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Radio-loud narrow-line Seyfert 1 galaxies (RL-NLS1) are characterized by relatively small widths
of emission lines, hence their virial black hole mass estimates are typically smaller (and Edding-
ton ratios correspondingly higher) than those of broad line Type 1 active galactic nuclei. How-
ever independent black hole mass estimation methods, such as those based on the accretion disk
spectrum modeling, suggest that RL-NLS1 black hole masses are significantly larger than those
estimated by virial methods, and that masses for both narrow and broad line Type 1 sources lie in
the same range. In this paper we provide new black hole mass estimates for 25 RL-NLS1 sources
(using the disk modeling method) and argue that a plausible way to solve the black hole mass
discrepancy is to assume that the accretion disk in RL-NLS1 has a radiatively efficiency η ∼ 1%,
significantly lower than previously assumed.
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1. Introduction

Narrow-line Seyfert 1 Galaxies (NLS1, [1], [2], [3], [4], [5]) are a class of Type 1 active galac-
tic nuclei (AGNs) characterized by small widths of the Hβ emission line (FWHM . 2000 km s−1),
a [O III] / Hβ luminosity ratio < 3, and strong Fe II emission. The relatively small widths of Hydro-
gen lines implies that the mass of the accreting black holes is smaller than those typically observed
in broad-line AGN and quasars (e.g. [6], [7], [8]) with values of MBH . 108M�, as estimated using
the single epoch virial method (e.g. [9], [10], [11]). Moreover these sources appear to lie below the
M–σ relation of inactive galaxies ([12], [7], [13]), suggesting that these objects may experience a
different accretion process, or be in an early phase of their accretion history ([14]).

Despite the smaller black hole mass of NLS1 sources with respect to broad line AGN, ∼ 10%
of them show a significant emission at radio wavelengths (radio-loud NLS1, or RL-NLS1, [15])
and a few of them have a γ–ray detection ([16, 17], [18]), in some case with significant γ–ray
variability ([19, 20]). Such “blazar–like” behaviour was once thought to be associated only with
AGN with MBH & 108M� (e.g. [21]), but eventually it became clear that RL-NLS1 sources are very
similar to quasars ([22]), the only difference being their relatively lower luminosities and black hole
masses. Another similarity between quasars and RL-NLS1 is that sources in both classes are likely
powered by accretion onto a supermassive black hole, although possibly at different Eddington
ratios. Given the observed luminosity of both quasars and RL-NLS1, the accretion process is likely
mediated by a radiatively efficient accretion disk ([23]), possibly similar to an appropriately scaled
Shakura & Sunyaev disk ([24]). If this assumption is correct, the location and luminosity of the
peak of the broadband spectrum at UV wavelengths provide important clues about the black hole
mass and the accretion rate. Actually, this was historically the first method employed to estimate
the black hole mass in AGN (e.g. [25], [26], [27]). However, interpreting the bulk of the emission at
optical/UV wavelengths (the so–called “big blue bump”) as an optically thick spectrum is definitely
an oversimplification (e.g. [28]) and more complex models are required due to the relatively low
temperature of the inner rings of the disk ([29]). Still, the Shakura & Sunyaev model has been
often used to model the broad-band energy distribution of broad-line AGN and quasars (e.g. [30],
[31], [32], [33], [34]). In 2013, we used the accretion disk modeling method to analyze a sample
of 17 RL-NLS1 ([35]) and find that our black hole mass estimates are significantly higher (a factor
∼ 6 on average) than the corresponding virial mass estimates, and that the Eddington ratios were
correspondingly lower. Hence, (at least) one of the two methods provide a biased mass estimate1

In this work we extend the analysis started in 2013 by considering new sources and a slightly
modified mass estimation method (§2), and discuss a plausible way to solve the RL-NLS1 black
hole mass discrepancy (§3).

2. New black hole mass estimates

For the new analysis we considered a sample of bona-fide RL-NLS1 [36], having an optical
spectrum from SDSS, IR photometry from WISE and one or more Swift/UVOT observations. When
available, we also included GALEX photometry. The optical spectra were required to estimate the

1A complete analysis of the assumptions and uncertainties in both methods is beyond the scope of this paper. See
Calderone et al. 2013 ([35]) for a thorough discussion.
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continuum at optical/UV wavelength, disentangling the disk contribution from the host galaxy, Fe II

emission and Balmer continuum, and measuring the emission-line widths. The analysis has been
carried out using QSFIT ([37]), customized to accept both the SDSS data and the UV photometry,
and to model the AGN continuum as an accretion disk spectrum (rather than a simple power law).
The IR photometry were required to extrapolate the possible contribution from the synchrotron
emission at optical/UV wavelengths. The UV photometry was required to constrain the luminosity
and frequency of the peak of the accretion disk spectrum, in agreement with optical data. With
these selection criteria we identified 31 sources with redshifts in the range 0.1 < z < 0.79, but for
6 of them we could not identify the peak of the disk spectrum, either because of peculiar spectral
shape or because the (non–simultaneous) observations at IR, optical and UV wavelengths were
incompatible because of source variability. For the remaining 25 sources we obtained a reliable
black hole mass and accretion rate estimate, although for 4 of these we only have an upper limit
on the mass. An example of the analysis for the source PMN J0902+0442 (z = 0.53) is shown
in Fig. 1. The orange line shows the QSFIT the accretion disk component. The luminosity and
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Figure 1: Analysis of PMN J0902+0442 (z = 0.53). The red, green and blue circles are respectively the
WISE, GALEX and Swift/UVOT photometries (the error bars are smaller than the symbol). The black sym-
bols are the SDSS data. The yellow solid line is the total QSFIT model, while the orange line is just the
accretion disk component. The luminosity and frequency of the peak of the latter provides an estimate of the
black hole mass and accretion rate (assuming a disk seen pole–on and a radiative efficiency ∼ 10%). The
synchrotron contribution (when non–negligible) is extrapolated from the IR photometry and subtracted from
the optical/UV data before the fitting process.

frequency of the peak of such component provide an estimate of the black hole mass and accretion
rate, assuming a disk seen pole–on and a radiative efficiency ∼ 10% (see [37] for a discussion
on the reliability and impact of these hypothesis on the mass and accretion rate estimates). The
synchrotron contribution (when non–negligible) is extrapolated from the IR photometry and sub-
tracted from the optical/UV data before the fitting process. Beyond the black hole mass estimates
obtained with the disk modeling method (Mdisc, to which we associated a very cautious uncertainty
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of 0.7 dex) we also calculated the single epoch virial mass (Mvir,QSFit) using the FWHM of the Hβ

and Mg II lines and the continuum luminosity at 5100Å and 3000Å as estimated by QSFIT, and
the calibration from [38]. Also, we collected the virial mass estimates from the literature ([15],
[16], [39], [40], [8]). The results are shown in Fig. 2 (upper panel) where we used Mvir,QSFit on
the absicssa, and the ratio of the considered mass estimates over Mvir,QSFit on the ordinate. The
lower panel of Fig. 2 shows the relation between Mdisc and the radiative Eddington ratio (i.e., the
bolometric disk luminosity divided by 1.3×1038 Mdisc). As expected, all virial estimates cluster in
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Figure 2: Upper panel: ratio of the several mass estimates over Mvir,QSFit, as a function of Mvir,QSFit. Lower
panel: relation between Mdisc and the radiative Eddington ratio (i.e., the bolometric disk luminosity divided
by 1.3×1038 Mdisc).

a rather narrow, horizontal strip in the top panel. The slight offset of the virial mass estimates with
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respect to M/Mvir,QSfit ∼ 1 is due to the updated calibration in [38] and references therein, which
results in a factor ∼ 2 higher mass estimates with respect to previous works.2 On the other hand,
all disk modeling mass estimates are significantly larger than the virial masses by a factor of ∼ 10
on average, and the Eddington ratios are correspondingly lower.

3. Discussion and conclusions

Even with the new mass estimates the RL-NLS1 black hole mass discrepancy discussed in
§1 remains, and is even slightly exacerbated. Given the reliability of the single epoch virial mass
method it is tempting to think that the disk modeling method should be somehow biased. However,
there is a simple physical argument which shows that if the disk mass estimates are biased then
the whole picture of an accretion disk emitting a multicolor, approximately thermal, spectrum
(regardless of the temperature dependency with the radius) must be wrong. The argument is as
follows: if the disk masses are overestimated, than the actual peak of the disk spectrum lies at
higher frequencies with respect to what we found in our analysis. However, there is no physical
process occurring in the neighborhood of the disk (e.g., in the atmosphere) able to shift the photons
to lower frequency to produce the observed spectrum, since the black body emission already has
the lowest temperature compatible with a given luminosity and emitting surface. The only way to
lower the temperature (keeping a constant luminosity and radiative efficiency) is either to increase
the area of the emitting surface of the disk (i.e., increase the mass of the black hole) or accept
that the main engine of the RL-NLS1 is something different from a disk emitting a quasi-thermal
spectrum at each annulus (see §6.1.1. of [35] for further discussion). Another plausible way to
reconcile the disk modeling and virial estimates is to assume that the inner rings of the disk do not
radiate efficiently, possibly because the energy is advected into the black hole before being radiated
away. This occurs if the accretion rate is relatively high (& 1) and the disk undergoes a transition to
a “slim” (rather than thin) disk ([42]). Note that in this case the total radiative efficiency would be
much smaller than the commonly assumed value of 10%. From the observational point of view the
missing contribution from the inner rings is equivalent to a larger emitting surface, i.e., to a larger
black hole mass as measured with the disk modeling method.

In summary, the only way to reconcile the disk modeling and virial mass estimates in the
framework of the accretion disk theory is to assume that the total radiative efficiency of the disk
must be of the order of 1%, as shown in Fig. 2 (lower panel).
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