
P
o
S
(
B
H
C
B
2
0
1
8
)
0
1
5

Modification in Gravitational Waves Production
Triggered by Spontaneous Lorentz Violation

Kevin M. Amarilo∗, Mapse Barroso F. Filho and Roberto V. Maluf
Universidade Federal do CearÃą, Brazil
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In this work, we search how the production of gravitational waves is corrected by a spontaneous
Lorentz violation triggered by the vacuum expectation value (VEV) of the bumblebee vector field
(bµ ). We consider the modified graviton equations of motion by the dynamics of the bumblebee
field. In this formulation the graviton is still non-massive and has two degrees of freedom, but
does not has a gauge transformation and the dispersion relation changes from p2 = 0 to p2 +

ξ (bµ pµ)
2 = 0. Then, we solve these equations considering a current that acts as a source of the

radiation. In this case, we apply the method of the Green’s function to find a modified quadrupole
formula for the perturbation.
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1. Introduction

The idea that the Lorentz symmetry may not hold in greater energies scales began in the
context of the string theory [1]. Since then, the investigation of the Lorentz Symmetry Breaking
(LSB) was developed into the effective field theory known as Standard Model Extension (SME), in
which the usual fields of the SM and GR are coupled with fixed background fields that trigger the
Lorentz and CPT Breaking.

Among the fields that break the Lorentz Symmetry, the bumblebee field (Bµ ) is one relatively
simple. The symmetry is spontaneously broken by the dynamics of Bµ that acquires a nonzero
vacuum expectation value (VEV) [2, 3]. This model was first considered with the LSB being
triggered by a Higgs-like potential V (Bµ) = λ (BµBµ ∓b2)2/2.

In this work, we analyze the repercussion of the LSB triggered by the bumblebee model in
the production of Gravitational Waves (GW) scenario. We start modifying the free wave equation
for the graviton. Then, a current Jµν is added to the model and a Green’s function is derived
for the timelike bµ(b0,0) and spacelike bµ = (0,b) configurations for the bumblebee VEV. With
these results, the Green’s Function for the modified equation will be compared with the usual one,
showing the modifications in the theory.

2. Modifying the Graviton’s Wave Equation

The extension of the gravitational sector including the Lorentz-violating terms is given by the
action

S = SEH +SLV +Smatter. (2.1)

The first term refers to the usual Einstein-Hilbert action

SEH =
∫

d4x
√
−g

2
κ2 (R−2Λ), (2.2)

where R is the curvature scalar and Λ is the cosmological constant, which will not be considered in
this analysis.

The SLV term consists in the coupling between the Bumblebee field and the curvature of space-
time. The leading terms are

SLV =
∫

d4x
√
−g

2
κ2 (uR+ sµνRµν + tαβ µνRαβ µν), (2.3)

where u, sµν and tαβ µν are dynamical fields with zero mass dimension.
Finally, SM takes account the matter-gravity couplings, which in principle should include all

fields of the standard mode model as well as the possible interactions with the coefficients u, sµν

and tαβ µν .
The gravity-bumblebee coupling can be represented by the action (2.3) defining

u =
1
4

ξ BαBα , ξ

(
BµBν − 1

4
gµνBαBα

)
, tαβ µν = 0. (2.4)

The dynamics of Bµ is dictated by the action

SB =
∫

d4x
√
−g
[
−1

4
BµνBµν +

2ξ

κ2 BµBνRµν −V (BµBµ ∓b2)

]
, (2.5)
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where we introduced the field strength Bµν

Bµν = ∂µBν −∂νBµ , (2.6)

in analogy with the electromagnetic field tensor Fµν , in fact, the bumblebee models are not used
only as a toy model to investigate the excitation originated from the LSB mechanism, but also
as a alternative to U(1) gauge theory for the photon. In this theory, the photon appears not as a
fundamental particle, but as a Nambu-Goldstone mode due to spontaneous Lorentz violation [4].

The potential, defined as

V =
λ

2
(BµBµ ∓b2)2, (2.7)

is responsible for triggering the spontaneous breakdown of diffeomorphism and Lorentz symmetry.
Here b2 is a positive constant that stands for the nonzero expectation value of this field.

In the pursue of the influence of the gravity-bumblebee coupling on the graviton, we must
assess the linearized version [7]. Therefore, we split the dynamic fields into the vacuum expectation
values and the nearby quantum fluctuations:

gµν = ηµν +κhµν ,

Bµ = bµ + B̃µ ,
(2.8)

where hµν and Bµ represent small perturbations around the Minkowski background and a constant
vacuum value bµ , respectively.

Following the procedure described in Ref. [7], the solution for the linearized bumblebee equa-
tion of motion in the momentum space is

B̃µ =
κ pµbαbβ hαβ

2(b · p)
+

2σbαRαµ

p2 −
2σ pµbαbβ Rαβ

p2(b · p)
+

σ pµR
4λ (b · p)

− σbµR
p2 +

σ pµb2R
p2(b · p)

, (2.9)

with pµ = (p0,p),σ = (2ξ/κ2), while Rµν and R are taken in their linearized form. This solu-
tion can be inserted in the Lagrangian (2.3) as specified in [5] leading to the following effective
Lagrangian

LLV = ξ

[
p2bµbνhµνhα

α +
1
2
(b · p)2 (hα

α)
2

− 1
2
(b · p)2 hµνhµν + p2bµbνhµαhν

α −
(
bµbν pα pβ +b(µ pν)b(α pβ )

)
hµνhαβ

]
+

4ξ 2

κ2

[(
−2p2bµbν −2b2 pµ pν +4b · pb(µ pν)−

p2 pµ pν

4λ

)
hµνhα

α

+

(
2bµbν pα pβ −b(µ pν)b(α pβ )+

b2 pµ pν pα pβ

p2 −
2(b · p)pµ pνb(α pβ )

p2 +
pµ pν pα pβ

4λ

)
hµνhαβ

+

(
b2 p2− (b · p)2 +

p4

4λ

)
(hα

α)
2 +

(
p2bµbν −2(b · p)b(µ pν)+

(b · p)2 pµ pν

p2

)
hµλ hν

λ

]
+O(h3),

(2.10)
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where h = hα
α , it is worth noting that this Lagrangian is not invariant under the usual gauge trans-

formation of the metric perturbation (hµν → hµν + ipµζν + ipνζµ)

Proceeding with the analysis, we must add the Lorentz-violating terms of Eq. (2.10) to the
bilinear terms of the Einstein-Hilbert Lagrangian

pµ pαhµνhα
ν − pµ pνhµνh+

1
2

p2hµ

µh− 1
2

p2hµνhµν , (2.11)

forming the kinetic Lagrangian
Lkin = LEH +LLV . (2.12)

Next, we must evaluate the Feynman propagator of the graviton using this Lagrangian, there-
fore first we rewrite the Lkin into the bilinear form

Lkin =−
1
2

hµνÔµν ,αβ hαβ , (2.13)

where this operator is symmetric in the indices (µν), (αβ ) (the same way as hµν and hαβ ) and
under the interchange of the pairs (µν) and (αβ ). In this notation, the graviton propagator defined
as

〈0|T [hµν(x)hαβ (y)] |0〉= Dµν ,αβ (x− y), (2.14)

where Dµν ,αβ (x− y) is the operator that satisfies the Feynman’s propagator equation, given as

Ôµν ,
λσ

Dλσ ,αβ (x− y) = iI µν ,αβ
δ
(4)(x− y) (2.15)

where I µν ,αβ = 1
2(η

µαηνβ +ηµβ ηνα) is the identity operator. From this point, the problem of
determining the Feynman propagator is reduced to the inversion of the Ô operator. One method for
obtaining the inverse of rank two tensors is based on the Barnes-Rivers spin projection operators.
The process, which is considerable tedious, and the propagator is found in Ref. [6]. The propagator
has two poles, that represents two dispersion relations for the graviton,

p2 +ξ (b · p)2 = 0; (b · p)2−b2 p2 = 0. (2.16)

The first mode has no problems concerning the stability and causality, but the second, even though
preserves the causality, is non-unitary and spoils the physical consistency.

The equation of motion obtained from the effective Lagrangian (2.12) is

Ôµν ,αβ hαβ = 0. (2.17)

The Eq. (2.17) is then saturated with pµ pν , bµbν , p(µbν) and the Minkowski metric, revealing
the following constraints

pµ pνhµν = 0; bµbνhµν = 0; p(µbν)h
µν = 0; h = 0. (2.18)

Even more constraints can be found saturating (2.17) with pµ and bµ alone, which leads to

pµhµ

ν = 0; bµhµ

ν = 0. (2.19)
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The Eqs. (2.18)-(2.19) consist in a set of 12 constraints that can reduce the 14 degrees of
freedom of the theory (ten of the graviton and four of the bumblebee field). Therefore, we are left
with two physical degrees of freedom, which is the same number of the usual Einstein-Hilbert’s
graviton.

We apply the Eqs. (2.18)-(2.19) to the Eq. (2.17), and it simplifies to

[p2 +ξ (b · p)2]hµν = 0, (2.20)

that is the correct energy-momentum dispersion relation associated with the physical pole deter-
mined in the Eqs. (2.16). Therefore, we can conclude that the spontaneous Lorentz violation
triggered by the bumblebee field modified the Einstein-Hilbert’s dispersion relation as p2 = 0→
p2+ξ (b · p)2 = 0. Moreover, the non-minimal coupling BµBνRµν has not produced massive modes
for the graviton.

3. The Production of Gravitational Waves in the Presence of the Bumblebee Field

For the analysis of the production of GW we add a current Jµν that acts as a source to the
dispersion relation in Eq. (2.20) resulting in the equation

[p2 +ξ (b · p)2]hµν = Jµν . (3.1)

The method of the Green’s function is commonly used to solve this kind of differential equa-
tion. The Green’s function must satisfy

Ô G(x− y) = δ
(4)(x− y), (3.2)

here Ô = ∂ 2− ξ (bµ∂µ)
2, which is the dispersion relation in the configuration space. Defining

G(x− y), hµν is determined by the convolution integration

hµν(x) =
∫

d4y G(x− y)Jµν(y). (3.3)

In the usual Einstein-Hilbert linearized theory, GEH(x− y) is the Retarded Green’s function

GR(x− y) =
1

4πr
δ [τ− r]Θ(τ), (3.4)

here it was considered that the four-vectors are divided into a temporal and a spatial part (xµ =

(x0,x)) in this scenario, τ = x0− y0, r = |x− y| and Θ(x) is the Heaviside step function. The
convolution leads to the quadrupole formula of hµν considering a non-relativistic, isolated and
far-away object.

For the modified graviton’s equation, we can represent the Green’s function in the momentum
space, solving the Eq. (3.2) we get

G̃(p) =
1

p2 +ξ (b · p)2 , (3.5)
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then to get G in the configuration space, we may use the inverse Fourier Transform. The inversion
is made for two particular cases, the first is considering that bµ has a timelike configuration bµ =(
b0,0

)
, in this case the Green’s function resumes to

G̃(p) =
1

[1+ξ (b0)2]p2
0−|p|

, (3.6)

and the inversion results to

G(x− y) =
1

4π
√

1+ξ (b0)2r
δ

[
r− τ√

1+ξ (b0)2

]
, (3.7)

which differs from the Eq. (3.4) only by the factors
√

1+ξ (b0)2. Considering that b0 must be
small in comparison to the components of the perturbation, this factor will be slightly greater than
the unit.

The second case is a spacelike configuration bµ = (0,b), which will reduce G̃(p) to

G̃(p) =
1

p2
0− (1−ξ |b|2 cos2 Ψ)|p|

, (3.8)

here, Ψ is the angle between p and b, therefore cos2 Ψ = cos(θ)cos(θb)+ sin(θ)sin(θb)cos(φb−
φ), with (θ , φ ) and (θb, φb) the angular coordinates of the trivectors p and b, respectively.

The inverse Fourier transform of Eq. (3.8) expanded to the second order of |b| is

G(x− y) = GR(x− y)−G2(x− y), (3.9)

the second term is defined as

G2(x− y) =
ξ b2

8πr3 Θ(τ)×

×
{
(b · r)2

[(
τ

r
−1
)

δ (τ− r)+ τδ
′(τ− r)

]
+ τrb2 cos(2θb) δ (τ− r)

}
.

(3.10)

This term of the Green’s function highlights an interesting property of the bumblebee models,
the existence of an anisotropy in the solutions [8]. The vector b selects a preferential direction for
the propagation of the wave.

The solution for the perturbation, considering that the source has a slow motion, is the well-
known quadrupole formula

hi j(t,r) =
2G
r

d2Ii j

dt2 (tr), (3.11)

where tr = t− r is the retarded time and Ii j is the quadrupole moment tensor defined as

Ii j(t) =
∫

d3y yiy jT 00, (3.12)

For the modified equation with bµ = (b0,0) and since the bumblebee field does not couples
with the matter fields, we may that Jµν = 16πGTµν . Therefore the solution for the perturbation is

hi j(t,r) =
2G
r

d2Ii j

dt2 (t ′r), (3.13)
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where t ′r = x0− r
√

1+ξ (b0)2 is the modified retarded time. Therefore, all the parameters of the
wave, besides the slower propagation velocity, must be the same.

For the bµ = (0,b) configuration, the solution is

hi j(t,r) =
2G
r

[(
1− ξ b2

2
cos2θb

)
d2Ii j

dt2 (tr)+
ξ (b · r)2

2r
d3Ii j

dt3 (tr)
]
. (3.14)

In this equation, we can observe once more the existence of anisotropy, the amplitude of the
wave is modified, therefore, the existence of the bumblebee field can be attested in a experiment.
Since the quadrupole moment remained unmodified, the frequency of the wave must not change.
Other peculiarity is the third derivative of Ii j that appeared as consequence of the expansion of the
Green function to the second order.

4. Conclusion

In this work, we searched the effects of the spontaneous LSB on the production of the GW. We
introduced the LSB by the coupling of the graviton with a vector Bµ known as bumblebee vector
field that has a nonzero VEV. This leads to a modified wave equation for the graviton propagation.

Analyzing this new relation we determine the solution for this model in two special configu-
rations. In the first one, we considered a timelike configuration for bµ , in this case, only the the
velocity of propagation of the wave were smaller by a factor of

√
1+ξ (b0)2. In the second case,

a spacelike configuration was considered for the bumblebee VEV. The solution showed the exis-
tence of anisotropy in the solution, which is well known in the literature [8], modifications in the
amplitude and presence of a third derivative of the quadrupole moment.
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