundary limit of (2.14).

3. HKLL

3.1 A conceptual discussion of bulk reconstruction

Because of the isomorphism between bulk and boundary operator algebras one expects any
local bulk operator φ(x,y) to be isomorphic to a combination of local CFT operators. The HKLL
method provides a way of expressing the local bulk operator through CFT operators in the large
N limit where φ satisfies the free equation of motion. We will implement the HKLL program in
detail but conceptually the logic comes down to this: the scalar field solution can be expanded as
a linear combination of independent modes on AdS. In absence of sources, the boundary limit of
the scalar is proportional to the vev of the dual CFT operator, so also the CFT operator can be
expanded in terms of modes on AdS with the same coefficients as the bulk scalar field. Inverting
the relation expresses the coefficients in terms of CFT local operators. Plugging this back into the
mode expansion for the bulk scalar field results into an expression for the field in terms of boundary
operators which can be schematically denoted as φ(x, t,y) =

∫
dx′dt ′K(x, t,y;x′, t ′)O∆(x′, t ′). K

is called the smearing function and will have support such that the operators O∆ are spacelike
separated from φ . The smearing function formalism automatically allows the computation of bulk
correlators from CFT ones.

〈φ(x1,y1) . . .φ(xn,yn)〉AdS =
∫

dx′1 . . .dx′nK(x1,y1;x′1) . . .K(xn,yn;x′n)

×〈O(x′1) . . .O(x′n)〉CFT. (3.1)

The set of boundary operators spacelike separated from the bulk operator, on which the smear-
ing function has support, seems to depend on the choice of coordinate system. In global coordi-
nates it naturally covers operators on the complete boundary spatial circle (see figure 1a), while in

8
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(a) (b)

Figure 1: (a) sketches the region of support of the smearing function in global AdS coordinates,
while (b) depicts the region of support of the smearing function on the rindler wedge of a particular
boundary region A. The black dot indicates the position of the reconstructed bulk operator.

Rindler coordinates it only covers the operators that are spacelike separated and contained in the
Rindler patch. The Rindler patch is naturally associated to a boundary region that covers half of
the spatial circle, but by an isometry the patch can be mapped to a patch that ends on any arbitrary
spatial region A on the boundary, as in figure 1b.

3.2 Construction of the smearing function in global AdSd+1

Here we will construct the smearing function in global coordinates. We will first work for any
d and then specialize to d = 2. We start from the metric in global coordinates

ds2 =
R2

cos2 ρ

(
−dτ

2 +dρ
2 + sin2

ρdΩ
2
d−1
)

(3.2)

or specializing to AdS3 it reduces to (2.4). The free scalar field EOM in global coordinates is

−∂
2
τ φ +∂

2
ρ φ +

1
sinρ cosρ

∂ρφ +
L̂2

sin2
ρ

φ − ∆(∆−d)
cos2 ρ

φ = 0. (3.3)

Solving the EOM by expanding into eigenmodes renders

φ(τ,ρ,Ω) =
+∞

∑
n=0

∑
l,m

anlYl(Ω)e−i(2n+l+∆)τ cos∆
ρ sinl

ρP(∆− d
2 ,l+

d
2−1)

n (−cos2ρ)+ c.c. (3.4)

with Yl the l’th spherical harmonic and P(α,β )
n the Jacobi polynomial. In the case of d = 2 this

becomes

φ(τ,ρ,Ω) =
+∞

∑
n=0

∑
l,m

anleilϕe−i(2n+l+∆)τ cos∆
ρ sinl

ρP(∆−1,l)
n (−cos2ρ)+ c.c. (3.5)

In the absence of sources, the boundary value of the field is

〈O∆(τ,Ω)〉= φ̃(τ,Ω) = lim
ρ→ π

2

φ(τ,ρ,Ω)

cos∆ ρ
. (3.6)

Notice that instead of working with operators, we are working with classical fields. we could lift
the boundary condition to an operator equation by dropping expectation values and restoring the

9
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hats on O∆ and φ .4

Let us first reconstruct the operator at the center of AdS. Because the field solution in the origin
should be spherically symmetric only the l = 0 mode can contribute and the solution reduces to

φ(τ,ρ = 0,Ω) =
+∞

∑
n=0

ane−i(2n+∆)τP(∆− d
2 ,

d
2−1)

n (−1)+ c.c. (3.7)

The l = 0 mode part of the boundary field on the other hand equals

φ̃
s(τ,Ω) =

+∞

∑
n=0

ane−i(2n+∆)τP(∆− d
2 ,

d
2−1)

n (+1)+ c.c., (3.8)

= φ̃
s
+(τ)+ φ̃

s
−(τ) (3.9)

when explicitly splitting up the field into positive and negative frequency modes. This relation can
be solved for the coefficients an:

an =
1

πVol(Sd−1)P(∆− d
2 ,

d
2−1)

n (+1)

+ π

2∫
− π

2

dτ

∫
dΩ
√

gΩei(2n+∆)τ
φ̃

s
+(τ,Ω) (3.10)

and plugging back into (3.7) results in

φ(τ ′,ρ = 0,Ω′) =

π

2∫
− π

2

dτ

∫
dΩK+(τ,Ω;τ

′,ρ = 0,Ω′)φ̃ s
+(τ,Ω)+ c.c, (3.11)

with K+ =
1

πVol(Sd−1)

+∞

∑
n=0

ei(2n+∆)τ P(∆− d
2 ,

d
2−1)

n (−1)

P(∆− d
2 ,

d
2−1)

n (+1)
. (3.12)

The Jacobi polynomials reduce to simple Gamma functions

P(∆− d
2 ,

d
2−1)

n (−1) =
(−1)n(d +1)n

n!
, (3.13)

P(∆− d
2 ,

d
2−1)

n (+1) =

(
∆− d

2 +1
)

n
n!

, (3.14)

with (x)n = Γ(x+ n)/Γ(x) the Pochhammer symbol. The smearing function becomes a sum over
n with Gamma function coefficients forming the standard hypergeometric series, and can be easily
resummed to

K+ =
ei∆τ

πVol(Sd−1)
2F 1

(
1,

d
2

;∆− d
2
+1,−e2iτ

)
. (3.15)

For even dimensional AdS (i.e. odd d) and with the aid of hypergeometric identities, the smearing
function becomes

K+ =
ei∆τ

πVol(Sd−1)

{(
∆− d

2

)
Γ
(d

2 −1
)

Γ
(d

2

) e−2iτ
2F 1

(
1,1+

d
2
−∆,2− ∆

2
,−e−2iτ

)

+
Γ
(
∆− d

2 +1
)

Γ
(
1− d

2

)
Γ(∆−d +1)

e−idτ
2F 1

(
d−∆,

d
2
,
d
2
,−e−2iτ

)}
. (3.16)

4In doing so, the operator φ will actually be state dependent.

10
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The above identities cannot be used for even d because of singularities that apppear in the Gamma
functions. K+ is the smearing function by which an operator at the center is reconstructed using
positive frequency modes. The negative frequency modes then automatically appear in the complex
conjugated part. Reality of the bulk field then requires K∗+ = K− with K− the smearing function
when we would have used negative frequency modes to express the coefficients a∗n. Notice that the
range of integration in (3.11) is over all boundary operators that are spacelike separated from the
bulk operator at the center.

The smearing function is actually more of a distribution, it is only defined when integrated
against the boundary operators. Said otherwise, K+ is not unique and can be shifted by terms
which vanish when integrated against the boundary operators and

K+→ K++ ei∆τ
+∞

∑
n=1

cne2inτ , (3.17)

for any coefficient cn. Using this gauge freedom to fix K+ the first term can be canceled and one is
left with

K+ =
Γ
(
∆− d

2 +1
)

Γ
(
1− d

2

)
πVol(Sd−1)Γ(∆−d +1)

(2cosτ)∆−d . (3.18)

This is a real expression so since K− = K∗+ we have that K = K+ = K−. For a bulk point at the
origin cosτ = σ cosρ with σ the invariant distance function between the bulk and boundary point.
This allows a simple extension to determine the smearing function for any bulk point. Anti- de
Sitter space can be viewed as the goup manifold of the AdS isometry group SO(d,2). Applying an
isometry will generically map the bulk point at the origin to another point of AdS. Because of the
isometry covariance of AdS, the smearing function can only be a function of the invariant distance5

between the respective bulk and boundary point. We arrive at

K =
Γ
(
∆− d

2 +1
)

Γ
(
1− d

2

)
πVol(Sd−1)Γ(∆−d +1)

(2σ cosρ)∆−d (3.19)

for any bulk point. A similar procedure can be followed for even d. The resulting smearing function
in that case is

K =
(−1)

d−2
2 Γ
(
∆− d

2 +1
)

2π1+ d
2 Γ(∆−d +1)

lim
ρ→ π

2

(2σ cosρ)∆−d log(σ cosρ) . (3.20)

The smearing function has support on the boundary points that are spacelike separated from the
bulk insertion point. It cannot have support on timelike separated points because the CFT operators
on timelike separated points generically don’t commute with the bulk operator. This is basically
stating causality.

3.3 Recovering local bulk correlators in Poincaré coordinates

Given an HKLL construction of local bulk operators it should be possible to compute bulk
correlation functions from the corresponding CFT correlation functions. Because the analytic
tractability depends a lot on the specific set of parameters like ∆ and d and on the coordinate

5In very much the same way as the AdS propagator can only be a function of the invariant distance.
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system, we will study bulk correlators only in the specific case of d = 2, ∆ = 2 (which means
that we have a massless bulk scalar) in Poincaré coordinates. The particular bulk correlator we
will compute is the correlator of a bulk with a boundary field, which should reproduce the bulk-
boundary propagator in AdS. As was derived in [8, 9] and we will rederive in appendix B, the
bulk field as a smeared boundary operator can be written in Poincaré coordinates on a patch that
effectively becomes of zero size as one approaches the boundary.

φ(t,x,y) =
∆−1

π

∫
t ′2+y′2≤y2

dt ′dy′
(

y2− t
′2− y

′2

y

)∆−2

φ̃
P(t + t ′,x+ iy′). (3.21)

Here the label P stands for Poincaré. Notice that the modes are smeared in the imaginary direction
and we have implicitly analytically continued the boundary fields. From this we compute the bulk-
boundary 2 point correlator:

〈φ(t,x,y)φ̃ P(0,0)〉= ∆−1
π

∫
t ′2+y′2≤y2

dt ′dy′
(

y2− t
′2− y

′2

y

)∆−2

〈φ̃ P(t+t ′,x+ iy′)φ̃ P(0,0)〉 (3.22)

where we used translation invariance on the boundary to put one operator at the origin (t,x)= (0,0).
The boundary CFT two-point function (2.18) in Poincaré coordinates is

〈φ̃ P(t + t ′,x+ iy′)φ̃ P(0,0)〉= 1
2π

1

((t + t ′)2− (x+ iy′)2)∆
. (3.23)

A map to polar coordinates transforms the integral into

〈φ(t,x,y)φ̃ P(0,0)〉= ∆−1
π2

y∫
0

dr
(

y2− r2

y

)∆−2 ∮
|z|=1

zdz

2πi(t + x+ ry)∆ (y(t− x)+ r)∆
. (3.24)

Generically one will have to deal with the branch cut structure of the contour integral, but for the
special case of a massless scalar field in d = 2,∆ = 2 the branch cuts become ordinary poles. We
distinguish two regimes.

• In the case of |t + x| ≥ y and |t− x| ≥ y, one always encircles the pole at z = r/(x− t) such
that the residue theorem implies:

〈φ(t,x,y)φ̃ P(0,0)〉= 1
2π

y2

(t2− x2− y2)2 . (3.25)

This is the bulk-boundary propagator as expected.

• In the other case of |t + x| ≤ y or |t− x| ≤ y one of the poles crosses the contour, so in order
to have a well defined integral, the contour needs to be deformed in such a way that the pole
at z = r/(x− t) is always being encircled. Then the bulk-boundary propagator will always
be reproduced.

12
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3.4 Non-vanishing commutators

A truly local bulk-operator has to commute with spacelike separated operators. To illustrate that
this does not happen in an HKLL reconstruction, we compute the following correlation function

〈[φ(x0, t0,y),O(x1, t1)]O(x2, t2)〉
= 〈φ(x0, t0,y)O(x1, t1)O(x2, t2)〉−〈O(x1, t1)φ(x0, t0,y)O(x2, t2)〉. (3.26)

where the bulk field is massless and the operator O is the boundary operator associated with that
field. t denotes the Lorentzian time, so the ordering of operators is important. The correlator can
be computed by explicitly performing the expansion as a convolution with the smearing function
and using the CFT three-point function (2.19) the correlation function becomes proportional to

〈φ(x, t,y)O(x1, t1)O(x2, t2)〉

∼
∫

y′2+t ′2≤y2

dt ′dy′
1

[(t1− t0− t ′)2− (x1− x0− iy′)2] [(t2− t0− t ′)2− (x2− x0− iy′)2] .
(3.27)

We have neglected the fusion coefficients here which are actually O(1/N).6 Going to coordinate
(t ′,y′) = (r cosθ ,r sinθ) and then defining z = eiθ , the integral can be turned into

y∫
0

rdr
∮
|z|=1

zdz[
x+10− rz)(zx−10− r)(x+20− zr)(zx−20− r)

] (3.28)

with x±kl = (t± x)k− (t± x)l . The contour encircles poles at z = r
x−10

and z = r
x−20

so by the residue
theorem we eventually arrive at

〈φ(x, t,y)O(x1, t1)O(x2, t2)〉

∼ 1
[(x1− x2)2− (t1− t2)2]

ln
[
(y2− x+10x−10)(y

2− x+20x−20)

(y2− x+20x−10)(y2− x+10x−20)

]
. (3.29)

The point is that the correlator contains unwanted singularities at y2 = x±20x∓10 next to the usual
Lorentzian lightcone singularities. These singularities imply that an iε prescription is needed which
is different for different orderings of the operators inside the correlator. Therefore the commutator
doesn’t vanish. To resolve this issue we notice that we have assumed that the bulk field φ is a con-
volution of boundary operators which are primary operators in such a way that φ satisfies the bulk
equation of motion. In order not to modify the leading near-boundary behavior of φ only operators
of higher conformal weight, appropriately smeared, can still be added to its definition. From de-
manding that the set of added operators should remove the log-type singularities of the correlator
it follows that the only possible terms that can be added are the (non-primary) multitrace operators

6Three point functions can be studied holographically by a Witten diagram [2] of a vertex with three legs in the
bulk. Such a Witten diagram is only non-zero if there are three point interactions in the scalar Lagrangian. So what
we have actually done in assuming a free scalar, is neglecting all higher order interactions in the scalar Lagrangian by
assuming they are subleading compared to the kinetic and mass term.
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like O∆k ≡=: O∆

↔
∂

k
O∆ : with ∆k = 2∆+ k. Multitrace operators correspond to multiparticle states

in the bulk. We define the bulk field as

φ =
∫

K∆O∆ +∑
k

dk

∫
K∆k O∆k . (3.30)

The double trace operators actually make sure that the bulk field is part of a consistent interacting
field theory, which is not a free field theory but a generalized free field theory [3, 39, 40]. Indeed,
the double trace operators give rise to a potential term in the equations of motion(

�−m2
∆

)
φ =

∫
(�−m2

∆)K∆O∆ +∑
k

dk(�−m2
∆)K∆k O∆k , (3.31)

= ∑
k

dk(m∆k −m2
∆)
∫

K∆k O∆k , (3.32)

by using that the smearing function satisfies the homogeneous wave equation. On the right hand
side an effective potential has been generated by the double trace terms. These effects are 1/N
compared to the leading free equations of motion.

3.5 The problems with HKLL

The HKLL method seems to give a definition of bulk operators intrinsic to the boundary CFT,
but in order to know the smearing function one needs to solve the bulk equations of motion. This
presumes an existing bulk geometry in which the scalar field acts as a probe. Tied to this we notice
that the HKLL method actually links bulk fields to vacuum expectation values of CFT operators,
which after promoting the equality to an operator equality, the bulk operator becomes state de-
pendent. CFT operators on the other hand are well-defined elements of the operator algebra and
because of the isomorphism between bulk and boundary operators, so should the bulk operators.
We would therefore like to remove the state dependence and have well defined background inde-
pendent bulk operators. On top of that, note that the bulk field is classical, which is only valid at
leading order in N. At finite N quantum corrections modify the operator, leading to an interacting
scalar field. HKLL has initiated a program to define bulk operators perturbatively in N in such a
way that bulk correlators are well defined, but ideally they should be defined non-perturbatively.

A local bulk scalar field in global coordinates still depends on all CFT operators at a fixed
time, apparently even when the bulk field is pushed to the boundary, which is at odds with the local
boundary condition that we imposed on the field. Rindler coordinates solve this problem but at the
same time pose another paradox. How can both methods of reconstruction be reconciled and de-
scribe the same bulk operator? This has led Almheiri, Dong and Harlow, to propose a link between
AdS/CFT and Quantum Error Correction (QEC), the underlying idea being that bulk operators are
not unique but depend on the wedge of reconstruction [13] which will be the subject of section 4.

The constructed operators with HKLL explicitly depend on the coordinate system and are not
diffeomorphism invariant. The diffeomorphism symmetry is a gauge symmetry of the bulk and
every element of the operator algebra should be diffeomorphism invariant. The operators could
be made invariant by dressing them gravitationally, as we will explain in more detail in section 5.
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The dressing is a subleading process in N and does not influence the leading order construction of
HKLL.

Concludingly, the HKLL method provides a nice way of reconstructing bulk operators from
CFT operators but has a couple of conceptual problems associated with it. The next sections will try
to zoom in on these problems and discuss possible resolutions. Unfortunately, anno 2017, there’s
no resolution yet that solves all of the above mentioned problems for generic holographic theories.

4. Quantum Error Correction

Let’s specialize here to reconstruction on AdS3. We want a reconstruction such that the smear-
ing is more and more local as the bulk operator approaches the boundary. As we have seen this is
not the case in global coordinates but HKLL already noted that it can be done in Rindler coordi-
nates, by smearing over the Rindler patch [8, 9]. However, the construction in the Rindler patch
is still coordinate dependent. To resolve this we define the causal wedge. Take a CFT Cauchy
surface Σ with A ⊆ Σ. We define the boundary domain of dependence D[A] as the region in the
boundary such that every inextendible causal curve7 that passes through D[A] also intersects A. We
define the causal future/past of D[A] as J + (D[A])/J − (D[A]). The causal wedge is their inter-
section W [A] = J + (D[A])∩J − (D[A]). When Σ is the t = 0 slice (with t the boundary time)
and A is a semicircle, then W [A] is the Rindler patch of AdS3. On the Rindler patch there exists
an HKLL smearing function in Rindler coordinates. Next, one can use isometries of AdS to map
this wedge to any causal wedge W [A], as in figure 1b. This proves that an HKLL procedure exists
for reconstruction in any causal wedge8 If the boundary subregion A is such that φ ∈ W [A] then
a reconstruction in terms of O ∈A (A) exists. We have not introduced coordinates along the way,
so reconstructability is coordinate independent. However a new puzzle appears. In figure 2 the
timeslice of AdS is drawn. Take an operator φ such that it is contained in the causal wedges of both
A and B but not in their intersection. Then we would say that φ can be reconstructed from both A
and B but not from their intersection C≡ A∩B. However, since operators on A and B are spacelike
separated, they must commute, and therefore the only possibility is for φ to have non-trivial support
on the boundary when the operators are part of A∩B. This is a paradox!

The hidden assumption here is that the operator is independent of the chosen subregion, so the
only way out is to conclude that the bulk operator depends on the choice of subregion. As we will
discuss next, this is precisely a signature that the bulk behaves as a quantum error correcting code.

4.1 3-qutrit model

Take a spin model consisting of 3 qutrits and think of the qutrits as making up the physical
degrees of freedom on the boundary. So in this case the would-be boundary consists of only 3

7i.e. curve with timelike or lightlike tangent vectors.
8The literature contains discussions on the possibility of reconstruction in a bigger wedge called the entanglement

wedge. We will however not go into the details of this construction as for vacuum AdS the causal and entanglement
wedge coincide [41, 42].
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Φ

AA

C
B

Figure 2: Reconstruction on overlapping boundary regions A and B. The minimal surfaces an-
chored on A, B and C are respectively the green, red and blue curves.

points.

Say Alice wants to send a qutrit to Bob, but along the way it can be lost or erased. How can
Alice reliably send information to Bob? Say she wants to send the state

|ψ〉=
2

∑
i=0

ai|i〉. (4.1)

What she can do is to send 3 qutrits instead:
|0〉 → |000〉,
|1〉 → |111〉,
|2〉 → |222〉

(4.2)

and send the following state

|ψ̃〉=
2

∑
i=0

ai|ĩ〉, (4.3)

with


|0̃〉= 1√

3
(|000〉+ |111〉+ |222〉) ,

|1̃〉= 1√
3
(|012〉+ |120〉+ |201〉) ,

|2̃〉= 1√
3
(|021〉+ |102〉+ |210〉) .

(4.4)

The advantage of copying the basisstate and sending the new state is that Bob can still reliably
reconstruct the state even if a qubit has been lost. We assume the probability of losing a qubit is
of O(ε) with ε � 1 such that the probability of losing two qubits is O(ε2) and negligible. The
basisstates |i〉⊗3 form the physical Hilbert space, while the states |ĩ〉 form the logical Hilbert space
or code subspace. Say that the third qutrit can be lost and Bob only has acces to the first two
qutrits. Bob can always apply a unitary transformation on the first two qutrits from which he can
distill what the physical state is. He can apply the unitary

(U12⊗ I3) |ĩ〉= |i〉⊗
1√
3
(|00〉+ |11〉+ |22〉) , (4.5)
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and therefore
(U12⊗ I3) |ψ̃〉= |ψ〉⊗

1√
3
(|00〉+ |11〉+ |22〉) . (4.6)

By applying the unitary he can read out |ψ〉. Bob is able to distill the physical information because
the logical qutrits |ĩ〉 are maximally entangled such that the information was stored non-locally
through the entanglement. Even if a qutrit is erased, the information is not lost. Clearly although
the state that was sent contained 3 physical qutrits, only one logical unit of information was sent.

Moreover an isomorphism between operators on the physical Hilbert space and the code sub-
space exists. Say that O is an operator acting on a single qutrit with action

O|i〉= ∑
j
(O) ji | j〉 (4.7)

then an operator can be constructed that has the same action on the code subspace:

Õ|ĩ〉 ≡∑
j
(O) ji | j̃〉. (4.8)

One can even construct an operator that has the same action on the code subspace as O on the
physical one, but only has non-trivial support on the first two qutrits. Say O12 = U†

12OU12. This
operator has the action on the code subspace

O12|ĩ〉=U†
12OU12|ĩ〉,

=U†
12O|i〉⊗ 1√

3
(|00〉+ |11〉+ |22〉) ,

= ∑
j
(O) jiU

†
12| j〉⊗

1√
3
(|00〉+ |11〉+ |22〉) ,

= ∑
j
(O) ji | j̃〉. (4.9)

The operator O12 only acts on the first two qutrits but has an action that is equivalent to the action
of O on the physical subspace. We could have done a similar procedure constructing O13 and O23

instead. The conclusion is that we have found 3 different operators that have support on different
sets of qutrits but nevertheless have the same action on the code subspace.

4.2 AdS/CFT as quantum error correction

Think of the boundary Hilbert space as the physical Hilbert space9. The paradox of recon-
struction of an operator φ that is in both A and B but not in the intersection could be resolved by
thinking of the bulk Hilbert space as the code subspace. What we then mean by an operator φ(P)
at a bulk point P is actually either φ12(P),φ23(P),φ13(P) depending on the wedge of reconstruc-
tion. Note that the bulk cannot distinguish between these three operators and they all have the
same action on the bulk, which is reminiscent of the quantum error correcting properties of the
bulk. This resolves the paradox. We cannot reconstruct φ from the intersection of A and B because

9In the 3-qutrit example, the space spannend by 3 physical qutrits.
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φA and φB are genuinely different operators, even though they have the same action on the bulk
Hilbert space. Stating that the wedge of reconstruction has to be taken larger and larger as the bulk
operator moves inward radially, can be rephrased in quantum information language as saying that
logical bulk operators represent logical operations which become better and better protected as the
operator is moved inwards radially into the bulk [13].

We have thought of the bulk Hilbert space here as the space of states of a field on a fixed
background. In reality, the bulk Hilbert space contains many states which completely deform the
background e.g. black hole states. The code subspace therefore does not agree with the full bulk
Hilbert space but rather with an effective space of states where backreaction is neglected:

|Ω〉,φi(P1)|Ω〉,φi(P1)φ j(P2)|Ω〉, . . . (4.10)

where we have to cut off the number of field insertions at some large enough n because
φi1(P1) . . .φin(Pn)|Ω〉 would eventually acquire a large enough energy to start deforming the back-
ground and our effective Hilbert space picture would break down. The problem of background
dependence of bulk reconstruction has therefore not been solved by the QEC model.

4.3 Tensor networks for AdS/CFT

The quantum error correcting properties of AdS/CFT could be much better explained if we
have a toy model at our disposal which characterizes the microscopics of the state. This is what has
been aimed for in the literature [17, 18, 19] on holographic tensor networks and holographic codes.
Entanglement between the microscopic degrees of freedom plays a crucial role in the encoding
of the network and in the reconstruction of the geometry. Holographic codes therefore provide a
toy model for studying the microscopic representation of entanglement of the CFT through a bulk
geometry.

Before specifying to holographic tensor networks, let’s say just a few words about tensor
networks in general. Consider a discretization of a d = 1+1 boundary. Consider a timesclice and
put spins on each point of the d = 1 spatial lattice. A general state on the circular lattice can be
decomposed into a basis as

|ψ〉= ∑
a1,...,an

Ta1...an |a1, . . . ,an〉 (4.11)

where each ai = 1, . . . ,χ with χ the bond dimension of the spin. The basis decomposition of a state
defines an n-dimensional tensor with n input legs. To reduce the dimension of this tensor we can
make the ansatz that it is built from local tensors with 3 indices as in figure 3 such that

|ψ〉 ∑
a1,...,an,c1...,cn

T cn,c1
a1

T c1,c2
a2

. . .T cn−1,cn
an

|a1, . . . ,an〉. (4.12)

These chains form the so called matrix product states and it turns out this ansatz allows for an
efficient computation of the groundstates of 1d gapped local Hamiltonians [43, 44, 45].
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T T T

Figure 3: A d = 1 tensor network of 3 blocks. The contracted legs represent contracted indices.
The free legs represent uncontracted legs, which are contracted in the end with basisstates in order
to produce the full state.

Computing ground states of gappless systems can be done using the Multiscale Entanglement
Renormalization Ansatz (MERA) [46]. The idea is very similar. One starts with a state that is a ten-
sor contraction of basisstates in terms of local degrees of freedom where also the tensors are local
and have a bond dimension χ . This way of contracting allows nearest neighbor spins to be entan-
gled. Then using a renormalization procedure consisting of isometry and disentangling operators,
the ansatz state is effectively coarse grained to the ground state of the Hamiltonian. Information
about the Hamiltonian is encoded in the isometric and disentangling operators. It turns out that the
RG direction of this network has similar properties as the radial direction in holography [14, 15]
(which has been associated with renormalization flow already from the early days of AdS/CFT [1]).
This further motivates building a tensor network structure that mimics the AdS geometry.

A first real attempt to build a tensor network that has the same hyperbolic structure as AdS and
posesses quantum error correcting properties is the so-called HaPPY network10.

(a)
(b)

Figure 4: The hyperbolic HaPPY tensor network. (a) depicts the hexagonal state, while (b) depicts
the pentagonal code. Credits for these figures go to [17].

The advantages of this network are that it has a constant negative curvature (like the hyperbolic
plane), realizes the Ryu-Takayanagi formula for the entanglement entropy of a subsystem and has
a nice interpretation as a QECC. The authors have considered two possible networks. The first con-
sists of contracted hexagonal tensors. By starting from a central tensor and then recursively adding
layers by contracting each leg with a new tensor, the network of constant negative curvature is built
up. At some outer layer, some legs of the tensors are uncontracted. This is the boundary layer and

10After Harlow, Pastawski, Preskill and Yoshida [17].
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the uncontracted legs are called boundary legs. It represents a state. The state should have the cor-
rect entangling features of a state with a holographic dual. Therefore we require that the network
satisfies the Ryu-Takayanagi (RT) conjecture for the entanglement entropy. The second network is
built from the same hexagonal tensors but now each tensor has one uncontracted or dangling leg
that represents a bulk degree of freedom. Because only five legs of each tensor are contracted, this
is called the pentagonal network. We will argue that the pentagonal network provides an isometric
mapping from physical to logical Hilbert space and diplays QECC.

To reproduce RT and QECC, the hexagonal tensors should have special properties. It turns
out that it is sufficient to restrict to perfect tensors11. They form a subclass of isometric tensors. A
tensor T : HA →HB is isometric if it preserves the inner product, i.e. T †T = 1. The tensor can
then be pushed through the isometries

TO = TOT †T = O′T with O′ = TOT †. (4.13)

The indices of the tensor can be explicitly written from |b〉= ∑
a

Tab|a〉 with |a〉 ∈HA and |b〉 ∈HB.

A perfect tensor is a 2n tensor with the property that any bipartition of its indices into A and
Ac with |A| ≤ |Ac|, T is proportional to an isometric tensor from A→ Ac.

A nice property of perfect tensors is that a network of perfect tensors is again a perfect tensor
that (when contracted on a basis) describes a state of 2n spins such that any set of n spins is
maximally entangled with its complement. The proof of this is quite simple. Bipartition the set of
spins into 2 sets of n spins labeled by A en B. The reduced density matrix is

ρA = TrBρAB = ∑
a,b,a′

Tab|a〉〈a′|Tba′ ,

= ∑
a
|a〉〈a|, (4.14)

where in the second line we have used the isometry property of the perfect tensors. Indeed we find
a maximally entangled reduced density matrix. This property ensures that a discrete version of the
RT formula holds [17].

The QECC properties cannot be shown in the hexagonal network because it depicts a state and
not a code. But the pentagonal network does. The tensor network can be interpreted as a linear map
from 2n−1 physical spins to a single logical spin. Because of the maximal entanglement between
any set of n spins the code will be protected against erasure of any n− 1 spins, which is just less
than half the system size. Like in the 3-qutrit model the maximal entanglement among physical
spins ensures the quantum error correcting properties.
The QEC properties of logical operators are relatively easy to illustrate. Attach an operator to one
of the dangling bulk legs. This means we act with an operator on a logical spin. If there exists
an isometric mapping from the dangling leg to a set of spins on the boundary contained in region

11For a proof, see [17].
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A, then the operator is reconstructable from the boundary operators in A. The isometric map can
be constructed by pushing the bulk operator succesfully through a sequence of tensors. Because
every tensor is perfect any 3 incoming legs will be isometrically mapped to three outcoming legs.
This sequence of isometries combines into a full isometric map on the network which determines
the bulk-boundary map. Different isometries imply different CFT operator constructions which
all have the same effect on the code subspace. From that point of view, different reconstructions
give rise to the same bulk operator. In a QECC language, one could say that the code is protected
against erasure of a set of physical spins if there exists a subalgebra of logical operations which has
support only on the set of unerased physical spins.

Since the HaPPY network proposal, many other possible holographic codes have been consid-
ered. The HaPPY network was extended by considering more general hyperbolic tilings of AdS
based on a Coxeter group construction [47, 48]. This also allows of building more general back-
grounds such as black hole backgrounds or conical defect backgrounds. The point is that these
states are obtained by orbifolding the AdS-spacetime. By tesselating AdS and consequently orb-
ifolding the tessellation, a tensor network representing these states can be built. Networks can
also be built without using perfect tensors. The literature contains examples of networks based on
pluperfect tensors [18] and random tensors [19].

5. Gauge invariance & bulk reconstruction

The QEC properties of AdS/CFT rely on seemingly quite crude toy models such as tensor
networks. It would be nice if the QEC properties follow in a more natural way. In this section, we
will argue that theories with internal gauge symmetry might also display QEC [20]. This provides
a more natural interpretation of the quantum error correcting properties of holographic theories be-
cause they typically have gauge symmetries. Ideally we would like to apply the argument on actual
holographic CFTs but here we will restrict ourselves to a toy lattice model with O(N) invariance.

Another symmetry that is very important in the context of bulk reconstruction is diffeomor-
phism symmetry. The operators constructed from HKLL are not diffeomorphism invariant. Al-
though we’ve shown in section 4 that a Rindler type of reconstruction in any causal wedge exists,
independent of the coordinate system, this is an existence proof and does not show how opera-
tors are made diffeomorphism invariant. In this section we will describe a procedure that makes
operators explicitly diffeomorphism invariant [23, 24, 25]. The procedure is called gravitational
dressing.

5.1 QECC and gauge invariance

Take a scalar field theory on a 1d periodic lattice with 3 points as in figure 5. Now endow
the theory with an internal O(N) gauge symmetry. The canonical variables in the fundamental
representation of O(N) are (φ i

a,π
i
a) with a = 1,2,3 denoting the lattice position and i = 1, . . . ,N

the O(N)-index. A complete set of gauge invariant operators on a single site a can be generated by
(φa ·φa,φa ·πa,πa ·πa) where we are summing over the O(N) index. The generators on a single site
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O(x1)

O(x2)

O(x3)O(x3)

Φ(0)

Figure 5: Toy scalar field model with O(N) symmetry. The boundary contains 3 sites, the bulk a
single one.

a form an SL(2,R) algebra.

[φa ·φa,πa ·πa] = 4iφa ·πa, (5.1)

[φa ·πa,πa ·πa] = 2iπa ·πa, (5.2)

[φa ·φa,φa ·πa] = 2iφa ·φa, (5.3)

which by defining X = φ ·φ
2 ,Y = π·π

2 and H = iφ ·π can be turned into the standard SL(2,R) algebra

[X ,Y ] = H [H,Y ] =−2Y [H,X ] = 2X . (5.4)

The SL(2,R) allows the construction of an operator that is not gauge invariant but is a singlet with
respect to the SL(2,R) algebra, namely

Li j
a = φ

i
aπ

j
a−φ

j
a π

i
a. (5.5)

Indeed, it is a singlet because it commutes with all generators. We check one commutator explictly[
Li j

a ,φa ·φa
]
= 2

(
φ

k
a φ

i
aδk j−φ

k
a φ

j
a δik

)
= 0 (5.6)

and likewise for the other two commutators. Note that Li j
a is the generator of the O(N) transforma-

tions on a single site a. The total O(N) generator is Li j = ∑
a

Li j
a . It annihilates all gauge invariant

states, i.e. Li j|Ψ〉= 0. The operator Pab = Li j
a Li j

b then is a gauge invariant operator that commutes
with all gauge invariant operators on a single site. So it commutes with all local gauge invariant
operators and belongs to the center of the single site operator algebra. Moreover, the operator is
SL(2,R) invariant. By definition of the Pab and of Li j we have that P12 = −P22−P32 + Li jLi j

2 .
P12,P23 and P13 are clearly different elements of the operator algebra because they act on different
boundary sites, but when acting on the space of gauge invariant states this difference disappears.
because Li j annihilates the physical states we get that P12|Ψ〉 = −P22|Ψ〉−P23|Ψ〉. An operator
involving site 1 is completely equivalent to an operator only involving sites 2 and 3. Because of
boundary translation invariance this argument also holds for operators not involving sites 2 or 3.
The physical space cannot distinguish between different sites and is robust against erasing one of
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the sites.

An operator that we could interpret as a local bulk operator then is Φ = P12 +P23 +P13. It is
completely gauge invariant and invariant as well under the emerging SL(2,R) symmetry. Note that
this is a quite crude model since we only have a single bulk point.

Concludingly, the operators Pab commute with operators in the “code space" which here is
taken to be the space of gauge invariant states, so when the CFT has an internal gauge symmetry,
then the corresponding bulk operators automatically display error correcting properties. Note that
we have restricted the bulk operators to be also SL(2,R) invariant. The link between quantum error
correction and gauge invariance has been further investigated in [21, 22].

5.2 Gravitational dressing

Well defined operators in a gravitational theory should be diffeomorphism invariant. We will
show here that it is impossible to construct operators which are local and at the same time diffeo-
morphism invariant. In order to construct invariant operators we will start from local operators and
dress them gravitationally, which is a non-unique and non-local operation.

Take a scalar field in the bulk. Indeed it transforms under an infinitesimal coordinate transfor-
mation x′µ = xµ − εξ µ as

δφ(x) = φ(x− εξ )−φ(x) =−εξ
µ

∂µφ +O(ε2). (5.7)

We can create a non-local operator ΦV (x) = φ (xµ +V µ(x)). Clearly if V transforms as δV µ = εξ µ

then ΦV is diffeomorphism invariant. For small values of the vector field ΦV can be written as

ΦV (x) = φ(x)+V µ
∂µφ +O(V 2), (5.8)

which is an infinitesimal version of a non-local operator acting on ΦV , namely

ΦV = eiV µ Pµ φ(x)e−iV µ Pµ (5.9)

with Pµ =−i∂µ the momentum operator. The non-locality of ΦV follows from the infinite number
of derivatives that are present in its definition (5.9). The vector field that we have defined here is
precisely analagous to the gauge field in a U(1) theory. In that case the gauge field causes an elec-
tromagnetic dressing [23]. Here the vector field is the gauge field associated to diffeomorphisms
and the associated dressing of the scalar operator is called gravitational dressing [24].

We need to provide a sensible solution for the dressing field V such that it transforms precisely
like δV µ = εξ µ . We are only going to be interested in field solutions to O(ε) which is the linearized
level, and since V µ is a gravitational object it should be formed from linear combinations of the
metric perturbations hµν . For simplicity we take the background metric to be the flat metric here.
The proposed ansatz is

V µ(x) = ε

∫
d4x′ f µνλ (x,x′)hνλ (x

′), (5.10)
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with f symmetric in the last two indices because h is as well. Demanding that V transforms in the
correct way, puts constraints on f µνλ . Under a diffeomorphism

δV µ = ε

∫
d4x′ f µνλ (x,x′)δhνλ (x

′), (5.11)

=−ε

∫
d4x′ f µνλ (x,x′)

(
∂νξλ (x

′)+∂λ ξν(x′)
)
, (5.12)

=−2ε

∫
d4x′ f µνλ (x,x′)∂νξλ (x

′), (5.13)

= 2ε

∫
d4x′∂

′
ν f µνλ (x,x′)ξλ (x

′), (5.14)

where in the second line we have used the rule for transformations of the metric δhµν =−∂µξν −
∂νξµ and in the last line we have partially integrated. From demanding δV µ = εξ µ , it follows that
f must satisfy

∂
′
ν f µνλ (x,x′) =

1
2

δ
(4)(x− x′)ηµλ . (5.15)

Solutions to this equation will provide sensible dressings.

In electromagnetism an electron can be dressed with a Wilson line, but also with an entire
electric field. Both procedures are valid and give different non-local operators. In the gravitational
context various similar types of dressing are possible. Here we will focus on one particular type
called gravitational Wilson line dressing. A gravitational Wilson line is attached to an operator and
extends all the way to infinity. Such a dressing has a divergent energy density and will therefore
actually be unstable, and decay to a more symmetric type of dressing like Coulomb dressing, but
from the point of view of diffeomorphism invariance the dressing field ensures the scalar field to
be invariant.

To define the Wilson line, one needs to pick a platform at infinity and a point on this platform to
which the Wilson line is attached. Coordinates xµ = (x̃µ , z̃) are chosen such that z̃ is the coordinate
orthogonal to the platform while the x̃µ are the coordinates on the platform. These are the normal
coordinates in which z̃ actually parametrizes the geodesic distance to the platform. If we fix the
axial gauge

hz̃µ̃ = 0, (5.16)

then we can define the Wilson line to be trivial in this coordinate set, i.e. Φ(x̃µ , z̃) = φ(x̃µ , z̃).
We would now like to derive how the Wilson line looks like in a general different coordinate
set. Perform a diffeomorphism, such that we turn on a vector field and to new coordinates which
to linear order are defined by x̃µ = xµ −V µ(z,x) and z̃ = z−V z(z,x). The scalar operator gets
non-locally dressed by the vector field as in (5.9). The vector field is determined by solving the
constraint equation (5.15). Appropriate solutions for f are [24]

f zνλ = 1
2 ηνzηλ z

+∞∫
0

dsδ (4)(x′− x− sẑ),

f µ̃νλ =
+∞∫
0

dsηzνη µ̃λ δ (4)(x′− x− sẑ)− 1
2

+∞∫
0

ds
+∞∫
s

ds′ηzνη µ̃λ ∂µ̃δ (4)(x′− x− sẑ).
(5.17)
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We will explicitly check the first component.

∂
′
ν f zνλ (x,x′) =

1
2

s∫
0

dsη
λ z

∂zδ
(4)(x′− x− sẑ),

=
1
2

+∞∫
0

dsη
λ z

∂sδ
(4)(x′− x− sẑ),

=
1
2

η
λ z

δ
(4)(x′− x). (5.18)

A residual freedom is contained in f µνλ in the sense that solutions to (5.15) can be added to its
definition if they vanish when integrated against hνλ (x′). The vector field V µ that satisfies the
ansatz with the f µνλ as above will be the dressing field that turns the non-gauge invariant local
bulk scalar operator into a non-local gauge invariant scalar operator.
The bottom line of gravitational dressing is very simple. In a gauge invariant theory, it is impossible
to create a local bulk excitation without also exciting its associated gravitational field. Other types
of dressing are also possible like for example Coulomb dressing which creates a Coulomb field that
uniformly spreads and is attached to a pointlike charge.

6. Bulk operators in AdS3/CFT2 create Virasoro cross-cap states

6.1 Cross-cap states

Because of the absence of local gravitational degrees of freedom it is simpler to look at bulk re-
construction in AdS3/CFT2 [27, 28, 29, 30]. In this context another approach to bulk reconstruction
is possible. The advantage of this new approach will be that it is able to reconstruct bulk operators
non-perturbatively, intrinsic to the CFT (without referral to equations of motion), in a background
independent and diffeomorphism invariant way. The disadvantage is that the bulk operators change
the topology of the CFT worldsheet and therefore act inherently non-local in the CFT.
We will work in Euclidean signature here12 A bulk operator is defined on a point in AdS, so the

Figure 6: Operator in the center of AdS (black dot) created from the intersection of radial geodesics.

12In static states the Wick rotation from the Lorentzian CFT is straightforward. Dynamic situations are subtler as
singularities in the complex plane might have to be avoided as one analytically continues. We will not bother with this
complication and restrict to the Euclidean AdS3/CFT2 correspondence.
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first question is how to characterize a point in a coordinate invariant way. One way to single out a
point is to view it as the intersection of a class of boundary anchored geodesics. The operator in
the center is the easiest to consider. It is simply the intersection of radial geodesics. This situation
is drawn in figure 6 and although it depicts just a 2d slice of AdS, the center is actually constructed
from all radial geodesics on the S2 boundary. This construction is invariant under swapping the
endpoints of the geodesics ϕ → ϕ +π or in holomorphic Poincaré coordinates z→ −1

z̄ . A local
bulk operator in the center of AdS must be invariant under this symmetry transformation. This
symmetry in fact implies that bulk operators Φ(X) ≡ Φ(z,y) are not defined as CFT operators on
the S2 but rather on S2/Z2 = RP2. The transformation z′ = −1

z̄ is the complex conjugate of a
Möbius transformation which is part of the conformal group and the generator of those is the stress
tensor T (z). By assumption of radial quantization Φ(X)|0〉= |Φ(X)〉 and the operator at the center
Φ(0) creates a state |Φ〉. The infinitesimal invariance condition becomes(

T ′(z′)−T (z)
)
|Φ〉= 0. (6.1)

In Virasoro modes,

T (z) = ∑
n

Lnzn,

T ′(z′) = T̄
(
−1
z̄

)
= ∑

n
L̄n

(
−1
z

)n

,

= ∑
n

L̄−n(−1)nzn. (6.2)

The invariance condition in modes therefore reads

(Ln− (−1)nL̄−n) |Φ〉= 0. (6.3)

This is the defining equation of a Virasoro cross-cap state [49]. So a bulk operator at the center of
AdS3 creates a Virasoro cross-cap state. Even though we started from a bulk construction in terms
of geodesic intersections, our final definition of bulk operators is completely intrinsic to the CFT
without any reference to the bulk.

Of course bulk operators should be defined not only at the center but at any bulk point. The
isometry invariance of AdS3 allows to pick an isometry transformation to move the center to an
arbitrary bulk point. The isometry group of AdS3 is SL(2,R) and corresponds to the Möbius group
of the CFT. An element of this group can be parametrized as

g(X) = e−iHteϕl0e
ρ

2 (l−1−l1), (6.4)

with
H = L0 + L̄0 l0 = L0− L̄0 l±1 = L±1− L̄∓1. (6.5)

From the bulk point of view (t,ϕ,ρ) are interpreted as the global coordinates on AdS but from the
CFT point of view they are just labels parameterizing the transformation. Applying the element
to a state with a bulk operator at the center of AdS, creates a state with a bulk operator at the
point X = (t,ϕ,ρ), i.e. g(X)|Φ〉 = |Φ(X)〉, which is again a Virasoro cross-cap state where the
cross-cap has parameters (t,ϕ,ρ) = (y,xµ) with the first are parameters corresponding to global
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AdS coordinates, whereas the second are the corresponding Poincaré coordinates. The Möbius
transformation changes the identification of points from z→−1

z̄ to

z→ z′ = x− y2

z̄− x̄
. (6.6)

The Hilbert space of states of the CFT2 contains many superselection sectors, labeled by the high-
est weight states, and each sector contains a solution to (6.1). A cross-cap state is therefore not
just labeled by X but also by the sector h it belongs to. Each sector is one-to-one correspondence
with a primary operator so the labels h can be taken to be the conformal weight of the operator
Oh that is dual to the local bulk operator. Said otherwise, a cross-cap doesn’t just put geomet-
ric identifications on the CFT worldsheet but also projects onto an irreducible representation of the
Hilbert space. It can then also be shown that the cross-cap operator Φ(X) with boundary conditions
Φ(x,y→ 0) = y−2hOh(x) solves the wave equation (�−m2)Φ = 0 to leading order in 1

N [27, 30].

6.2 Gravitational dressing

Say that in a coordinate system χ = (ỹ, x̃µ) the dressing is trivial. Then analogous to previous
discussions a gauge choice can be made that such that the bulk operator is a global cross-cap state
Φ(0)(χ). The Virasoro modes with n ≥ 2 generate diffeomorphisms in the bulk. But Φ(0) is not a
diffeomorphism invariant operator. Say that we consider a diffeomorphism X = χ(X)+ ξ (X). In
order to make the operator diffeomorphism invariant we will need to turn on gravitational dressing.
The dressing turns Φ(0) into a Virasoro13 cross-cap operator

Φ(X) = eV (X)
Φ

(0)(X)eV †(X). (6.7)

After performing radial quantization, the action of the dressing is

Φ(X) = eV (X)|Φ(0)(X)〉, (6.8)

In the particular case of projecting onto the irreducible representation with h= 0 , the map becomes

|1(X)〉= eV (X)|0〉. (6.9)

So even the identity cross-cap operator is a non-trivial operator, namely it is precisely the gravita-
tional dressing operator. To find a specific form for the dressing let’s focus on the identity operator
inserted at the origin of AdS3. The Taylor series expansion of the identity

|1(0)〉= eV |0〉= |0〉+V |0〉+ . . . , (6.10)

and because it is a cross-cap operator it necessarily satisfies

(Ln− (−1)nL̄−n) |1(0)〉= 0. (6.11)

In [30] it is shown by making use of the Virasoro algebra that the constraint is met by the following
dressing operator

V =
+∞

∑
n=2

(−1)n12L−nL̄−n

c(n3−n)
+ . . . , (6.12)

where the dots indicate subleading terms in a 1/c expansion.
13We call it Virasoro because the Virasoro group is the group of non-vanishing diffeomorphisms on the boundary

Diff(S1)×Diff(S1).
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6.3 Bulk-boundary correlator

As a last example of this set-up we show that the interpretation of bulk operators in AdS3

as Virasoro cross-cap operators, recovers correct correlation functions. It can be shown that the
bulk-bulk two point function seen as the overlap of two Virasoro cross-cap states equals the AdS-
propagator [29, 30], but here we will focus on the slightly simpler example of the two-point function
of one bulk operator Φ(X) and one operator Oh(x). The two-point function can only be non-zero
if the two belong to the same irrep of the Hilbert space and thus Φ(x,y→ 0) = lim

y→0
y−2hOh(x). We

study
〈Oh(x1, x̄1)Φ(y,x2, x̄2)〉. (6.13)

The cross-cap operator creates an identification RP2 = S2/Z2. So our correlation function is just
another way of studying the one-point function 〈Oh〉RP2 on RP2. The Z2-identification can be
undone by doubling the worldsheet of the CFT. This is called the Schottky double. Since the
Schottky double is obtained by just doubling the worldsheet with the operator insertion on it, on
the Schottky double we will have two local operator insertions, namely one on the original position
and one on the image point under the Z2 transformation. So we have mapped the correlation
function to a standard two point function of local operators

〈O(x1, x̄1)O(x′1, x̄
′
1)〉 with x′1 = x2−

y2

x̄1− x̄2
. (6.14)

With the correct Jacobian factor
(

∂ z′
∂ z

)h
= y2h

(x̄1−x̄2)2h where we have only acted on the left moving
components [30], we arrive at

〈Oh(x1, x̄1)Φh(y,x2, x̄2)〉=
y2h

(y2 + |x12|2)2h
(6.15)

which agrees precisely with the bulk-boundary propagator in AdS.

7. Conclusion

The holographic correspondence predicts an isomorphism between bulk and boundary Hilbert
spaces and between bulk and boundary operator algebras. The representation of bulk operators
is obscured in the holographic dictionary and local bulk operators are non-locally smeared over
the boundary. This map can be explicitly computed via the HKLL reconstruction method which
involves convoluting the boundary operators with a smearing function which in some sense is an
inverse propagator. The HKLL method has various shortcomings that we have addressed in these
notes.

• The smearing function is not unique. It can be shifted by terms which vanish when integrated
on a CFT operator distribution.

• To obtain the smearing function, the bulk equations of motion need to be solved. This pre-
vents us from having a definition of bulk operators completely intrinsic to the CFT.

• The bulk operators in this way are not diffeomorphism invariant.
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• The operator reconstruction depends on the choice of reconstruction wedge.

• Because we have solved the bulk equations of motion in a particular background, the method
is background dependent.

• HKLL reconstruction is perturbative in 1/N, whereas the operator algebra isomorphism
should hold non-perturbatively.

The dependence on choice of wedge has led to the discovery of the quantum error correcting prop-
erties of AdS, which has led us to discussing tensor network toy models for AdS/CFT. Quantum
error correcting properties seem to be very surprising at first, but we have shown that similar prop-
erties can arise automatically in theories with an internal gauge symmetry. A model of a scalar
field on a lattice with 3 sites and with a local internal O(N) symmetry has the property that oper-
ators with support on different sites are equivalent when evaluated on the space of gauge invariant
states. The only well-defined operator algebra in a gravitational theory consists of diffeomorphism
invariant operators and for that reason local bulk operators need to be gravitationally dressed, for
example by a gravitational Wilson line. At the same time the gravitational dressing actually turns
the local operator into a non-local one. Just like in electromagnetism, local gauge invariant opera-
tors don’t really exist, they are always non-local to some extent. Of course, in a particular gauge,
the dressing can be trivial. Finally, we have constructed bulk operators which are diffeomorphism
invariant, non-perturbatively well defined, background independent in a theory of pure 3d gravity
with negative cosmological constant. The bulk operators are operators that create Virasoro cross-
cap states. We have seen these reproduce the correct propagator. The cross-caps are intrinsically
non-local quantities and are gravitationally dressed.

A couple of important developments concerning reconstruction of the bulk haven’t been touched
here. Very recently, bulk reconstruction has been considered using concepts like modular hamil-
tonian and modular flow[37]. The modular hamiltonian is defined as the operator logρ where ρ

is the density matrix under consideration and modular flow is the flow generated by the modular
Hamiltonian. These concepts have shown to provide a useful language to talk about bulk recon-
struction.

Secondly, the RT formula points to an important link between geometry and entanglement. By
now a vast amount of literature exists, that does not just try to reconstruct bulk operators but tries
to explain the emergence of the bulk spacetime from entanglement in the CFT. This would provide
a stronger paradigm where the AdS/CFT doesn’t describe just a duality but where the bulk actually
emerges from the CFT. This program is to be continued.

Many of the problems with HKLL have been partially resolved, but many of the resolutions
come with their own problems. For example the tensor network construction is a geometric rep-
resentation of a state at a fixed time. So far it is unclear how to build a spacetime from this. The
cross-cap construction on the other hand only works for geometries which are pure 3d gravity so-
lutions without matter. Inserting matter into the game would make the spacetime dynamical and
it remains a question whether the cross-cap construction still works in that case. It would be in-

29



P
o
S
(
M
o
d
a
v
e
2
0
1
7
)
0
0
5

Modave lectures on bulk reconstruction in AdS/CFT Tim De Jonckheere

teresting to understand better the link between gauge invariance and the emergent quantum error
correcting properties of AdS/CFT. Some work has been done by e.g. Freivogel and de Boer [21, 22]
using BRST symmetry, but a complete understanding hasn’t been reached yet. Another problem
is that we do not know the size of the code subspace. We think of it as some low energy effective
subspace where bulk effective field theory holds, but as yet there’s no precise definition of the code
subspace in AdS/CFT. The AdS/CFT correspondence in its most precise sense emerges from string
theory. Does there exist a string theory embedding wherein these ideas concerning bulk reconstruc-
tion can be exemplified and made more concrete? Hopefully a next series of Modave lectures can
answer these questions.
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A. Scalar field in AdS/CFT

The AdS/CFT duality can be phrased as the equivalence of the CFT and gravitational path
integral

Zgrav [O] = ZCFT [φ0] = 〈e
∫

ddxφ0(x)O(x)〉CFT. (A.1)

Semiclassically, the gravitational path integral will localize on saddle point solutions, so we get to
an equivalence

ZCFT [O] = ∑
i

e−Sgrav,i ≈ e−Sgrav,0 . (A.2)

with Sgrav,i the action of the i’th gravitational saddle and the last approximation is done selecting the
dominant saddle. The gravitational action should be evaluated at the boundary. Since the boundary
is asymptotic we introduce a cut-off at y= ε and evaluate the action at this cut-off surface. As ε→ 0
the gravitational action is divergent which means we will have to renormalize it. After subtracting
the correct counterterms to cancel the divergences we arrive at a well defined action Sren

grav. Standard
functional methods tell us that the expectation value of the operator O can be computed as

〈O(x)〉CFT =
δ logZCFT

δφ0(x)
= yd−∆

δSren
grav

δφ(x,y)

∣∣∣∣
y=ε

. (A.3)

To determine the action at y = ε we just need to plug in the field solution near the boundary (2.20).
Notice that indeed the action will be diverging and since the first term in (2.20) is the only non-
vanishing term in the limit ε → 0 it follows immediately from plugging it into 〈e

∫
ddxφ0(x)O(x)〉 that

φ0(x) indeed agrees with the φ0(x) that appeared in the expansion (2.20) and therefore the leading
mode acts as the source dual to operator O. Now we show that the subleading mode equals the
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expectation value of the operator O in absence of a source J. The on-shell gravity action is just a
boundary term

S =
∫

∂M

√
−gφgµν

∂νφnµddx. (A.4)

Since the boundary is located at y = ε the normal vector is in the y-direction and we find

S =
∫

y=ε

√
−gφgyy

∂yφddx. (A.5)

Now we plug in (2.20) and explicitly write the metric of AdS at y = ε and we get

S = ε
d−2∆(d−∆)

∫
φ

2
0 (x)d

dx+d
∫

φ0(x)φ̃(x)ddx+ ε
2∆−d

∆

∫
φ̃

2ddx+ . . . . (A.6)

We subtract the pieces that diverge as ε → 0 and drop subleading terms. In the end a variation of
S with respect to the source φ0 shows that 〈O〉 ∼ φ̃ . The subleading mode equals the sourceless
expectation of the dual operator in the CFT. We have only denoted the relation between φ̃ and the
vev of O with a ∼ symbol, because in fact the prefactor that one gets from a simple evaluation of
the action is not consistent with the Ward identities. The correct prefactor is discussed in [52].

B. Poincaré smearing function

The smearing is non-local in global coordinates. Here we will show that in Poincaré coordi-
nates there exists a different smearing function KPoincaré 6= Kglobal which is local as φ → φ̃ . For
simplicity we will work in AdS3. The scalar field equation can be solved in a mode expansion in
Poincaré coordinates

φ(t,x,y) =
∫

ω>|k|

dωdkaωke−iωteikxyJ∆−1

(√
ω2− k2y

)
+ c.c (B.1)

with J∆−1 a Bessel function. The mode expansion of the boundary field in Poincaré coordinates φ̃ P

follows directly

φ̃
P(t,x,y) = lim

y→0
y−∆

φ(t,x,y), (B.2)

=
21−∆

Γ(∆)

∫
ω>|k|

dωdkaωke−iωteikx (
ω

2− k2) ∆−1
2 , (B.3)

where the small argument expansion of the bessel function has been used

J∆−1(
√

ω2− k2y) =
1

Γ(∆)2∆−1 y∆−1 (
ω

2− k2) ∆−1
2 . (B.4)

Inverting this relation and plugging back into the mode expansion of φ results into

φ(t,x,y) = 2∆−1
Γ(∆)

∫
ω>|k|

dωdke−iωteikx
yJ∆−1

(√
ω2− k2y

)
(ω2− k2)

∆−1
2

φ̃
P(ω,k)+ c.c (B.5)
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where we have also used the Fourier transform of the boundary field. The Poincaré smearing
function can now be read off:

K( t,x,y| t ′,x′) = 2∆−3Γ(∆)y
π2

∫
ω>|k|

dωdke−iω(t−t ′)eik(x−x′)
J∆−1

(√
ω2− k2y

)
(ω2− k2)

∆−1
2

(B.6)

The integral over momentum space in (B.5) can be worked out to give an ordinary reconstruction
in position space. The associated smearing will have support not on the full Poincaré patch, but
on a patch which becomes smaller as the bulk operator moves towards the origin. To work out
the momentum integral we will need to analytically continue the boundary fields on the complex
x-plane. The following identities on the Bessel functions are needed:

J∆−1(b) = b∆−1 22−∆

Γ(∆−1)

1∫
0

rdr
(
1− r2)∆−2

J0(br), (B.7)

J0

(
r
√

ω2− k2
)
=

1
2π

2π∫
0

dθe−iωr sinθ−kr cosθ . (B.8)

The scalar field is turned into

φ(t,x,y) =
∆−1

π

1∫
0

rdr(1− r2)∆−2y∆

2π∫
0

dθ

∫
ω>|k|

dωdke−iω(t+rysinθ)eik(x+irycosθ). (B.9)

The integrand looks a lot nicer in polar coordinates{
y′ = rycosθ ,

t ′ = rysinθ ,
(B.10)

The integration range is a disk of radius 1, which in the Cartesian coordinates is described by
t ′2 + y′2 ≤ y2. The integrals turn into

φ(t,x,y) =
∆−1

π

∫
y′2+t ′2≤y2

dy′dt ′
(

y2− y′2− t ′2

y

)∆−2 ∫
dωdke−iω(t−t ′)eik(x+iy′)

φ̃
P(ω,k). (B.11)

The Fourier transform of the boundary field can be recognized and after the transformation the final
result reads

φ(t,x,y) =
∆−1

π

∫
y′2+t ′2≤y2

dy′dt ′
(

y2− y
′2− t

′2

y

)∆−2

φ̃
P(t + t ′,x+ iy′). (B.12)

In these coordinates the associated smearing function is very simple but we had to analytically
continue the boundary x-coordinate into the complex plane. The advantage is that the bulk operator
manifestly becomes local as it approaches the boundary.
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