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This work aims to solve Einstein Equation in a scenario with Lorentz symmetry violation for
gravitational waves polarization study. It will be commented about Standard Model Extension,
spontaneous and explicit violation of a symmetry as well as their consequences. The bumblebee
model will be used for the study of Lorentz violation, where the terms that breaks off the symme-
try are included in the Lagrangean of the gravitational theory. The Euler-Lagrange equations are
used for determination of modified graviton propagator, where we expend the Lagrangean up to
second order of the perturbation field. We conclude that, in this scenario, the dispersion relation
of graviton is different of the usual one, where we have a term that selects a preferred direction in
the spacetime. Besides that, the graviton still with two degrees of freedom, despite the existence
of bumblebee field. Then, the modified wave equation for perturbation field is solved and we
compare the polarization states of the gravitational wave solution modified with the usual case.
We show that for a bumblebee field being timelike or in the same direction of wave momentum
we have no changes in the polarization tensor. But for a bumblebee field being in another diretion
we have a modified polarization tensor for the graviton.
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1. Introduction

Detection of gravitational waves was one of the most important events for the high energy
physics of XXI century. In September 11th, 2016 the laboratory VIRGO and LIGO announced that
the first detection was made in September 14th, 2015, in an event called GW150914. The second
detection was done in December 26th, 2015, this event is called GW151226. The detected waves
of both events are due to coalescence of two black holes located at distances of approximately 410
Mpc and 440 Mpc.

Furthermore, the main problem of current physics is the quantization of gravity. The standard
model extension (SME), that is an effective field theory that mixes the standard model (SM) and
Lorentz violating effects, is a powerful theory that describes all fundamental interactions as well
as all particles in nature. Therefore, theories with Lorentz Symmetry Breaking (LSB) are of great
interest of the modern research.

The existence of a nonzero vacuum expectation value for a field triggers a spontaneous LSB.
The simplest field theory that a vector that acquires nonzero expectation values are the bumblebee
models [1, 2]. In this theory the LSB is triggered by a vector field, whose minimum potential gives
rise to the background field.

In this work, we solve Einstein equations in a scenario with LSB for the gravitational waves
polarization study. We start investigating the consequences of the spontaneous breaking of Lorentz
symmetry, triggered by the bumblebee vector field. The action of the bumblebee term is varied
and we determine the modified graviton propagator. Then, the modified wave equation for the
perturbation field is solved and we compare the polarization tensor of the modified gravitational
wave solution with the usual case.

2. Bumblebee modifications in graviton modes

The Lorentz Violation can be included in gravitational sector through the following action

S = SEH +SLV +SM, (2.1)

where SEH is the Einstein-Hilbert (EH) action, given by

SEH =
∫

d4x
√
−g

2
κ2 (R−2Λ), (2.2)

where R is the Ricci curvature scalar and Λ is the cosmological constant. Here, we will disregard
the cosmological constant.

The action that accounts for the Lorentz violating terms is,

SLV =
∫

d4x
√
−g

2
κ2 (uR+ sµνRµν + tµναβ Rµναβ ). (2.3)

In this gravity model, when Bµ acquires a nonzero vacuum expectation value, it induces both
Lorentz and diffeomorphism violations. The bumblebee model can be represented in this form,

SB =
∫

d4x
√
−g
[
−1

4
BµνBµν +

2ξ

κ2 BµBνRµν −
κ

2
(BµBµ ±b2)2−BµJµ

]
. (2.4)
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For tµναβ = 0 and,

u =
1
4

ξ BαBα , sµν = ξ

(
BµBν − 1

4
gµνBαBα

)
, (2.5)

where the field strength is Bµν = ∂µBν − ∂νBµ . In this case, Jµ is a conserved current composed
of matter fields and it is also the source of Bµ . It will be disregarded because we don’t need the
dynamics of the matter fields. The potential that triggers the LSB is,

V =
κ

2
(BµBµ ±b2)2. (2.6)

So, the symmetry violation happens whenever the constant b2 is assumed in the potential. To
determine the modified graviton propagator we need to linearize the Lagrangean. So, we can split
the dynamic fields considering the vacuum expectation values and the quantum fluctuations

gµν = ηµν +κhµν , (2.7)

Bµ = bµ + B̃µ , (2.8)

where hµν and B̃µ are small perturbations. Varying the action and using the method of Green’s
function, we can determine the solution for the linearized bumblebee equation in the momentum
space. It is worth to mention that the Ricci tensor and the Ricci escalar are up to second order in
hµν . Therefore, following the steps according to [3], we have the Lagrangean

LLV = ξ [p2bµbνhµνhα
α +

1
2
(bµ pµ)2(hα

α)
2− 1

2
(bµ pµ)2hµνhµν

+ p2bµbνhµαhν
α − (bµbν pα pβ +b(µ pν) b(α pβ ))h

µνhαβ ]

+
4ξ 2

κ2

[(
−2p2bµbν −2b2 pµ pν +4bµ pµb(α pβ )−

p2 pµ pν

4λ

)
hµνhα

α

+

(
2bµbν pα pβ −b(µ pν)b(α pβ )+

b2 pµ pν pα pβ

p2 −
2bµ pµ pµ pνb(α pβ )

p2

+
pµ pν pα pβ

4λ
)hµνhαβ +

(
b2 p2− (bµ pµ)2 +

p4

4λ

)
(hα

α)
2

+

(
p2bµbν −2bµ pµb(µ pν)+

(bµ pµ)2 pµ pν

p2

)
hµλ hν

λ
]+O(h3),

(2.9)

where pµ = (p0,p), σ = 2ξ

κ2 . Hence, for analyzing the effects of the bumblebee field we need the
kinetic Lagrangean,

LKIN = LEH +LLV . (2.10)

The graviton propagator is defined as

〈0|T [hµν(x)hαβ (y)] |0〉= Dµν ,αβ (x− y), (2.11)

where the operator Dµν ,αβ (x− y) satisfies the Green’s equation,

Ôµν

λσ
Dλσ ,αβ (x− y) = iI µν ,αβ

δ
(4)(x− y). (2.12)
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Thus, the Feynman propagator is given by inverting Ôµν

λσ
,

Dλσ ,αβ (x− y) = iÔ−1
µνλσ

δ
(4)(x− y). (2.13)

The whole process to find the Feynman propagator for LKIN is out of the scope of this work.
This can be made through the Barnes-Rivers projectors. Reference [3] show the whole process. In
this work, they found two poles in graviton propagator. But, only one is physical and we will use it
to our analysis. This pole is,

�(p) = p2 +ξ (b · p)2. (2.14)

So, the equation of motion is given by,

Ôµνλσ hαβ = 0. (2.15)

By saturing this equation with respect to pµ pν , b(µ pν), bµbν and ηµν we obtain the following
constraints,

bµbνhµν = 0, (2.16)

b(u pν)h
µν = 0, (2.17)

pµ pνhµν = 0, (2.18)

bµhµν = 0, (2.19)

pµhµν = 0. (2.20)

Besides that,
h = 0. (2.21)

This set of equations gives to us a set of 12 constraints. So we can reduce the initial 14 degrees
of freedom contained in the graviton and bumblebee fields. Consequently, there are just 2 degrees
of freedom like the usual graviton. Hence, the modified equation of graviton is,

[p2 +ξ (b · p)2]hµν = 0. (2.22)

3. Solutions of the modified graviton equation

From Equation (2.22) we get the following dispersion relation,

p0 = |~p|

ξ b0|~b|cosΨ±
√

1+ξ (b0)2−ξ |~b|2cos2Ψ

1+ξ (b0)2

 . (3.1)

The most general solution for Equation (2.22) is

hµν(x) =
∫

d̃3 p
4

∑
λ=1

[ε
(λ )
µν a(λ )(p)e−ip·x + ε

∗(λ )
µν a†(λ )(p)eip·x], (3.2)

where, d̃3 p = d3 p

(2π)3|
√

1+ξ (b0)2−ξ |~b|2cos2θ ||2~p|
.
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Now, using Equations (2.19), (2.20) and (2.21) and choosing the direction of propagation
in z axis, the four momentum is pµ = (p0,0,0, p3). Therefore, we can see the modifications on
the polarization tensor. We will consider some special cases. First, consider bµ = (b0,0,0,0) or
bµ = (b0,0,0,b3). In this case the, polarization tensor is,

ε
µν =


0 0 0 0
0 ε11 ε12 0
0 ε12 −ε11 0
0 0 0 0

 . (3.3)

We see that this case is equal to the usual. We expected this, because in the first case, it was
considered just a bµ timelike and in the second one, no preferred direction was selected. However,
if we consider the case where bµ = (0,0,b2,0), we have,

ε
µν =


e00 e10 0 − e00 p0

p3

e10 −e00
(
−1+ p2

0
p2

3

)
0 − e10 p0

p3

0 0 0 0

− e00 p0
p3

− e10 p0
p3

0 e00 p2
0

p2
3

 . (3.4)

Hence, the existence of a vacuum expectation value of the bumblebee field yields to a LSB. We
see that the polarization tensor components do have dependence on components of the bumblebee
field. So, the polarization tensor have dependence on the direction of this vector field.

4. Conclusion

In this work, it was investigated the effects of a Lorentz symmetry breaking due to an existence
of a vector field. We used the simplest model in the literature, the bumblebee field. Here, we expand
the Lagrangean of the theory up to the second order of hµν and we find the modified graviton
propagator. With this, we get the modified graviton equation with a new relation of dispersion.
Besides that, we get new constraints. Therefore, the new polarization tensor shows dependence on
the bumblebee field.

References

[1] R. Bluhm and V. A. Kostelecký, Phys. Rev. D 71, 065008 (2005).

[2] R. Bluhm, S-H. Fung, and V. A. Kostelecký, Phys. Rev. D 77, 065020 (2008).

[3] MALUF, R. V. et al. Physical Review D, v. 90, n. 2, p. 025007, (2014).

[4] R. Bluhm, N. L. Gagne, R. Potting and A. Vrublevskis, Phys. Rev. D 77, 125007 (2008).

[5] Sean M. Carroll, Timothy R. Dulaney, Moira I. Gresham, and Heywood Tamx, Phys. Rev. D 79,
065011 (2009).

4


