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Early Universe James M. Cline

1. Introduction

For these lectures I was assigned the topic of “Early Universe Cosmology.” If we could go
back in time fifty years, this would seem like a more straightforward task, since the cosmological
timeline was relatively uncrowded by notable events; see fig. 1. Following the big bang, there
was nucleosynthesis (BBN), matter-radiation equality, recombination, and formation of galactic
structure. But our current understanding intersperses many more likely or at least possible events of
significance (fig. 2), replacing the big bang by inflation, introducing leptogenesis or baryogenesis,
several cosmological phase transitions, and some kind of origin for the dark matter (DM) of the
universe. For these lectures I have therefore chosen to discuss inflation, baryogenesis, and aspects
of dark matter not covered by other lecturers. P. Fox has included a nice introduction to BBN as
well as thermal freeze-out of dark matter in his lectures on SUSY WIMPs, while direct and indirect
detection of DM are treated respectively by T. Lin and D. Hooper, and axions by A. Hook. Structure
formation will be introduced by M. Vogelsberger. Hence I hope that the more general picture of
early universe cosmology will get a comprehensive treatment through our combined lectures.

Big bang BBN matter−

radiation
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Figure 1: The cosmological timeline, ca. 1970.
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Figure 2: The cosmological timeline, ca. 2018.

1.1 Conventions and basics of big bang cosmology

I will be using natural units,

h̄ = c = kB = 1, G =
1

M2
p
, 8πG =

1
m2

p
(1.1)

The reader should be warned that my choice of upper and lower case for the unreduced Planck mass
Mp = 1.22× 1019 GeV and the reduced one, mp = 2.43× 1018 GeV, is not a standard convention,
even though it seems logical. The Einstein equations then read

Gµν =
1

m2
p

Tµν ←→ Rµν =
1

m2
p

(
Tµν − 1

2 gµνT
)

(1.2)
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with

gµν =


1
−a2

−a2

−a2

 , Tµν =


ρ

p
p

p

 (1.3)

Basic elements of cosmology are summarized in the PDG reviews [1] or the textbook of Kolb
and Turner [2]; I recapitulate them here for convenience. The Friedmann-Robertson-Walker (FRW)
line element is

ds2 = dt2−a2(t)dx2 (1.4)

where dx2 represents a unit 3D metric that can have curvature K = 0,±1. Redshift is defined by
1+ z = a0/a, where a0 is the present value of the scale factor, while the Hubble parameter is

H =
ȧ
a

(
Ḣ =

ä
a
−H2

)
(1.5)

Then the (00) and (i j) components of the Einstein equations can be written respectively as

H2 =
ρ

3m2
p
− k

a2 2
ä
a
+H2 =− p

m2
p
− k

a2 , (1.6)

(1.7)

where k has units of 1/(distance)2 if a is taken to be dimensionless. The first of these is the usual
Friedmann equation that together with the equation of state fixing ρ as a function of a determines
the evolution of a homogeneous universe. Although the present universe does not look very homo-
geneous at first glance, the approximation starts to be valid when averaging over scales & 70 Mpc
[3]. More importantly for these lectures, the cosmic microwave background (CMB) shows that the
universe was very homogeneous, to a part in 20,000, at z = 1100.

To complete the Friedmann equation we need the time- or a-dependence of the energy density
ρ , which is determined by the equation of state (EOS),

p = wρ, w =


1
3 , radiation
0, matter
−1, vacuum energy

(1.8)

The conservation of stress-energy, ∂µT µν = 0, implies that ρ̇ =−3H(ρ + p) =−3Hρ(1+w), and
combining this with (1.8) gives

ρ ∼


1/a4, radiation
1/a3, matter

const., vacuum energy
(1.9)

Taking a0 = 1, we can integrate the Friedmann equation,∫
dt =±

√
3mp

∫
da
(

ρr,0

a2 +
ρm,0

a
+ρΛa2−ρk

)−1/2
(1.10)

where ρk is a fictitious energy density going as Km2
p/R2

0, with K = 0,±1 and R0 being a physical
length scale for the 3D curvature. ρx,0 denotes the present density of matter (x = m) or radiation
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(x = r). Although eq. (1.10) cannot be usefully integrated in closed form in the general case, it is
easy to do so when any of the individual terms dominate, in particular

a∼


t1/2, radiation
t2/3, matter

exp(t
√

ρΛ/3/mp), vacuum energy
(1.11)

Introducing the critical density ρc = 3m2
pH2

0
∼= (2.47meV)4, we can define the fractional con-

tributions of the various components to the total energy density of the universe,

Ωi =
ρi

ρc

∼=



5×10−5, γ

0.05, baryons
0.26, CDM
0.69, Λ

< 0.015, k (curvature)

(1.12)

which identically satisfy ∑i Ωi = 1 when including Ωk in the sum. CDM stands for cold dark
matter, and the upper limit on Ωk applies (roughly) to its absolute value.

2. Inflation

Although the cosmological timeline looked simple in 1970, by later in the decade an awareness
was building that all was not well with the big bang picture; see for example the essay by Dicke
and Peebles in ref. [4]. This was due to the now famous horizon and flatness problems.

H   /z0      rec
−1

surface of 
last scattering

Figure 3: The horizon problem; we are at the center.

2.1 Horizon problem

CMB photons have been free-streaming from the surface of last scattering, representing the
epoch when the universe became transparent, around the time of electron-proton recombination,
fig. 3. To understand this picture we need the idea of the particle horizon dH(t), which is the
distance that a photon could have traveled by a given time t. Since photons follow null worldlines,
dt = adx, we have

dH = ax = a
∫ dt

a
=

{
2t ∼ 2a2, radiation domination
3t ∼ 3a3/2, matter domination

(2.1)
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dH(t) is therefore the maximum size of a causally connected region at time t, within which one
could expect any degree of uniformity due to thermal equilibration. Our current horizon is dH(t0)∼
H−1

0 ∼ 1026 m, and the CMB radiation contained within it is extremely uniform, to better than 10−4,
suggesting that the region containing the whole presently observable universe was already in causal
contact at the time of recombination trec. Yet if we consider how large this region was at that time,
∼ dH(t0)/zrec, by rescaling it according to the Hubble expansion, it is much larger than dH(trec).
This is the conundrum illustrated in fig. 3. The small circles represent the largest regions that
should have uniform temperature. We can estimate the number of them around the big circle as

2πdH(t0)/zrec

2dH(trec
= π
√

zrec ∼= 100 (2.2)

so that each one subtends an angle of ∆θ ∼= 3.5◦. How did the temperature come to be so uniform
across all of these regions?

2.2 Flatness problem

The inverse curvature radius R−1 must be tuned to an extremely small value in order for the
ρk term in (1.10) to avoid dominating the current expansion of the universe. Recalling the relation
|ρk|= 3m2

p/R2
0, we see that

|Ωk|=
∣∣∣∣ρk

ρc

∣∣∣∣= 1
H2

0 R2
0

⇒ R0 &
10
H0
∼ 1027 m∼ 30,000Mpc (2.3)

The curvature radius scales simply with the Hubble expansion. Scaling back to the Planck time
tp ∼ 1/mp, we get

Rp = R0ap ∼ R0
Tγ,0

mp
∼ 10

H0

Tγ

mp
∼

10Tγ

ρ
1/2
c

=
2.4×10−3 eV

(2.5×10−3 eV)2 ∼
1

3×10−3 eV
(2.4)

This is to be compared to the natural value Rp ∼ 1/mp, since mp is the only relevant dimensionful
parameter. Thus we see that a tuning of one part in 1031 is required for the initial curvature radius,
if we are allowed to extrapolate back as far as mp. Limiting the earliest time to larger values only
gives a modest improvement unless we push that time all the way into the present.

2.3 A little history

In 1979, the hot topic was grand unified theories (GUTs). In the previous year, Zeldovich and
Khlopov [5] had estimated that if the universe ever went through the GUT symmetry breaking tran-
sition, then pointlike topological defects, magnetic mononpoles, with masses of MGUT ∼ 1016 GeV
would have been so copiously produced that the universe should have recollapsed shortly there-
after. J. Preskill, at that time a graduate student at Harvard, corrected an important overestimate
in their calculation but nevertheless confirmed their conclusion [6].1 At that time A. Guth was a
postdoc at Cornell, and with H. Tye proposed some ideas for suppressing the density of monopoles
[7]. He then moved to SLAC, taking up his fourth postdoctoral position, still thinking about the

1It required some conviction on his part, since his supervisor S. Weinberg reportedly told him he was “crazy” to
work on that problem.
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monopole problem. It led him to propose inflation [8], which he recognized did much more than
solve the monopole problem; it also solved the horizon and flatness problems. Soon thereafter,
people realized that it additionally explained the origin of density perturbations leading to large
scale structure.
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V
0

Φ

V

Figure 4: The SU(5) GUT potential near the critical temperature, leading to a first order phase transition.

Guth’s original idea, now called “old inflation,” was inspired by the SU(5) GUT, which re-
quires a Higgs field ϕ to break SU(5) down to the standard model gauge group. At high temper-
atures, thermal effects make m2

ϕ > 0 at the origin ϕ = 0, but as T decreases, a local minimum
develops at ϕ 6= 0 as shown in fig. 4. Initially ϕ is trapped in the false minimum, whose vacuum
energy causes the universe to expand as

a∼ exp(t
√

V0/3/mp) (2.5)

Inflation ends when ϕ tunnels through the barrier and rolls down to the true minimum. But as Guth
realized even in the seminal paper, this picture is flawed because the tunneling leads to nucleation
of bubbles of true vacuum that are cold and empty. These universes could be heated up by the
energy released by collisions of walls from neighboring bubbles, but first of all these collisions
are exceedingly rare—the phase transition never completes—and second, the resulting radiation
would be quite inhomogeneous, undoing all the smoothing of initial inhomogeneities that occurred
during inflation. A further problem, seemingly not noticed at the time, is that bubbles nucleated
in this way have very large negative curvature [9], undoing the solution of the flatness problem
afforded by the initial inflationary expansion. However it was soon realized that the potential in the
post-nucleation phase could be made sufficiently flat so that inflation would still take place, with
no need for the prior false-vacuum phase [10, 11], except perhaps to justify the initial condition by
tunneling. This was dubbed “new inflation.”

It is sometimes noted that the first model of inflation was published by Starobinsky [12] before
all of these developments, based upon an R2 addition to the Einstein-Hilbert gravitational action.
This is particularly interesting now because of the preference given to this model for fitting current
CMB data as observed by Planck [13]. However Starobinsky was not aware at that time that infla-
tion was a general mechanism that could solve the problems of big bang cosmology as emphasized
by Guth.

2.4 Inflation in brief

We now recapitulate the main features of inflation, settling for a heuristic rather than a rigorous
approach. I will fill in some details in the following subsection. Inflation can be driven by any scalar

5
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field ϕ whose potential is sufficiently flat, as measured by the potential slow roll parameters

ε =
m2

p

2

(
V ′

V

)2

, η = m2
p

V ′′

V
(2.6)

This parametrization is perhaps getting outdated since many practitioners prefer the Hubble flow
functions

ε1 = − Ḣ
H2
∼= ε

ε2 =
ε̇1

Hε1

∼= 4ε−2η

ε3 =
ε̇2

Hε2
. . . (2.7)

but for leading-order calculations (involving only ε and η) either is sufficient. When ε,η � 1,
we can ignore the ϕ̈ term in the equation of motion (EOM) for the homogeneous mode of ϕ ,
approximating it by the slow-roll EOM,

3Hϕ̇ ∼=−V ′(ϕ) (2.8)

The Hubble damping term comes from varying the scalar field action in the presence of the back-
ground metric, S =

∫
d 4xa3(a−2ϕ̇2/2−V ). The kinetic energy of ϕ is then much smaller than V ,

and the Friedmann equation can be integrated to find

a∼ exp
(∫

Hdt
)
≡ eN (2.9)

with H =
√

V/3m2
p and N being the number of e-foldings. Eventually, as ϕ reaches the minimum

of its potential, either ε or η will exceed unity, and ϕ̈ can no longer be ignored; instead Hϕ̇ becomes
negligible,

ϕ̈ ∼=−V ′(ϕ) (2.10)

and ϕ oscillates around the minimum of V . These oscillations lead to particle production and
reheating of the universe.

A naive estimate of the reheating temperature is

Trh ∼
√

mpΓϕ (2.11)

where Γϕ is the decay rate of the inflaton. One can easily derive (2.11) from the usual relation
between time and temperature,

t ∼ 1
Γϕ

∼ 1
H
∼

mp√
ρ
∼

mp

T 2
rh

(2.12)

which is valid as long as the computed Trh does not exceed the available energy scale from inflation,
V 1/4

i (where Vi is the magnitude of V during inflation). It may seem counterintuitive that Trh would
be independent of Vi, but this occurs because the particles produced by the early decays are diluted

6



P
o
S
(
T
A
S
I
2
0
1
8
)
0
0
1

Early Universe James M. Cline

by continuing quasi-exponential expansion of the universe; only those produced near the end of the
reheating phase dominate the final density. See problem 2 of the inflation exercises.

Let’s review how inflation solves the problems of big bang cosmology. The flatness problem
is solved by the stretching of space by the expansion, which increases an initial curvature radius Ri

as
1

R2
i
→ e−2N

R2
i

(2.13)

To reduce 1/R by a factor of 1031, as we motivated in our example, would require N = 70 e-foldings
of inflation. This is actually an overestimate since 1/Ri must be somewhat smaller than mp in order
for inflation to get started (at least if the curvature is positive): H2 = V (ϕ)/3m2

p−1/(a2R2
i ) must

be positive. Then if Vi ≡ Λ4
i , we require 1/Ri . Λ2

i /mp. Its value today would be

1
R0
∼ e−N

Ri

(
T0

Trh

)
(2.14)

which requires

N > ln
R0 T0

Ri Trh
> ln

10H−1
0 T0Λ2

i

mp Trh
∼ ln

10T0Λ2
i

ρ
1/2
c Trh

(2.15)

Taking for example Λi = 10−3 mp (we will see that CMB data provide this as an upper limit) and
Trh ∼ Λi, we find

N & ln
10−3 eV×1022 eV

10−6 eV2
∼= 58 (2.16)

trh teq
trec

t0

inf
−1H

3/2 ln
 a

2 
ln

 a

λ
ln a

∼ 

1 Mpc

dH  at rec.

∼ 8N∆

∼ 60N∆total

Η
0

−1
=3000 Mpc

ln
(l

en
g
th

)

ln a

matter

radiation

horizon

inflation

(galaxy scale)

e−foldings
of inflation

CMB−observable

re
h

ea
ti

n
g

in
st

an
t

reheatinggradual

triangle

Figure 5: Evolution of comoving scales (green, dashed) and the particle horizon (red, solid) with scale factor
as a proxy for time.

For the horizon problem, fig. 5 (inspired by fig. 8.4 of ref. [2]) is helpful. The dashed line
labeled “H−1

0 = 3000Mpc” is relevant for the horizon problem: it shows how the current hori-
zon scale shrinks with the universe projected back in time, being much larger than the maximum
causally connected scale dH(trec) at the time of recombination. In standard big bang cosmology,

7



P
o
S
(
T
A
S
I
2
0
1
8
)
0
0
1

Early Universe James M. Cline

the H−1
0 scale was always outside the horizon at earlier times, signifying that its enclosed parti-

cles could not have achieved significant causal equilibrium. But with inflation, provided it lasted
long enough, there is an intersection such that at early times it was inside the horizon and causal
processes would have been able to make it homogeneous.

We can estimate the minimum number of e-foldings needed to solve the horizon problem
using this figure and a bit of trigonometry. Consider the right triangle (blue, labeled “triangle”)
whose base extends along the inflationary horizon, from where the H−1

0 scale acting as hypotenuse
intersects it, until the present time. The vertical leg of the triangle has length ln(Hinf/H0), while
the horizontal one has height ∆N+ ln(Trh/T0). The slope is unity since scales grow linearly with a.
This gives the minimum number of e-foldings of inflation as

∆N = ln
HinfT0

H0Trh
(2.17)

This is a rather crude approximation, since we have assumed in the picture that reheating happens
instantaneously, which would imply a very efficient mechanism of reheating such that Trh ∼ Λinf

(the energy scale of inflation). Nevertheless, we estimate ∆N ∼ ln(ΛiT0/ρ
1/2
c ), parametrically the

same as for the flatness problem, eq. (2.15). In fig. 5 we show by the dotted curve the more realistic
evolution of the horizon when reheating is more gradual. It is clear that ∆N is reduced in this case
since inflation ends earlier. A careful derivation [14] shows that the number of e-foldings until the
end of inflation, at the time when a scale of comoving wave number k∗ crosses outside the horizon,
is given by

N∗ ∼= 67− ln
k∗

a0H0
+ 1

4 ln
V 2
∗

m4
pρend

+ 1
12 ln

T 4
rh

ρend
(2.18)

where V∗ is the value of V (ϕ) at the time of horizon crossing (see eq. (2.23) below for the defini-
tion), and ρend is the value of V when inflation ends. Even this formula is simplified to the case
where the equation of state during reheating is that of radiation, w = 1/3. The more general result
can be found in [14, 13].

Soon after Guth’s introduction of the inflationary universe, it was realized that the quantum
fluctuations of ϕ during inflation can account for the density perturbations necessary for growth of
structure in the universe [15, 16, 17, 18].2 We will later show that the quantum fluctuation of the
Fourier mode of the inflaton during inflation is

δϕk =
∫

d 3xeik·x
δϕ(x)∼ H

2π
(2.19)

for any k, implying that the fluctuations are nearly scale invariant, which is phenomenologically
important for avoiding too large fluctuations on small scales (that would produce too many black
holes) or on long ones (leading to inhomogeneity at large scales).

2Of these references, I find the last one to be the most understandable and still worth reading; it forms the basis
for the presentation given in the textbook [2]. There is incidentally an interesting story about it; it originally appeared
as a preprint by Steinhardt and Turner, who were finding that inflation could not produce sufficiently large fluctuations
to explain the observed structure. The corrected version came out with J.M. Bardeen, an expert on cosmological per-
turbations, as a coauthor. He recognized that the curvature invariant that is conserved while perturbations are outside
the horizon is given by ζ ∼ δρ/(ρ + p) during inflation, rather than δρ/ρ as had been assumed in the preprint version.
Since ρ + p is very close to zero during slow-roll inflation, this provides a huge enhancement, needed to get the observed
level of density perturbations. Some copies of the original preprint still exist.
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V
0

Φ

V

δφ

Figure 6: Quantum fluctuations of the inflaton that cause reheating to occur at different times for different
places in the universe.

The inflaton fluctuations lead to density fluctuations, that can be quickly understood at a heuris-
tic level, referring to fig. 6. Consider two regions of the universe whose value of ϕ differs by δϕ .
Inflation will end slightly later in one region, with the time difference

δ t ∼ δϕ

ϕ̇
(2.20)

The differing amounts of inflation cause local perturbations in the 3D curvature of a surface at fixed
time, that we can estimate as

Rk ∼ δ

(
1
a2

)
∼ δa

a
∼ Hδ t ∼ H2

ϕ̇
(2.21)

again with an approximately scale-invariant spectrum since both H and ϕ̇ change very slowly
during inflation. We can relate this quantity to the potential V using the slow-roll equation of
motion,

H2

ϕ̇
=

H3

Hϕ̇
∼ V 3/2(ϕ)

V ′(ϕ)
(2.22)

evaluated at the moment when the scale k exits the horizon,

k
a
∼= ke−Ht = H = ke−N (2.23)

This is the important horizon crossing condition, showing the origin of the relation N ∼ lnk/H that
we observe in eq. (2.18). As always, k is the comoving wave number that does not change with the
expansion, and whose value refers to the present time, while k/a is the physical, time-dependent
wave number.

An important observable quantity is the correlation function of the 3D curvature, giving rise
to the scalar power spectrum Ps,

Ps =
∫

d 3xeik·x 〈R(0)R(x)〉= |Rk|2 ∼
H4

ϕ̇2 ≡ As

(
k
k∗

)ns−1

(2.24)

For historical reasons, ns = 1 is the definition of scale-invariance, known as the Harrison-Zeldovich
spectrum, and from (2.24) we see that

ns−1 =
d lnPs

d lnk
∼=

d lnPs

dN
(2.25)
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where we used N = lnk/H from the horizon-crossing condition (2.23) and approximated H as being
constant during inflation. The deviation of ns from 1 is important since it impacts the correlations
of CMB temperature fluctuations 〈

δT
T

(0)
δT
T

(x)
〉

(2.26)

which leads to constraints on models of inflation.

����

Τ Τ〈 〉

Figure 7: Left: angular correlations of the CMB temperature fluctuations, as measured by COBE [19].
Right: D` = `(`+1)C`/2π versus ` as measured by Planck [13].

In 1992 the NASA experiment COBE first observed the CMB temperature fluctuations at the
level of δT/T = 5× 10−5 [19], close to the value that was already understood to be needed for
consistency with structure formation. COBE measured angular correlations obtaining an oscillatory
pattern as reproduced in fig. 7(left). These oscillations are better visualized in `-space by expanding
in spherical harmonics,

δT = ∑
`,m

a`mY`m(θ ,ϕ) (2.27)

and plotting

C` =
1

2`+1 ∑
m
|a`m|2 (2.28)

versus `. This reveals the famous acoustic peaks, shown in fig. 7(right).3 They represent sound
waves in the coupled photon-baryon plasma, at the time of recombination. During the tightly-
coupled epoch, density perturbations (δρ/ρ)k at a scale k undergo acoustic oscillations because of
the plasma pressure. But these oscillations do not begin until that scale has crossed back inside the
particle horizon, which happens at different times for different scales, leading to the sound waves
at different scales being out of phase with each other at the “moment” of recombination, when they
start to become visible in the CMB. This process is illustrated in fig. 8.

The temperature fluctuations arise from the CMB photons climbing out of gravitational poten-
tial wells created by the density perturbations. If the perturbations were static, the net gravitational
redshift would vanish, but they are evolving while the photons traverse them, leading to a net
change, known as the Sachs-Wolfe effect. The detailed shape of the peaks is hard to approxi-
mate analytically, and requires solving Boltzmann equations that take into account the evolution of

3One might wonder why the COBE correlation rises at small angles while that of Planck becomes small at large `.
The angular resolution of COBE was much lower than that of Planck, probing only `. 25 [20].
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Figure 8: Illustration of the origin of CMB Doppler peaks. Sound waves of different wavelengths start
oscillating with nearly the same amplitude, but at different times, when they cross back inside the horizon,
k/a = H. Thus they are out of phase with each other at trec, when the universe becomes transparent and the
photons start freely streaming.

the density perturbations. This is all done in publicly available codes such as CAMB, part of the
CosmoMC package [21]. Clearly, the shape will be affected by the spectrum of the scalar power
since it determines the slope of the line bounding the oscillations, shown as horizontal in fig. 8.
Comparison with Planck data determines the spectral index as [13]

ns = 0.968±0.006 . (2.29)

Let’s now consider the prediction for ns from slow roll inflation. From eq. (2.25) we find

ns−1 =
d

dN

(
3lnV −2lnV ′

)
=

(
3

V ′

V
−2

V ′′

V

)
dϕ

dN
. (2.30)

Since dN = Hdt, it follows that dϕ/dN = ϕ̇/H. Then using the slow roll equation (2.8) we get

dϕ

dN
=− V ′

3H2 =−m2
p
V ′

V
(2.31)

and
ns−1 =−6ε +2η +O(ε2,η2,εη , . . .) (2.32)

with higher-order slow roll parameters included in the dots.
The amplitude of the scalar power is constrained by the magnitude of the C`’s:

As =
H4

(2πϕ̇)2 =
V

24π2m4
pε

= e3.1×10−10 (2.33)

where the manner of expressing the experimental value is Planck’s convention [13]. Implicit in this
equation is the choice of a reference scale

k∗ =
1

20Mpc
(2.34)
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at which all quantities are evaluated (using the horizon crossing condition to associate k∗ with a
field value ϕ∗). One can infer from (2.33) the constraint∣∣∣∣∣ V 3/2

m3
pV ′

∣∣∣∣∣= 5.1×10−4 (2.35)

(again at k∗), which fixes the overall magnitude of V in a given model of inflation.

��
��
��

��
��
��

��
��
��

��
��
��

E−mode B−mode

Figure 9: Left: constraints on r versus ns from ref. [13]. Right: E- and B-mode polarizations.

In addition to the scalar perturbation, gravity waves get quantum fluctuations during inflation
with the same amplitude as the inflaton field,

δ (hµν)k ∼
H
2π

(2.36)

but with no further modulation by factors like H/ϕ̇ since there is no potential for the graviton.
The gravitational potential wells produced by these fluctuations give a separate contribution to the
Sachs-Wolfe effect, beyond those coming from the density perturbations. However, they are only
effective at large scales, `� 100 (corresponding to k−1 � 100Mpc), because at smaller scales,
these tensor fluctuations re-enter the horizon before trec and get Hubble damped, just like any other
kind of radiation. The tensor modes that are not Hubble-damped can boost the CMB power in the
blue-shaded region of fig. 7(right). The power spectrum associated with them is denoted by

Pt =
2

m2
p

(
H
2π

)2

≡ At

(
k
k∗

)nt−1

(2.37)

The tensor-to-scalar ratio is

r =
At

As
= 16ε (2.38)

which roughly quantifies the relative contributions from tensors and scalars to the C`’s at low `.
The lack of evidence for any such contribution results in the upper bound [13]

r < 0.1 (2.39)
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where the reference scale is smaller, k = (500Mpc)−1, appropriate to the region of `-space where
the tensor contribution can be appreciable. The limit on r can be translated into an upper bound on
the energy scale of inflation, since eq. (2.37) depends only on H2 =V/3m2

p and not V ′:

V 1/4
∗ . 2×1016 GeV (2.40)

The combined constraints on ns and r are shown in fig. 9(left) taken from ref. [13]. These
results illustrate the importance of the separate measurements of the CMB polarization that Planck
has carried out. The polarization is conventionally separated into two independent components,
the E-mode which is curl-free and the B-mode which is divergenceless, illustrated in fig. 9(right).
E-modes are produced by scalar δρ/ρ fluctuations, while B-modes are only produced by tensor
perturbations (or foregrounds dominated by thermally emitting dust in the galaxy). Planck has ob-
served E-modes through their cross-correlations with temperature fluctuations, 〈δT E〉, and their
autocorrelations, 〈E E〉, and inclusion of these data strengthen the constraints. The 〈BB〉 corre-
lations remain a holy grail of CMB detection, since they would provide more direct evidence of
primordial inflationary tensor fluctuations than r. There was excitement when BICEP2 claimed
such a detection [22], but this turned out to be dust [23].

2.5 Example: chaotic inflation

We now work through a specific example to show what is needed to test a model against the
data, namely chaotic inflation [24]. (The name originates from a picture wherein the universe starts
in a disordered state, far from the minimum of the potential, with energy density near the Planck
scale. Inflation can get started in any region of size of several Planck lengths if it fluctuates into a
somewhat homogeneous state. Once inflation starts, inhomogeneities are quickly damped, and the
inflating regions becomes much larger than those where inflation has not yet begun.) For simplicity,
the potential is taken to be monomial,

V (ϕ) = λm4
p(ϕ/mp)

p (2.41)

with p > 0. The Hubble parameter is then

H =

√
λ

3
mp

(
ϕ

mp

)p/2

(2.42)

and the slow-roll equation is

3Hϕ̇ = 3H2 dϕ

dN
=−V ′ =−λ pm3

p(ϕ/mp)
p−1 (2.43)

We can define N to be the number of e-foldings until the end of inflation, assuming ϕ = ϕe at
this time. Then eq. (2.43) can be integrated,

N =−
∫

φe

ϕ

dϕ
3H2

V ′
=

1
2pm2

p

(
ϕ

2−ϕ
2
e
)

(2.44)

Since V ′/V = p/ϕ and V ′′/V = p(p−1)/ϕ2, the slow-roll parameters are

ε =
p2

2

(
mp

ϕ

)2

, η = p(p−1)
(

mp

ϕ

)2

(2.45)
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We see that superPlanckian field values are necessary to justify slow roll. The spectral index is then

ns−1 =−p(p+2)
(

mp

ϕ

)2

(2.46)

which is always negative, called a red-tilted spectrum.
For most interesting values of p, inflation will end when ε = 1 (occurring before η = 1), giving

ϕe ∼=
p√
2

mp (2.47)

We can then use (2.44) to reexpress ns as

ns−1 =− p+2
(2N + p/2)

∼=−
(1+ p/2)

N
(2.48)

The approximation is valid since we will be evaluating (2.48) at horizon crossing of the reference
scale k∗, when N� 1.

To compare to Planck data, we must evaluate ns − 1 using the value N∗ corresponding to
horizon crossing of the relevant mode k∗, eq. (2.18). The second term on the right-hand-side is
lnk∗/a0H0 = 5.4, but the third term depends upon λ , which we have not yet determined, and the last
one depends upon the reheat temperature Trh, which is not known until we specify the theory more
completely to determine how reheating takes place. To find λ we need to use the normalization of
the scalar power amplitude (sometimes called the COBE normalization), eq. (2.35),

V 3/2

m3
pV ′

=

√
λ

p

(
ϕ∗
mp

)1+p/2

= 5×10−4 (2.49)

which fixes

λ ∼=
25×10−8 p2

(p(2N∗+ p/2))1+p/2 (2.50)

We see that the equation for N∗ has become transcendental, but with only a weak log dependence
of N∗ on the r.h.s. which can be solved by iteration. Knowing λ , we have information about the
energy scale of inflation,

V∗ = (0.022mp)
4 p

2N∗
(2.51)

which we see is generically not far below the Planck scale, and in danger of conflicting with the
tensor bound (2.40) unless p is small. This can also be seen in terms of r,

r = 16ε =
4p
N∗

(2.52)

which is 0.07 p at N∗ = 55, for example.
We still don’t know what to take for Trh, so the Planck collaboration and many practitioners

take it to be a free parameter, letting N∗ vary between 50 and 60 to allow for the uncertainty. Given
the nominal dependence N∗ ∼ (1/3) lnTrh this might seem excessively generous and you are free
to make more restrictive assumptions about Trh. In any case, the resulting predictions for chaotic
inflation are shown as the diagonal line segments bounded by heavy dots in fig. 10. Of the cases
shown, only p = 2/3 even lies in the 2σ allowed region. Such fractional powers may seem peculiar
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p=3

p=2

60

50

p=4/3

p=2/3

p=1

ns

r
Planck 2015,

1502.02114

R2

Figure 10: Predictions of chaotic inflation for r versus ns, overlaid on the Planck allowed regions.

from the point of view of renormalizable field theories, but can arise as an effective description for
large values of ϕ in the context of string-motivated axion monodromy models [25], for example.

The best-fitting model indicated on fig. 10 is Starobinsky’s R2 inflation [12], that can be
mapped onto a scalar field inflation model with potential of the form

V (ϕ) = Λ
4
(

1− exp(−
√

2/3ϕ/mp)
)2

(2.53)

(we will explain how, below; see eq. (2.89)). More generally, current Planck data prefer models
with a convex potential. These include Hilltop models [26]

V = Λ
4 (1− (ϕ/µ)p + . . .) (2.54)

and Higgs inflation, where the total action is

S =
∫

d 4x
√
−g
(
Lgrav +LSM +ξ R|H|2

)
(2.55)

As we will show at the end of this chapter, this can be transformed to scalar potential similar to that
of R2 gravity by going to the Einstein frame.

Sometimes one prefers to solve the coupled inflaton/Friedmann equations numerically instead
of using the slow roll approximation (see [27]) for details), particularly if the inflaton has a non-
canonical kinetic term 1

2 f (ϕ)ϕ̇2, or if there are several fields. This can be done efficiently in terms
of the canonical field momentum

π =
δL

δ ϕ̇
= f (ϕ)ϕ̇ (2.56)

Then
H =

1√
3mp

(Lkin +V )1/2 (2.57)

and the equations of motion can be written in first-order form

dπ

dN
≡ π

′ =−3π +
1
H

∂

∂ϕ
(Lkin−V )

dϕ

dN
≡ ϕ

′ =
π

f H
(2.58)
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~ln V/ε

Nend

N

crossing
horizon

N =

Nend − "60"

ln Ps

* end of inflation

Figure 11: Typical dependence of the scalar power on the number of e-foldings in a numerical solution.

The end of inflation is easy to recognize since the fields start oscillating around the minimum of the
potential; this behavior can typically be followed for numerous periods of oscillations before the
Runge-Kutta step size shrinks to zero and creates an exception in the code. The exact expression
for the spectral index is

ns−1 =
d lnPs

d lnk
=

d lnPs

dN

(
1+

d lnH
dN

)−1

(2.59)

where the correction term (. . .)−1 is usually very close to unity. The quantity lnPs as a function of
N will resemble fig. 11. By evaluating it at N∗ (using eq. (2.18)) one can match to the observed
spectrum.

2.6 Filling in some details

The previous section was meant to give an intuitive understanding of inflation, and to allow
you to start confronting your favorite model against data. Here we would like to sketch some of the
details that would be needed for a deeper or more rigorous understanding. Some useful references
for this material include [28, 29, 30, 31] and others we will cite below.

2.6.1 Quantum fluctuations of the inflaton

First we want to explain the origin of the quantum fluctuation δϕ = H/2π . This is straight-
forward to derive, by canonically quantizing a free scalar field in an FRW background, that we can
approximate as de Sitter space. The expansion of ϕ in Fourier modes looks the same as in flat
space,

ϕ(x) =
∫ d 3k

(2π)3/2

(
akψk(x)+a†

kψ
∗
k (x)

)
(2.60)

except that the mode functions now have a different time dependence,

ψk = ei~k·~x fk(t) (2.61)

where (using a = eHt for a pure dS background),

f̈k +3H ḟk +
(
m2 + k2e−2Ht) fk = 0 (2.62)

16



P
o
S
(
T
A
S
I
2
0
1
8
)
0
0
1

Early Universe James M. Cline

If ϕ is the inflaton then necessarily m2�H2 during inflation, to have slow roll, and k/a = ke−Ht >

H before horizon crossing. Hence we can ignore the mass and solve (2.62) in the m = 0 limit.
Defining z = ke−Ht/H, the solution can be written

fk = Cz3/2 (J3/2(z)+ iY3/2(z)
)

= −C

√
2
π

z(i+ z)eiz (2.63)

with a normalization constant C to be determined. The particular combination of the independent
solutions J3/2 and Y3/2 was chosen with hindsight, since we want this to agree with the usual
Minkowski space solution in the limit H→ 0, where up to an irrelevant phase

fk→C

√
2
π

k
H

e−ikt (2.64)

This shows that we took the right linear combination, and it fixes the normalization constant to be

C =
H
k

√
π

4k
(2.65)

Now we can compute the r.m.s. fluctuations of ϕ using the usual property of the creation and
annihilation operators, 〈0|aka†

k′ |0〉= δ (3)(~k−~k′):

〈
0|ϕ2(x)|0

〉
=
∫ d 3k

(2π)3 | fk|2 =
∫ d 3k

(2π)3
H2

2k3

(
1+

k2

H2 e−2Ht
)

(2.66)

The second term is just the usual UV-divergent contribution already present in Minkowski space,
as can be seen from the fact that the factors of H cancel out, and e−2Ht can be absorbed by rescaling
k→ kphyseHt . We don’t care about this term because it can be removed by renormalization, and
in any case its contributions are only important at distance scales that are much too small to be
cosmologically relevant. This first term however is new, and is associated with being in the dS
background. The structure d 3k/k3 shows that equal power is present in the fluctuations from every
logarithmic interval of k, and this corresponds to a scale-invariant spectrum.

z3/2J
3/2

z3/2Y
3/2

H−1

oscillating horizon crossing frozen

time

Figure 12: Left: time-dependence of the inflation fluctuation modes, as a function of z = ke−Ht/H. Right:
illustration of the freezing of the mode functions following horizon crossing.

The shape of the solutions (2.63) can give some insight into the significance of horizon cross-
ing. Fig. 12(left) shows that the mode functions stop oscillating at lates times (small z), starting
around z = 1, which is when the corresponding wavelength goes outside the horizon. Thereafter
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they remain “frozen” until later reentry into the horizon. This behavior is illustrated more qualita-
tively in fig. 12(right). It is argued [32] that horizon crossing corresponds to the transition between
quantum and classical behavior of the fluctuations. We can express the classical field as

ϕ(x) =
∫ d 3k

(2π)3 ϕk eik·x (2.67)

having a volume-averaged fluctuation

〈ϕ2〉= 1
V

∫
d 3xϕ

2(x) =
1
V

∫ d 3k
(2π)3 |ϕk|2 (2.68)

Comparison with (2.66) shows that therefore ϕk = H
√

V/2k3, which leads to a scale-invariant
power spectrum,

Pϕ ∝ k3|ϕk|2 ⇐⇒ 〈ϕ2〉 ∼
∫ dk

k
Pϕ (2.69)

The equal power in each logarithmic interval of scales implies that every e-folding of inflation also
contributes equal power.

2.6.2 Cosmological perturbation theory

Our description of fluctuations is still over-simplified, since δϕ induces perturbations in the
metric that cannot be ignored. To properly understand the interplay requires cosmological pertur-
bation theory, which is reviewed in the references by Liddle and Lyth, as well as [33, 34, 35]. The
general perturbation to the metric can be written as

δgµν =

(
2φ −2a2B,i

−2a2B,i 2(ψδi j +E,i j)a2

)
(2.70)

These perturbations can be decomposed in Lorentz scalars, vectors, and tensors (gravity waves).
Vector perturbations always decay in expanding space and we therefore neglect them.

By gauge transformations (diffeomorphisms),

xµ → xµ +ξ
µ(x) (2.71)

some of the functions in (2.70) can be set to zero. For example in the conformal Newtonian, a.k.a.
longitudinal gauge,

E, = B,i = 0 (2.72)

and furthermore the perturbed Einstein equations imply ψ = φ as long as there is no anisotropic
stress, Ti j = Tji. Another popular choice of gauge is the comoving one, in which the inflaton
fluctuation is defined to vanish (by demanding the surfaces of constant time have uniform energy
density),

δφ = 0, B,i = 0 (2.73)

An important quantity is the curvature perturbation R, defined by generalizing the Friedmann
equation to include the effects of inhomogeneity:

H2(x, t) =
ρ(x, t)
3m2

p
+ 2

3
∇2

a2 R (2.74)
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It is related to the 3D curvature of the spatial surfaces on comoving foliations as

R(3) =
4k2

a2 R (2.75)

in Fourier space, and it coincides with Bardeen’s ζ variable mentioned previously. The utility of
R is that it does not evolve for superhorizon modes in single-field inflation (where entropy and
anisotropic stress perturbations vanish). Therefore if one can compute it at horizon exit, then the
same value applies at the moment of horizon reentry, at which time the equations of classical linear
perturbation evolution take over (to predict large scale structure or temperature fluctuations).

The expression for R in terms of metric perturbations generally depends upon the choice of
gauge, but it can be written in way that is independent of the gauge [36]

R =−
(

Ψ+
H
φ̇

∆ϕ

)
(2.76)

where

Ψ ≡ φ +
1
a

[
(B−E ′)a

]′
∆ϕ = δϕ +(B−E ′)ϕ ′ (2.77)

and prime denotes the derivative with respect to conformal time η , with dt = adη . To rigorously
compute the quantum fluctuations of the inflaton, one must quantize R since the canonically nor-
malized field is a linear combination of metric and inflaton perturbations (see also [37]). However
the magnitude of this fluctuation turns out to be the same as in the simplified approach, giving a
scalar power spectrum that is nearly scale invariant with amplitude going as H4/φ̇ 2.

2.7 Variations on the simplest inflation models

Thus far we have assumed inflation is driven by a single scalar field with nothing too exotic
about its Lagrangian, and perturbative decays of the inflaton after inflation. To finish this lecture on
inflation I would like to mention some slightly more complicated scenarios that have been widely
studied.

adiabatic

CDM
isocurvature

Planck 2013, 1305.5082

Figure 13: Comparison of CMB Doppler peaks predicted by pure isocurvature versus adiabatic perturba-
tions. Adapted from ref. [38].
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2.7.1 Isocurvature fluctuations

The density perturbations we have considered so far are called “adiabatic,” such the perturba-
tions in separate components (baryons, cold dark matter, photons, neutrinos) are related by

δρb

ρb
=

δρCDM

ρCKM
= 3

4
δργ

ργ

= 3
4

δρν

ρν

(2.78)

The factor of 3/4 can be understood from the fact that there is a single temperature fluctuation
controlling the densities:

ργ ∼ T 4, =⇒
δργ

ργ

= 4
δT
T

,

ρCDM ∼ mT 3, =⇒ δρCDM

ρCDM
= 3

δT
T

(2.79)

and this is sourced by the curvature fluctuation R.
In multifield inflation models, it is possible to have fluctuations of different particle species

that violate the adiabatic condition. An orthogonal possibility is that particle number fluctuates
between different species in a way that keeps the total δρ and R equal to zero. In such a case, the
entropy is perturbed, hence these are known as entropy or isocurvature fluctuations.

In multifield inflation, at least two particles are approximately massless, m2
i �H2, but isocur-

vature perturbations can arise even if only one field controls inflation, while a second light field
eventually contributes significantly to the energy density of the universe. An example is the axion.
Its isocurvature fluctuation can be quantified in terms of its number density, compared to the total
entropy density s, through the parameter

Sa =
δ (na/s)

na/s
=

δna

na
−3

δT
T
∼=

δna

na
(2.80)

which would vanish for an adiabatic perturbation. The neglect of δT/T follows from the fact that
δρ ∼ maδna + δT nγ = 0 for an entropy fluctuation [2], and ρa � ρ . A very small temperature
fluctuation can compensate for δna in the total energy density to keep δρ = 0, since only one
degree of freedom is being compensated by many.

Running the CMB Boltzmann codes with isocurvature rather than adiabatic fluctuations gives
a pattern of acoustic peaks that look very different, in strong disagreement with observations, as
illustrated in fig. 13. Analysis shows that isocurvature modes can contribute no more than about
7% of the total perturbation. Such considerations rule out low values of the axion decay constant,
depending upon the assumed Hubble rate during inflation [13].

An interesting variation can occur if the isocurvature fluctuation is able to decay later on and
convert to adiabatic form, for example by decay into radiation. This opens the possibility that the
inflaton fluctuation could much smaller than normally assumed, and the perturbations all arise from
a second field, known as the curvaton [39].

2.7.2 Nongaussianity

The adiabatic fluctuations in standard inflation behave as a Gaussian random variable, to a
good approximation, with higher-point correlation functions being slow-roll suppressed:

〈(δφ)3〉 ∼V ′′′ (2.81)
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The nonlinearity of gravity also induces nongaussian correlations, but these are Planck-suppressed.
The corresponding CMB temperature correlations 〈(δT )3〉 are thus expected to be very small. Any
nongaussian correlations should ultimately arise from their counterparts in the curvature perturba-
tion, the bispectrum

〈ζk1ζk2ζk3〉= f (~k1,~k2) (2.82)

which depends upon two independent wave vectors since translational invariance implies ∑~ki = 0.
In multifield models of inflation, or single field models with complicated kinetic terms, sig-

nificant nongaussianity can arise. A simple way of parametrizing it is to define a nongaussian
curvature perturbation contructed from the Gaussian one via a nonlinearity parameter fNL [40]

ζNG = ζ + fNL
(
ζ

2−〈ζ 2〉
)

(2.83)

so that
〈ζ ζ ζ 〉 ∼ fNL〈ζ ζ 〉2 (2.84)

This gives a phenomenological way of characterizing the level of nongaussianity that typical mod-
els like multi-field inflation might predict, although the ki-dependence (“shape”) of the bispectrum
may not match the simple form predicted by (2.84) in a given model. Planck currently constraints
| fNL|. 10, depending upon the shape. Theorists continue to explore the possible implications of a
future detection of nongaussianity; see for example [41].

2.7.3 Preheating

Perturbative decay of the inflaton is a relatively inefficient reheating mechanism, in the sense
that typically the reheat temperature is suppressed, Trh � Λi. More efficient means of particle
production can occur in the background of the oscillating inflation, namely parametric resonance,
which can occur much faster than perturbative decay [42, 43, 44, 45]. This mechanism can work
even if the inflaton is a stable particle, allowing for the possibility that the inflaton could be the dark
matter [46]. For certain kinds of inflaton potentials (e.g., ϕn with n > 4 during the reheating stage),
conventional reheating may be particularly inefficient, and superseded by gravitational particle
production, a mechanism that only relies upon the change in the time-dependence of the scale
factor between inflation and conventional FRW expansion [47].

2.8 Current outlook

The inflationary models that currently give the best fit to data seem to be ones having a non-
minimal coupling of the inflaton to gravity:

LJ =
√
−gJ

(1
2 RJ(m2

p +ξ ϕ
2)+ 1

2(∂ϕ)2−V (ϕ)
)

(2.85)

where the subscript J denotes that we are in the Jordan frame, in which the gravitational constant
varies with time due to the evolution of ϕ . Cosmology is best understood by going to the Einstein
frame via a Weyl rescaling of the metric,

gµν

E =
gµν

J
Ω2 , Ω

2 = 1+ξ ϕ
2/m2

p (2.86)
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This induces a complicated kinetic term for ϕ , and the canonically normalized inflaton χ is related
to ϕ by

dχ

dϕ
=

(
Ω2 +6ξ 2ϕ2/m2

p

Ω4

)1/2

(2.87)

In the Einstein frame, the Lagrangian reads

LE =
√
−gE

(
1
2 m2

pRE + 1
2(∂ χ)2− V

Ω4

)
(2.88)

The nice thing about this is that it makes any renormalizable potential V convex, favored by Planck
data. In particular if V ∼ ϕ4 at large field values, V/Ω4 becomes flat. This feature enables allows
one to identify the standard model Higgs as the inflaton [48], or to rescue models of chaotic inflation
with large values of the exponent [49].

Even the best fitting model, Starobinsky’s R2 inflation, can be understood in this way, by in-
troducing a dimensionless auxiliary scalar field to the Einstein-Hilbert action, with the Lagrangian
[50]

L = 1
2 m2

p(1+ϕ)R− 3
4 M2m2

p(ϕ−1) (2.89)

Integrating out ϕ trivially leads to the R2 term in the gravitational action,

L → 1
2 m2

p

(
R+

R2

6M2

)
(2.90)

But instead of integrating it out, one can transform to the Einstein frame, which generates a kinetic
term for ϕ and gives the canonically normalized inflaton a potential of the form

V (χ)∼ m2
pM2

(
1− e−

√
2/3χ/mp

)2
(2.91)

with the predicted spectral index and tensor ratio

ns−1∼=−
2

N∗
, r ∼=

12
N2
∗
≈ 10−4 (2.92)

2.9 Exercises

1. Scalar field in FRW background.
(a) Write the Lagrangian for a scalar field in a FRW gravitational background and show that its
equation of motion is

ϕ̈ +3Hϕ̇− 1
a2 ∇

2
ϕ =−∂V

∂ϕ

where H = ȧ/a.
(b) Now consider a free massive scalar, with frequency ω � H. Using the ansatz

ϕ = ϕ0 exp
(
−i
[∫ t

dt ω−~k ·~x
]
− f (t)

)
+ c.c.

22



P
o
S
(
T
A
S
I
2
0
1
8
)
0
0
1

Early Universe James M. Cline

show that ω =±
√
(k/a)2 +m2 gives a solution, with f ∼ lna if m� H� k/a and f ∼ (3/2) lna

if m� H.
(c) The stress-energy tensor is

Tµν =
δS

δgµν
= ∂µϕ∂νϕ−ηµνL

Using the solution from (b), find 〈Tµν〉, averaging over oscillations. Average over directions of
~k to verify that p = ρ/3 if m� k/a and p ∼= 0 if m� k/a. Also show that ρ ∼ 1/a4 or 1/a3

respectively, for these two cases.
(d) A gas of relativistic scalar particles has ρ = π2T 4/30. If the classical solution (b) gets thermal-
ized into particles, how is T related to the parameters of that solution? Repeat for a nonrelativistic
gas with ρ ≈ (mT/2π)3/2.

2. Perturbative reheating. At the end of inflation, the Hubble parameter is

H =
1√
3mp

(
ρϕ +ρr

)1/2

where the oscillating and decaying inflaton has energy density

ρϕ =
Ve

a3 e−Γt

if Ve was the scalar field energy density at the end of inflation and Γ is the decay rate. (For conve-
nience we take a = 1 and t ∼= 0 at the end of inflation.) ρr is the energy density of the radiation that
is produced by the decays. It satisfies the Boltzmann equation

d
dt

(
a4

ρr
)
= a4

Γρϕ

where the factor a4 accounts for the redshifting and dilution of the radiation in a comoving volume
a3. At times before 1/Γ, it is a good approximation to ignore ρr compared to ρϕ in the Friedmann
equation, because of the redshifting, and also to approximate e−Γt/2 ∼= 1. Use these approximations
to simultaneously solve the two equations and show that ρr ∼ (T/a)4 at late times & 1/Γ, with the
dependence on Ve cancelling out.

3. Hilltop inflation. Analyze the hilltop inflation model, V = Λ4(1− (ϕ/µ)2) in the slow-roll
approximation, assuming that horizon crossing of the relevant mode occurs at N∗ = 60. Hint: show
that η dominates the spectral index, but ε controls the end of inflation. Find µ and Λ from the best
fit to ns and As, as well as ϕ∗ (the value of ϕ at horizon crossing) and the predicted tensor-to-scalar
ratio r.

4. Slow roll as attractor. The scalar field equation of motion is second order and has two
independent solutions, while the slow-roll approximation is first order and has only one. Find the
two independent solutions for the case where the initial condition is far from the slow-roll solution,
and show that they quickly decay, leaving only the slow-roll solution. Hint: expand the EOM
around ϕ = ϕsr +δϕ to linear order in δϕ and show that it satisfies

δ̈ϕ +(3+ ε)Hδ̇ϕ−3(ε−η)H2
δϕ = 1

3(ε−η)V ′ (2.93)
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where H and V ′ are evaluated at ϕsr. Then solve it using problem 1, treating H as approximately
constant, and neglecting the small inhomogeneous term.

5. A step potential. Suppose V has a sudden step when ϕ crosses ϕ0,

V =

{
aϕ +V2, ϕ > ϕ0

bϕ +V1, ϕ ≤ ϕ0

(a) From the scalar equation of motion, derive an equation for the discontinuity in ϕ̇ when ϕ crosses
ϕ0.
(b) Solve the slow-roll EOM on both sides of the step, and note that ϕ̇ does not have the right
discontinuity. However a linear combination of the transient solutions you found in problem 4 can
fix this problem; find it. Note that it should be applied only after crossing the step, since one can
presume the field was slowly rolling before it reached the step.
(c) The step leads to a modification of the power of the curvature or density fluctuations at the scale
corresponding to horizon crossing when ϕ passes the step. What does it look like?

3. Baryogenesis

According to our timeline, fig. 2, the next likely important event of early cosmology may have
been leptogenesis, or baryogenesis, depending upon when the dark matter was produced. In princi-
ple, the reheat temperature could have been too low for leptogenesis. BBN tells us that Trh & 1MeV
at the lowest, but it is hard to imagine creating the baryon asymmetry at such low temperatures. In
the following highly abbreviated account, I will focus on leptogenesis and electroweak baryogene-
sis as two popular theories for the origin of matter.

The present universe is observed to contain essentially only matter and no antimatter, except
for the rare antiparticles produced by cosmic rays. There is an asymmetry between baryons and
antibaryons (called the baryon asymmetry of the universe, BAU) that can be expressed as

η =
nB−nB

nγ

=

{
[5.8−6.6]×10−10, from BBN

(6.09±0.06)×10−10, from CMB
(3.1)

or
nB−nB

s
=

η

7.04
(3.2)

using the entropy density for reference. In the context of inflation it would be hard to imagine this
asymmetry arising as an initial condition, since entropy was generated during reheating, but any
preexisting baryon asymmetry was only diluted by the expansion of the universe, by a factor of
e−3N . It is therefore assumed that the BAU was created after inflation.

3.1 History

Sakharov is acknowledged as the first to seriously consider baryogenesis, in 1967 [51], and
three necessary conditions for creating the BAU are attributed to him: B violation, departure from
thermal equilibrium, and violation of C and CP. In the paper, he did not spell out these conditions as
being necessary, but rather put forward a rather vague model of superheavy particle decay leading

24



P
o
S
(
T
A
S
I
2
0
1
8
)
0
0
1

Early Universe James M. Cline

to a baryon asymmetry, mentioning that the decays would violate thermal equilibrium, and noting
the need for B and CP violation. There is no clear statement about the necessity of all these
ingredients. It was only around 1978-79 that their status started to be clarified. Ref. [52] presented
a model of B- and CP-violating out-of-equilibrium decays of a second Higgs doublet, in which the
three ingredients are clearly stated in the first paragraph, and Sakharov is cited. (In 1979 Sakharov
himself wrote a paper that was similar in spirit, in that it enunciated the conditions at the outset,
and cited the 1967 work, but in the context of GUTs.)

Outside of the Soviet Union, it took slightly longer to appreciate the need for going out of
thermal equilibrium. Yoshimura [53], probably unaware of Sakharov’s work, proposed that decay
of GUT bosons could produce the asymmetry, but he overlooked the out-of-equilibrium criterion,
and only by neglecting a cancelling contribution obtained a nonzero result. Its necessity was rigor-
ously proven in ref. [54] (also unaware of Sakharov) in a proposal for baryogenesis via black hole
evaporation. That reference also clearly shows the need for C, CP and B violation.

We will proceed by commenting on the three requirements.

3.2 The three laws

3.2.1 B violation

Although baryon number is a symmetry of the SM Lagrangian, it is violated at the quantum
level through the triangle anomaly. The baryon number current is

Jµ

B = 1
3 ∑

f
q̄ f γ

µq f (3.3)

where the sum is over quark flavors, and its divergence is [55]

∂µJµ

B =− g2
2

64π2 ε
µνρσW a

µνW a
ρσ (3.4)

in the presence of a background SU(2)L gauge field with strength W a
µν .

At zero temperature, the B-violating effects are through nonperturbative instanton configura-
tions involving the Higgs field and the W fields, whose action is S ∼ 8π2/g2

2 ∼ 187. Hence the
tunneling rate per unit volume is of order

Γ

V
∼ v4e−2S ∼ 10−160v4 (3.5)

where v∼ 100GeV represents the weak scale. Hence the number of baryon decays in the observ-
able universe, over its lifetime, would be

H−4
0

Γ

V
∼ 10−25 (3.6)

if only zero-temperature transitions were relevant. But at high temperatures T & v, electroweak
symmetry is restored and there is no barrier between the N-vacua of the SU(2)L gauge theory.
Transitions between these vacua result in the creation of quarks and leptons such that B and lepton
number L both change by 3 units, one per generation [56]. For details, see for example [57].

At high temperatures, sphalerons are the nonperturbative static field configurations that violate
B and L. One can think of the sphaleron as the top of the energy barrier separating the N-vacua,
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at temperatures below the electroweak phase transition (EWPT). Above the transition, when the
barrier disappears, the sphaleron is no longer a well-defined field configuration, but the same kind
of B- and L-violating transitions still occur, mediated by field configurations that have the same
topological properties as the low-temperature sphaleron. These transitions are no longer exponen-
tially suppressed since there is no tunneling; they are only suppressed by powers of the weak gauge
coupling. One can visualize the sphaleron transitions by a Feynman diagram with 9 left-handed
quarks and 3 left-handed leptons in the external states, even though there is no analytic expression
for the corresponding amplitude, at high T . Instead, lattice studies have determined the rate per
volume of these transitions [58],

Γ

V
= (1.05±0.08)×10−6 T 4 (3.7)

In a thermal volume V = 1/T 3 (which contains on average one particle of each type in the early
universe plasma), the corresponding rate goes as T , while the Hubble rate goes as H ∼ T 2/mp. This
implies that sphalerons come into equilibrium as T falls below 1013 GeV, and only go back out of
equilibrium at the EWPT when the exponential suppression comes into effect.

Therefore one of the criteria for baryogenesis is already present in the SM, provided that
Trh & 100GeV following inflation. We will focus on two paradigms for baryogenesis that take
advantage of this, but let’s mention a few other possible sources of B violation from physics beyond
the SM. It seems likely that such interactions should exist, since B is only an accidental symmetry
of the SM: the particle content and gauge symmetries of the SM forbid any B-violating operator of
dimension ≤ 4.

In the SU(5) GUT there are gauge bosons X and X ′ with interactions of the form

Xµ l̄lγµdc
R, Xµ ūc

Rγ
µqL, Xµ q̄Lγ

µec
R

X ′µ L̄lγ
µuc

R, X ′µ d̄c
Rγ

µqL (3.8)

where the superscript c denotes charge conjugation. Clearly there is no consistent way to assign
baryon number to Xµ or X ′µ . This source of B violation provided an early example of baryogenesis
through out of equilibrium decays of the heavy bosons [59].

In supersymmetry (SUSY) it is possible to write B-violating operators if R-parity is relaxed.
A superpotential term of the form

λ
′′UDD (3.9)

gives rise to potential terms in which two of the right-handed superfields are replaced by the cor-
responding quark, while the third becomes a squark. If L-violating operators are for some reason
forbidden, or sufficiently small, then proton decay will be suppressed despite the presence of the
UDD interactions.

3.3 Loss of thermal equilibrium

Departure from thermal equilibrium is needed to get a BAU, since any process in equilibrium
has the same rate as its time-reversed process, by definition. The out of equilibrium decay of a
heavy particle like the X or X ′ of SU(5) GUTs is a good example. Suppose that X can decay in
such a way as to produce more B than B̄. The inverse decays will simply undo this if the decays are
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in equilibrium. To quantify it, we must consider the Boltzmann equation for nB, which we define
to be the difference in densities of baryons and antibaryons. For simplicity, focus on the X ′ decays,
and assume that there are equal numbers of X ′ and its antiparticle X̄ ′ decaying in the plasma. There
must be a CP asymmetry in the decays, such that the net baryon number per decay is given by

ε =
1
3 Γ(X ′→ lu)− 2

3 Γ(X ′→ q̄d̄)− 1
3 Γ(X̄ ′→ l̄ū)+ 2

3 Γ(X̄ ′→ qd)
Γ(X ′→ any)+Γ(X̄ ′→ any)

(3.10)

The Boltzmann equation is

1
a3

d
dt
(a3nB) = ṅB +3HnB

= (nX ′+nX̄ ′)ΓX ′ε− ∑
y,z

X ′ or X̄ ′

By+znynzσ y+z→
X ′ or X̄ ′

vrel (3.11)

where y,z denote the different possible initial states of the inverse decays. The bottom line contains
the collision terms of the Boltzmann equation, and they cancel each other, by definition, when the
decays (and inverse decays) are in thermal equilibrium, giving ṅB = 0.

The form of (3.11) makes it mysterious that two such different looking terms could exactly
cancel each other. The original form of the collision term in terms of amplitudes M makes it clear
however. Consider the contribution from a single channel, say X ′→ lu. We label X ′ as particle 1, l
and u as 2 and 3. Defining the Lorentz-invariant phase space element as dΠi = d 3 p/[(2π)3(2E)],
the contribution to the collision term is

δC = ∏
i

∫
dΠi [ f1(1− f2)(1− f3)− f2 f3(1+ f1)] |M |2(2π)4

δ
(4)(p1− p2− p3) (3.12)

where fi are the Bose-Einstein or Fermi-Dirac distribution functions, (eβE ± 1)−1, and we have
included the effect of Pauli blocking or Bose enhancement in the final states. The term in square
brackets can be written as

[. . . ] = f1 f2 f3

[
eβ (E2+E3)− eβE1

]
(3.13)

using 1− f = eβE f for fermions and 1+ f = eβE f for bosons. Clearly (3.13) vanishes by energy
conservation, imposed by the delta function. But of course we have assumed that the distribution
functions are those corresponding to thermal equilibrium to get this result.

If X ′ decays out of equilibrium, its true distribution function is not Bose-Einstein, which would
imply its number density is

n =
g

(2π)3

∫ d 3 p
eβE −1

∼= g
(

mT
2π

)3/2

e−m/T (3.14)

for T � m. (g = 3 is the number of degrees of freedom for a massive vector.) Instead it is much
larger,

n∼ gζ (3)
π2 T 3e−Γt (3.15)

that is, the same as a radiation degree of freedom, except for the particles that disappeared due to
decays. Therefore we can, in some approximation, ignore the contribution of the inverse decays to
the collision term to estimate the baryon asymmetry.

27



P
o
S
(
T
A
S
I
2
0
1
8
)
0
0
1

Early Universe James M. Cline

Instead of using a3n as the dependent variable (which is not a bad choice since it remains
constant under the Hubble expansion, in the absence of collisions), it is convenient to use the
proportional quantity called the abundance

Yi =
ni

s
(3.16)

where s = (ρ + p)/T is the entropy density,

s =
2π2

45
g∗,sT 3 (3.17)

with

g∗,s = ∑
i

gi

(
Ti

T

)3

×

{
1, bosons
7
8 , fermions

(3.18)

which allows for different species to have temperatures Ti different from that of the photon (due to
kinetic decoupling of that species).

If we ignore the inverse decay term then the Boltzmann equation for the baryon abundance
simplifies to

ẎB ∼= 2YX ′ e−Γt
Γε (3.19)

which can readily be solved to yield the final abundance

YB|t→∞
= 2ε YX ′ |initial (3.20)

This is exactly as we would expect from the fact that each X ′ or X̄ ′ decay leads on average to ε

baryons.
To make a better estimate, we can keep the inverse decay term in the equation, and quantify it

using the detailed balance argument,

ẎB = 2εΓ
(
YX ′(t)−Y eq

X ′ (t)
)

(3.21)

which implies the collision term must vanish when X ′ is in equilibrium. Its actual abundance can
be estimated as YX ′,ie−Γt as before (where the initial value is YX ′,i

∼= 3/g∗,s ∼ 10−2, since X ′ is
approximately three degrees of freedom out of g∗,s total, ∼ 320 for supersymmetric SU(5) GUT),
while the equilibrium abundance is approximately

Y eq
X ′ (t)

∼= YX ′,i

{
1, T > m(m

T

)3/2 e−m/T , T < m
(3.22)

It is convenient to define a new time variable, x = m/T ; then

t =
0.301Mp√

g∗T 2 =
0.301Mp√

g∗m2 x2 =
x2

2H(m)
(3.23)

where Mp = 1.22× 1019 GeV is the unreduced Planck mass, and m is the mass of X ′. The last
equality follows from the fact that H = 1/2t during radiation domination, where H(m) denotes the
Hubble parameter when T = m. One can integrate (3.21) to find that

YB(∞) =
εYX ′Γ

H(m)

[
2

H(m)

Γ
−O(1)

]
(3.24)

We leave this as an exercise. It shows that the washout correction is small as long as Γ� H(m).
This is exactly the condition for the decays to be out of equilibrium: the reaction rate must fall
below the expansion rate.
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3.3.1 C,CP violation

In the previous example the role of the asymmetry parameter ε was clear. It is the quantity
that vanishes if charge conjugation C or its combination with parity, CP, is conserved. Let’s recall
how fields transform under these discrete symmetries. A Dirac fermion ψ goes as

P : ψ =

(
ψL

ψR

)
→
(

ψR

ψL

)
(t,−~x)

C : ψ →
(

σ2ψ∗L
−σ2ψ∗R

)
(t,~x)

CP : ψ →
(

σ2ψ∗R
−σ2ψ∗L

)
(t,−~x) (3.25)

while for a complex vector X µ ,

P : X µ → (X0,−X i)(t,−~x)
C : X µ →−(X µ)∗(t,~x)

CP : X µ → (−X0,X i)∗(t,−~x) (3.26)

One can show that under CP, a Lagrangian allowing for X → χ̄ψ decays transforms as

λψ̄X µ
γµ χ +λ

∗
χ̄X̄ µ

γµψ → λ
∗
ψ̄X µ

γµ χ +λ χ̄X̄ µ
γµψ (3.27)

Therefore one needs a complex coupling, λ 6= λ ∗, to have CP violation. This is exactly how CP
violation comes into the standard model Lagrangian, via the CKM matrix in the W boson couplings
to quark currents.

While complex couplings are a necessary condition for CP violation, they are not sufficient.
Notice that at tree level, the decay rates Γ(X → ψχ̄) and Γ(X̄ → ψ̄χ) both go like |λ |2, where
the phase is irrelevant. In fact the phase is unphysical in the simple model (3.27) since it can be
removed by a field redefinition,

X µ → e−iθ X µ or χ → e−iθ
χ or ψ → eiθ

ψ (3.28)

where λ = |λ |eiθ .

χ χ

ψ

λ2
∗

X X

ψ ψ

λ1
χ

g2

g1
*

Φ+

χ

X

ψ

Figure 14: Left: toy model for generating CP asymmetry in X → ψχ̄ versus X̄ → ψ̄χ decays. Right: cut
version of loop, for applying the Cutkosky rule.

To make a phase physical, we need more interactions—enough so that not all phases can be
removed by field redefinitions. For example

λ1ψ̄ /Xχ +λ2ψ̄ /̄Xχ +g1Φψ̄ψ
c +g2Φχ̄χ

c +h.c. (3.29)
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where Φ could be a real or complex scalar. Now consider the decay X → ψχ̄ including one-loop
corrections, as shown in fig. 14(left). The interference between tree and loop diagrams produces
the CP asymmetry,

ε =
|MX→ψχ̄ |2−|MX̄→ψ̄χ |2

|MX→ψχ̄ |2 + |MX̄→ψ̄χ |2
(3.30)

because the loop diagram gets an imaginary part, predicted by the optical theorem or unitarity of
the S-matrix. This tells us that the matrix element has an imaginary part

2ImMX→ψχ̄ = ∑
ψ̄,χ

spins

∫
dΠψ̄ dΠχ MX→ψ̄χ Mψ̄χ→ψχ̄ (3.31)

The r.h.s. corresponds to the loop diagram shown in fig. 14(right) with the internal propagators
“cut” (put on their mass shell) according to the Cutkosky rule [60], where the cut propagators are
replaced by

i
p2−m2 + iε

→ 2π θ(p0)δ (p2−m2) (3.32)

This rule also applies to fermionic propagators once they have been rationalized, i(/p−m+ iε)−1 =

i(/p+m)/(p2−m2 + iε), i.e., just multiply everything by (/p+m).
As a consquence, the form of the tree plus loop contributions for the respective decays is

MX→ψχ̄ ∼ λ1 +λ
∗
2 g∗1g2 (A+ iB),

MX̄→ψ̄χ ∼ λ
∗
1 +λ2 g1g∗2 (A+ iB),

(3.33)

The important point is that there is no complex conjugation of A+ iB, which arises purely from the
kinematics of the loop. We then infer

ε ∼=
iB
|λ1|2

(λ1 λ2 g1 g∗2− c.c.) =− 2B
|λ1|2

Im(λ1 λ2 g1 g∗2) (3.34)

In this example, the CP-violating phase that is invariant under field redefinitions is the argument
of λ1λ2g1g∗2, so indeed we needed all four couplings nonvanishing to have CP violation in this toy
model.

H H

L L

Figure 15: Neutrino mass operator induced by integrating out heavy sterile neutrinos.
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3.4 Leptogenesis

Leptogenesis is one of the most popular models for explaining the baryon asymmetry, because
it requires hardly any new physics ingredients beyond those needed to explain neutrino masses
by the seesaw mechanism. This is most simply accomplished by introducing several heavy right-
handed neutrinos Ni, singlets under the SM gauge group, that couple to lepton doublets and the
Higgs via

yν ,i jL̄iH̃NR, j +h.c. (3.35)

where H̃ = iτ2H∗ = (H0∗,−H−)T . The heavy neutrinos have Majorana masses (without loss of
generality we can work in the mass eigenbasis for the Nis):

1
2 M jN̄ jNc

j (3.36)

Integrating out the heavy N j produces the dimension-5 Weinberg operator

(yνM−1yT
ν )i j(L̄iH̃)(H̃T Lc

j) (3.37)

as shown in fig. 15. Electroweak symmetry breaking then gives the light neutrino mass matrix

mν ,i j = v2(yνM−1yT
ν )i j (3.38)

with v = 246GeV.
The cross in fig. 15 denotes an insertion of the heavy neutrino mass in the internal propagator,

to explain the clash of arrows showing the flow of lepton number. The Majorana mass term (3.36)
is the only interaction in the theory that violates lepton number (by two units), and so it must be
involved. Therefore only the M/(p2−M2) part of the propagator (/p+M)/(p2−M2) contributes.
Of course p2 is negligible at low energy so we can neglect it in the denominator. There are also
analogous loop diagrams with no mass insertions or clashes of arrows, that correct the real part of
the amplitude, but do not contribute to CP violation.

y
ν y

ν
*

y
ν

y
ν

y
ν
* y

ν
y
ν

N N

N

L L

L

H

HH

H

L

N

Figure 16: CP asymmetric decay of heavy sterile neutrinos for leptogenesis.

The out-of-equilibrium decays of N j→ LiHc can create a lepton asymmetry by the mechanism
illustrated in our toy model. The relevant diagrams are given in fig. 16. This produces a lepton
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asymmetry, which sphaleron interactions will partially convert into the baryon asymmetry, with
YB ∼ −1

3YL. There are many useful reviews of leptogenesis, including [61, 62]. I will give a brief
synopsis of the main results here.

First, the CP asymmetry for decays of N j can be computed from the diagrams in fig. 16 as in
the toy model, by interfering the tree-level and cut loop diagrams. The result takes the form

ε j =−
3

8π
∑
i 6= j

Im[(y†
νyν)

2
i j]

(y†
νy) j j

f
(

M j

Mi

)
(3.39)

where f is the loop function. In the case of hierarchical heavy neutrino masses, with M1�M2,3,
f → M1/Mi. It is obvious that we need at least two families of N j since if i = j = 1 there is no
imaginary part. By considering all possible forms for the neutrino Dirac mass matrix, Davidson
and Ibarra derived a famous bound in the hierarchical case [63],

|ε1| ≤
3

16π

M1

v2 (m3−m2) (3.40)

in terms of the light neutrino mass eigenvalues mi. Atmospheric neutrino oscillations fix m2
3−m2

2 ∼
(0.05eV)2, so if the light ν mass spectrum is also hierarchical, the bound (3.40) implies

|ε1|.
M1

2×1016 GeV
(3.41)

If M1 � M2,3, we expect that N1 decays will give the dominant contribution to the lepton
asymmetry, because of ∆L = 2 washout processes mediated by N1 exchange, shown in fig. 15
where N1 is the virtual state. This interaction tends to relax the asymmetry from N2,3 decays toward
zero until T < M1, when it starts to go out of equilibrium. By this time the heavier neutrinos are
long gone. But this washout process also reduces the asymmetry from the N1 decays and must
be included in the Boltzmann equations to get an accurate result. One can consider two coupled
equations, one for the lepton abundance and one for that of N1, which take the form [61]

dYN1

dx
= (−D+S)(YN1−Y eq

N1
)

dYL

dx
= −ε1D(YN1−Y eq

N1
)−WYL (3.42)

Here D is the decay rate, S is the rate of ∆L = 1 scatterings (for example NL→ tQ3 mediated by H
exchange in the s-channel), and W is the washout rate from both ∆L = 1 and 2 scatterings.

The out-of-equilibrium criterion for the N1 decays can be quantified in terms of an “effective
neutrino mass” m̃1 and an “equilibrium neutrino mass” m∗,

m̃1 ≡
v2

M1
(y†

νyν)11 < m∗ ≡
16π5/2

3
√

5
√

g∗
v2

Mp

∼= 10−3 eV (3.43)

m̃1 is only “effective” because it has the wrong kind of indices (belonging to the heavy right-handed
neutrinos) to be part of the light neutrino mass matrix. We emphasize that the inequality need not
be literally satisfied; instead one will pay a penalty in the produced asymmetry going as m∗/m̃1 if
it is not, on which we will elaborate shortly.
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Recall our naive estimate in the toy model that

YL ∼
ε

g∗,s
(3.44)

based on the idea that each N1 decay yields on average ε leptons. This ignores the effect of washout,
but it can be corrected by introducing an “efficiency factor” κ ,

YL ∼ κ
ε

g∗,s
(3.45)

which can be calculated in a given model by numerically solving the Boltzmann equations. One
finds that κ can be fit to an approximate formula [61]

κ ∼= 0.02
(

0.01eV
m̃1

)
(3.46)

if m̃1 & 10−3 eV, which is known as the “strong washout regime.” In this case, N1 is decaying not
far out of equilibrium, so the washout processes are very effective, and the lepton asymmetry is
accordingly reduced. Why would one want to work in this inefficient regime? It has the advantage
of offering the nice approximation (3.46), and moreover it is more predictive because the final
lepton asymmetry is not sensitive to initial conditions, including the reheat temperature, as is the
case in the weak washout regime. And besides, great efficiency is not needed because the baryon
asymmetry is quite small.

Putting these results together, we find the correct magnitude of the BAU if M1 & 3×1010 GeV
and (y†

νyν)
1/2
11 & 0.002. These have the right order of magnitude to agree with the observed mass

difference m2
2−m2

1 = (0.0086eV)2. Hence leptogenesis seems to be a very natural and plausible
theory of baryogenesis. Its main weakness is that it does not make any unambiguous predictions
for low-energy observables. For example, there are 6 unremovable phases in yν ,i j if there are three
families of N j, but only 3 phases in the PMNS matrix that describes light neutrino mixing.

There exist variants of standard leptogenesis that are more testable. One possibility is to use a
more complicated version of the seesaw mechanism, called inverse seesaw [64] that allows a natural
explanation of the light neutrino masses using a much lower scale of heavy Majorana masses. Thus
the new physics needed for leptogenesis can come down to testable scales [65]. Another way is to
have nearly degenerate Mi. Then the loop function f (M1/Mi) can be resonantly enhanced, to values
of order y−2

ν , allowing ε j ∼ 1 and Mi at the TeV scale. This is known as resonant leptogenesis [66].
I leave as an exercise to show that for quasi-degenerate Mi,

εi ∼∑
j

Im(y†
νyν)

2
i j

(y†
νyν)ii(y

†
νyν) j j

δM2
i jMiΓ j

(δM2
i j)

2 +M2
i Γ2

j
(3.47)

where δM2
i j = M2

i −M2
j and Γ j is the decay rate of N j. Resonant leptogenesis makes predictions

for low energy lepton-violating processes like neutrinoless double beta decay, µ → eγ , µ → 3e.
The TeV-scale heavy neutrinos might be produced at a future e+e− or µ+µ− collider [67].

3.5 Electroweak baryogenesis

A more testable scenario relies on the electroweak phase transition (EWPT) being first order,
to achieve the out-of-equilibrium condition. Bubbles of true vacuum, with 〈H〉 = v/

√
2 in their
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interior, nucleate during such a transition, and the sphaleron rate Γsph is exponentially suppressed
inside the bubbles. If v(T )/T & 1 at the time of nucleation, Γsph is small enough to avoid washout
of a baryon asymmetry produced by CP-violating interactions at the bubble walls. In the standard
model, the EWPT is a crossover transition, not first order. New physics at the weak scale is needed
to make it first order.

Moreover new sources of CP violation beyond the SM are needed to produce a large enough
BAU. A simple argument involves the Jarlskog determinant [], which is an invariant measure of the
CP-violating phase in the SM, analogous to the r.h.s. of (3.34) in our toy model,

J = det
[
m2

u,m
2
d
]
∼ sinδ × f (|VCKM|,m2

ui
−m2

d j
) (3.48)

where m2
u and m2

d are the mass matrices of the up- and down-type quarks, δ is the phase in the
CKM matrix, and f is a function of the magnitudes of VCKM matrix elements and quark mass
eigenvalues. This quantity has dimension 12, so the dimensionless measure of CP violation should
be J/v12 ∼ 10−20 since v = 246GeV is presumably the relevant scale. This is too small of course.
A valiant attempt to lower the relevant scale was made in ref. [68, 69], but this turned out to be
spoiled by quantum decoherence by finite temperature scattering [70].

3.5.1 The CP asymmetry

For electroweak baryogenesis (EWBG), the CP violation needs to lead to a CP asymmetry
δ fCP = fL− fR in some species of SM fermions: for example an excess of left-handed (LH) versus
right-handed top quarks, in the symmetric phase outside of the bubble where they are massless and
it makes sense to talk about chirality [71, 72]. Sphalerons, which interact only with the LH parti-
cles, would like to reduce the excess in LH particles (minus their antiparticles). This necessarily
converts some O(1) fraction of δ fCP into a baryon asymmetry. For example, suppose that δ fCP

is intially an excess in tL: δ ftL = −δ ftR = δ fCP. Sphalerons can reduce δ ftL by roughly 1/2 by
partially converting it into d̄L and s̄L asymmetries, for example, that couples the sphaleron to each
generation. The net result would be

δ ftL → δ fCP/2, δ fdL = δ fsL =−δ fCP/2 (3.49)

This arrangement increases the entropy, and produces a baryon asymmetry since the net baryon
number is now proportional to

δ ftL +δ fdL +δ fsL +δ ftR =
(1

2 −
1
2 −

1
2 −1

)
δ fCP (3.50)

Charge is conserved by producing the neutrinos in this example. This argument is heuristic; we
will give proper equations below.

Computing the CP asymmetry δ fCP is not easy in EWBG, and it is also controversial because
the community is split between two formalisms. The one I prefer, because it is known to be a
controlled approximation, is the semiclassical force approach [73, 74]. It usually involves a fermion
whose mass varies spatially across the bubble wall (taken to be the z direction), with Lagrangian

L = q̄
(
i/∂ − [mr(z)+ imi(z)γ5]

)
q (3.51)
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|m|

z
w

Figure 17: Spatially dependent fermion mass as a function of distance transverse to a bubble wall during a
first-order EWPT.

We can rewrite the mass term in the form

m(z) = |m|eiθ(z)γ5 (3.52)

imagining that the mass comes from the Higgs mechanism so that

|m(z)|= yh(z) (3.53)

in the bubble wall, with some Yukawa coupling y. The z-dependence is illustrated in fig. 17. θ(z)
is a CP-violating phase that arises from new physics.

One can solve the Dirac equation associated with (3.51), in an expansion in derivatives of θ ,
and from that obtain the dispersion relation for the fermion in the background Higgs field. An
eigenstate of energy has a spatially varying momentum: since the particle mass increases as it goes
into the broken phase, its momentum must decrease to conserve energy. This gives a CP-conserving
force on the particle, F = ṗ. But at first order in θ one finds a CP-violating component in the force,
that acts oppositely on left- versus right-handed states and particles versus antiparticles. The total
force at this order is [75]

F ∼=−
(m2)′

2E
± (m2θ ′)′

2E2 +O(θ 2) (3.54)

where the first term is CP-conserving and the second is CP-violating.
The semiclasscial force can induce the fCP(z) asymmetry in the distribution function for the

quark, which then biases sphaleron interactions. To calculate this effect, we need to put the effect of
a force back into the Boltzmann equation. It comes via the Liouville operator on the left-hand-side,(

d
dt

+~v ·~∇+
~F
m
·~∇p

)
f = C [ f ] (3.55)

This is a partial differential-integral equation which is intractable. We usually just take the first
moment of it by integrating over momenta to get an equation for the particle densities. But in the
present case that is not an adequate approximation because the particles are disturbed away from
kinetic as well as chemical equilibrium by the forces in the bubble wall [74].

It turns out to be sufficient to perturb the distribution function around the equilibrium one by
introducing a small z-dependent chemical potential µ(z), to keep track of the local number density,
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plus an extra perturbation δ fkin whose exact form is unknown, but which is assumed to be an odd
function of the z component of the particle’s velocity vz [75]. Then we can take one additional
moment, by integrating over momentum weighted by vz. This introduces an dependent variable
called the velocity perturbation,

u =
〈 pz

E
δ fkin

〉
(3.56)

Therefore each fermion interacting with the wall has associated with it four dimensionless func-
tions, ξ± = µ±/T and u±, labeled by helicity, and four first-order coupled diffusion equations, of
the general form

K1vw ξ
′
±+K2vw u±+u′±−∑

i jk
Γi jk(ξi,ξ j,ξk) = 0

K3ξ
′
±+K4vw u′±+K5vw u±+Γ±ξ± = ±S (3.57)

where we have linearized in the wall velocity vw, and Ki are functions of |m|/T [76] (beware that I
am not following the same numbering scheme for the Ki here). The three-particle interactions are
represented by Γi jk(ξi,ξ j,ξk) which is a rate times a linear combination of the appropriate chemical
potentials. The Γ± term represents the helicity-flipping rate inside the bubble (and also outside, for
species that have a bare mass term), which damps the CP asymmetry. The source term S is due to
the classical force, and takes the form

S = vwK6(m2
θ
′)′ (3.58)

The network (3.57) should be solved numerically to get an accurate estimate, since the solutions
tend to change sign in the vicinity of the wall, and large cancellations can occur in their local
contributions to the rate of baryon production.

Once the CP asymmetries of the left-handed quarks and leptons are known, we can find the
rate of baryon violation by sphalerons by integrating

ṅB =−3
2

Γsph

T

3

∑
i=1

(
3µ

i
uL
+3µ

i
uL
+µ

i
eL
+µ

i
νL

)
(3.59)

where the sum is over generations, and the factor 3/2 is actually an approximation for a more
complicated number, that is larger by a factor of 1.097 [77]. The baryon density is then

nb =
∫

dt ṅB =
∫

∞

−∞

dz
vw

ṅB ∼=
∫

∞

0

dz
vw

ṅB (3.60)

by changing variables from time to space via wall trajectory z = vwt. The last approximation
takes the sphaleron rate to vanish inside the bubble (the bubble is so large by this time that it is
well-approximated as being planar, and we take z < 0 to be the interior region) and the wall to be
infinitesimally thin, but it is better to weight the integral by the local sphaleron rate, that smoothly
interpolates to its value in the broken phase [78], and integrate over both regions.

3.5.2 Getting a first-order EWPT

So far we have described the means of violating CP, but we still need to fulfill the out-of-
equilibrium condition for Γsph inside the bubbles. One possibility that I will not discuss here is
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vb

V(h)

h
v(T)

V(h)

h

Figure 18: Left: form of the Higgs potential at the nucleation temperature Tn, consistent with geting a
first-order phase transition. Right: the corresponding picture at the critical temperature Tc > Tn.

known as “cold electroweak baryogenesis,” where the Higgs and gauge fields are far from equilib-
rium during preheating after inflation, and the reheat temperature is below the electroweak scale
[79]. Instead I will assume a high reheat temperature. Then the out-of-equilibrium criterion relies
upon the EWPT being first order. In the simplest models, the new physics should make the Higgs
potential look like fig. 18 at high temperatures, with a barrier separating the h = 0 (unbroken) and
h = vb (broken) phases. The criterion for baryon number to not relax back too much toward zero
inside the bubbles is [80]

vb

Tb
& 1.09 (3.61)

where Tb is the temperature at which baryogenesis takes place. Typically Tb = Tn, the nucleation
temperature of the bubbles, which is lower than the critical temperature Tc where the two vacua are
degenerate. To determine Tn one must find the rate per unit volume of bubble nucleation and equate
it to H4 [81, 82].

The traditional method of generating the barrier in the potential was through finite-temperature
effects from the “one-loop” thermal correction to the potential,

VT (h) = T ∑
i
±
∫ d 3 p

(2π)3 ln
(

1∓ e−β

√
p2+m2

i (h)
) (

bosons
fermions

)
(3.62)

summed over all particles whose masses depend upon the Higgs field h (here β = 1/T ). This
expression can be easily derived from statistical mechanics by recalling that the free energy is
F =−T lnZ and the partition function is

Z = ∏
~n

N

∑
j=0

(e−βE(~n)) j, N =

{
1, fermion
∞, boson

(3.63)

and replacing the sum over modes that arises after taking the logarithm by ∑~n→
∫

d 3n=L3 ∫ d 3 p/(2π)3

in a box of volume L3.
At high temperatures, one can expand VT in powers of m2

i /T 2. The contribution from bosons
goes as

VT = ∑
i

ni

(
T 2

24
m2

i (h)−
T

12π

(
m2

i (h)
)3/2

+O(m4
i )

)
(3.64)

where ni counts the number of degrees of freedom (e.g., 3 polarizations for a massive gauge boson)
and the cubic term is the single nonanalytic contribution in the expansion. It plays the crucial role
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of generating the barrier if the particle gets all of its mass from the Higgs mechanism, m2
i =

1
4 g2h2

for example, like the SU(2)L gauge bosons. Then [83]

V (h)∼=
(

n
24

g2T 2− 1
2

λv2
)

h2− ng3

96π
T h3 +

λ

4
h4 (3.65)

At the critical temperature Tc, pictured in fig. 18(right), this takes the form

V (h) =
λ

4
h2 (h− vc)

2 (3.66)

where

vc =
ng3

48π λ
Tc (3.67)

Using the SM values λ = 0.13, g = 0.65 and n = 3× 3 for the 3 massive vector bosons (approx-
imating g′ = 0 for simplicity), we find vc/Tc = 0.13, well below the bound (3.61), given that the
ratio does not change very much between Tc and Tn. We would need λ and consequently mh to
be smaller, mh < 43GeV, to satisfy the sphaleron bound. Lattice studies show that in fact for
mh > 80GeV, there is no first order transition at all, but rather a smooth crossover [84].

Therefore new particles coupling to the Higgs are needed to enhance the strength of the EWPT.
Notice that if m2

i (h) = m2
0+g2h2 with a bare mass term m0 not coming from electroweak symmetry

breaking (EWSB), then the “cubic” term is not really cubic and this reduces its effectiveness. It is
difficult to add new particles with m0 = 0 since they cannot be much heavier than the weak scale
while remaining perturbatively coupled. Moreover, resumming the temperature corrections tends
to generate m0 ∼ gT making this an even more generic problem.

h

step 1

step 2

(EWSB)

s

Figure 19: A two-step phase transition that can have a large tree-level barrier between the false vacuum
h = 0 and the true one where electroweak symmetry is broken.

A more robust way of strengthening the EWPT is to imagine a two-step phase transition in-
volving a second field S that is a singlet under SU(2)L. The sequence of symmetry breaking is
shown in fig. 19: at very high temperature both S = 0 and h = 0; as T decreases S gets a VEV,
and finally the electroweak transition occurs (during which S may go to zero, but this is not strictly
necessary). The tree-level potential is

V =VSM +λs(s2−w2)2 +λhsh2s2 (3.68)

where the last term provides a barrier between the h = 0 false minimum and the EWSB true min-
imum. This setup has the advantage that the barrier is already present at tree level and does not
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rely upon feeble finite-temperature effects that are suppressed by g2/12π . One needs a moderate
tuning to make the two minimum somewhat degenerate so that the finite temperature effect is just
to reverse the relative heights of the two vacua. In this way one can relatively easily engineer a
strong phase transition [85].

3.5.3 The wall velocity

I would like to finish this lecture by commenting upon an outstanding issue that is typically
treated in a rough way because it is difficult to compute from first principles: the bubble wall
velocity vw. The predicted baryon asymmetry can be somewhat sensitive to its value, especially if
it becomes too large. If vw > c/

√
3, the sound velocity in the plasma, then baryogenesis essentially

shuts off because there is no time for a CP asymmetry to diffuse in front of the wall. The support of
the integral (3.60) goes to zero. This behavior is not evident from the diffusion equations as written
in (3.57) since they are linearized in vw, and to my knowledge nobody has tried to quantify this
for fast-moving walls. Such fast walls arise if the phase transition becomes very strong, with large
supercooling (Tn� Tc), which is an interesting limit because it leads to observable gravity waves
[86]. Typically bubbles that give observable gravity waves are not compatible with baryogenesis,
but exceptions can be found [87].

In a vacuum, an expanding bubble wall would quickly accelerate to the speed of light. To
compute the wall velocity in a plasma, one must balance the outward force on the wall, due to the
energy difference between the two vacua, against the force of friction from particles interacting
with the wall. It requires self-consistently determining the shape of the wall at the same time,
which is numerically challenging, since a stationary solution for the wall only exists if one guesses
the right value of vw. Most studies of EWBG therefore treat vw as a free parameter. It has been
computed for the SM [88] (before mh was known to be too heavy for a first order EWPT) and the
MSSM [89], typically giving small values vw ∼= (0.05−0.1)c.

3.6 Exercises

1. Out of equilibrium decay. Carry out the integration of the Boltzmann equation for the
toy model of baryogenesis from out-of-equilibrium decay of an X boson, with CP asymmetry ε

between decays X → Ψ̄χ versus X →Ψχ̄ , to evaluate the “washout” contribution from the inverse
decays. In an exact treatment, the baryon number generated should go to zero as H(mX)/ΓX → 0.
Why does the present simplified approach go wrong in this respect?

2. Cut diagrams. (a) Using the Cutkosky rule for the internal propagators, compute the
imaginary part of the self-energy ΣI at one loop for a heavy neutrino Ni due to exchange of the
Higgs boson and a lepton doublet L j, considering them to be massless compared to Mi. You should
find that ΣI ∼ i/pPR where p is the 4-momentum of the decaying Ni (feel free to work in its rest
frame) and PR = (1+ γ5)/2 is the chiral projection operator onto right-handed states.
(b) Compare the magnitude of ΣI to the tree-level decay rate of Ni. How does it appear in the
correction to the propagator?
(c) If you never did a similar exercise before, compute the imaginary part directly from the iε
prescription in the full propagators. Do the loop integral first; the imaginary part can be found from
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the Feynman parameter integral, using the fact that ln(z) has a branch cut along the negative z axis,
and is ±iπ just above or below the cut.

3. CP asymmetry from decays. Compute the part of the CP asymmetry εi for leptogenesis
coming from the interference between the tree and one-loop self-energy diagrams. The following
steps will help.
(a) Using charge conjugation, one can show that

L̄iH̃PRN j = N̄ jH̃T PRLc
i , N̄ jH̃†PLLi = L̄c

i H̃∗PLN j

where PL = (1− γ5)/2 and Lc is the charge conjugated lepton doublet. We have used that N = Nc

since N is a Majorana particle. This provides a convenient way of writing down the amplitudes
with the lepton number flow going the “wrong” way, i.e., the tree versus loop diagrams. Write
the amplitudes for the tree-level decay N j → H∗Li and from the one-loop N self-energy diagram.
(Why do we not care about the one-loop L self-energy diagram?) As a check, your loop contribution
should pick out the Mk/((/p+ΣI(p))2−M2

k ) part of the virtual Nk propagator. Note that we included
the one-loop self-energy to regulate the IR-divergence in case p2 ∼= M2

k , and used the fact that it
goes like /p from problem 2.
(b) Use the result of problem 2 to evaluate the imaginary part of the loop diagram. The PR in ΣI can
be simplified since it is acting on a right-handed external state.
(c) Square the amplitude to find the imaginary part, and divide by the tree-level result to obtain ε in
terms of the Yukawa couplings, mass-squared differences, and decay rates Γi as in our discussion of
resonant leptogenesis. The γ0 (or /p) acting on the spinor for the decaying N from the loop diagram
can be disposed of using the Dirac equation for N in its rest frame (or any frame).

4. Affleck-Dine baryogenesis [90].4 Suppose φ is a complex field that carries baryon number
1, with Lagrangian

|∂φ |2−m2|φ |2− iλ (φ 4−φ
∗4)

The small quartic interaction violates baryon number, but not CP. (We can define the action of CP
on φ as φ → eiπ/4φ ∗.) Instead, CP is “spontaneously” broken by the initial condition of the field,
φ = iφ0 (purely imaginary) and φ̇ = 0.
(a) Write the equation of motion for φ , assuming that the solution is spatially homogeneous.
(b) Let φ = φ1+ iφ2, and suppose that λφ 2

0 �m2 so that the interaction term is a small perturbation,
and to zeroth order can be neglected, in particular for φ2 because at t = t0 the imaginary part of the
interaction term vanishes in the equation of motion. Then one can just solve the free field equation
in an expanding background. Use the results you found in problem 1 of set 1 to construct the
solution for φ2 that satisfies the initial condition at t = t0, assuming that m�H and the universe is
radiation dominated.
(c) At t = t0 the interaction term for φ1 does not vanish, so we expect the amplitude of φ1 to be of
order λφ 3

0 . But at late times, this inhomogeneous source term dies away due to Hubble damping,
and we can again solve the noninteracting equation. Thus we can also estimate φ1 using problem 1
of set 1. However there is in general a phase difference δ between φ1 and φ2 due to the early-time

4Beware of egregious typos if you read the paper.
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evolution, that turns out to be of order 1 (after solving numerically). Write down the appropriate
estimate for φ1.
(d) The baryon number current is given by

Jµ

B =−iφ ∗
↔
∂

µ
φ

and the baryon number density is nB = J0
B. Show that initially nB = 0, but at late times it is nonzero.

How does the out-of-equilibrium requirement come in?

4. Dark Matter

As mentioned in the introduction, many aspects of dark matter were treated by other lecturers
at this school. My focus will be to make you aware of different classes of dark matter models, that
can be distinguished by their respective production mechanisms. Thermal freezeout was covered in
the lectures of P. Fox, but I will add some complementary observations, before going on to briefly
discuss asymmetric dark matter, freeze-in, primordial black holes, and ultralight scalars/axions.
But first, a little more history.

4.1 Brief history of dark matter

Often the history of science as recounted by its practitioners is oversimplified, since this results
in a better story, or at least one that is easier to tell. I will do the same thing, claiming that in the
case of dark matter it is really fair to credit Fritz Zwicky with originating the idea in his 1933 paper
[91], where he also coined the term, in German. See ref. [92] for the unsimplified story. Oort is
sometimes given precedence [93], based on studies of stellar dynamics around the Milky Way disk,
but what he discovered is now known to be nonluminous baryons rather than dark matter.

Neither the term nor the concept caught on very quickly. Zwicky used it again, this time in
English, in his 1937 paper [94], where he also proposed gravitational lensing as a way of mapping
the dark matter distribution! However the term does not seem to appear again in the literature
until 1979 in the review of Faber and Gallagher [95], which was also the most influential paper to
start citing Zwicky’s original 1933 work. Before that, “missing mass” or “missing matter” were in
use. By this time the concept was established thanks to the galactic rotation curves measured by
V. Rubin and collaborators [96] around 1970, although H. Babcock had already made a convincing
such measurement for the Andromeda galaxy in 1939 [97]!

From the particle physics perspective, some highlights in the history of dark matter were:

• 1980: de Rujula and Glashow proposed massive neutrinos (mν ∼ 24 eV) as a dark matter
candidate [98].

• 1983: White, Frenk and Davis showed that neutrino dark matter (with mass of order 30 eV or
less) erases cosmological structure on short distance scales, corresponding to the streaming
length, predicting large voids that are not observed [99]. The idea that dark matter must be
cold was thus born: DM should be nonrelativistic by the time the particle horizon contains a
mass comparable to a galaxy.
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• 1984: Steigman and Turner coined the term “weakly interacting massive particle” (WIMP)
[100], which became a popular paradigm for dark matter; but they had in mind decaying
particles rather than dark matter. (Already in 1977, Lee and Weinberg had shown that heavy
neutrinos annihilating with a weak scale cross section would overclose the universe if their
masses were less than about 2 GeV [101]).

• 1985: Goodman and Witten adapted an idea of Drukier and Stodolsky (for detecting MeV-
scale neutrinos) [102] to the detection of weakly interacting DM particles [103]. Among
the DM candidates they mentioned are axions, magnetic monopoles, sneutrinos, photinos,
and exotic QCD bound states (which seems to have also influenced the list of candidates
mentioned in [2]), reminding us of a saying, plus ça change, plus c’est la même chose,
except for the magnetic monopoles, not currently a popular candidate.

Although hot dark matter has long been ruled out, the intermediate possibility of warm dark
matter (WDM) is less clear. The canonical example is a sterile neutrino that was in thermal
equilibrium, and becomes nonrelativistic at T ∼ m ∼ 1keV. This is the temperature at which
ρH−3 ∼ 1012 M� ∼ mass of the Milky Way. Lighter DM would erase galaxy-sized structures
and be classified as hot. WDM with mass at the keV scale has a streaming length of ∼ 0.3Mpc
[104].

Warm dark matter can help to address some problems of the cold dark matter scenario from
N-body gravitational simulations, that give central density profiles of DM halos going as [105]

ρ(r)∼ 1
r

(4.1)

This is too cuspy compared to observations of rotation curves, and is known as the cusp-core prob-
lem. A further problem is that CDM simulations predict too many dwarf satellite galaxies orbiting
Milky Way-like halos (the “missing satellites” problem), and also too many highly luminous sec-
ondary galaxies (the “too big to fail” problem); for reviews see ref. [106, 107]. The origin of
globular clusters is also mysterious within CDM.

But WDM does not seem to solve all problems simultaneously, giving too much suppression
of satellites at a mass ∼ 2keV that would solve the cusp/core problem. Moreover, damping of
power in the matter fluctuations at short scales would suppress Lyman-α absorption, leading to the
recent constraint m > 3.5keV [108]. Thus WDM is becoming increasingly cold, and less motivated
by an ability to address the small scale structure problems.

4.2 Thermal freezeout

The most popular mechanism for DM to attain its relic density is thermal freezeout, χχ→ f f̄
annihilations into SM particles, going out of equilibrium at a freezeout temperature quantified by
x f = mχ/Tf ∼= 16, 28, 30 for mχ = 0.1GeV, 100 GeV, 100 TeV. It is a fairly generic mechanism,
assuming that the DM was in thermal equilibrium at early times. It works for self-conjugate DM
as well as DM with a conserved charge, in which case χχ̄ → f f̄ is the relevant interaction, and it
is assumed there is no significant asymmetry between χ and χ̄ abundances (this is the subject of
asymmetric dark matter, below).
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The basic result of thermal freezeout is that the relic density scales as

Yχ ∼
1

〈σv〉mχmp
(4.2)

where 〈σv〉 is the thermally averaged annihilation cross section times relative velocity. The corre-
sponding annihilation rate is

Γ = nχ〈σv〉 (4.3)

and the annihilations go out of equilibrium at a temperature corresponding to

Γ∼ H ∼ T 2

Mp
(4.4)

Hence
Yχ =

nχ

s
∼ H
〈σv〉s

∼ 1
〈σv〉MpT

(4.5)

to be evaluated at the freezeout temperature Tf . To determine Tf we recall that the particle density
goes as nχ ∼ (mχT )3/2e−mχ/T before it falls out of equilibrium. Then eqs. (4.3,4.4) lead to the
estimate

x f ≡
mχ

Tf
∼ ln

(
Mpmχ〈σv〉

)
− 1

2 ln(x f ) (4.6)

which can be solved by iteration. This explains the logarithmic dependence on mχ of x f ∼ 16−29
alluded to above, and our improved estimate

Yχ ∼
x f

〈σv〉Mpmχ

(4.7)

This refines the rougher estimate (4.2) by a number x f ∼ 20.
Now let’s compare this prediction with observation. The Planck collaboration determines

ΩCDM =
ρCDM

ρcrit
= 0.258 (4.8)

while ρCDM = mχYχs and s = 2891/cm3. Solving for the cross section gives

〈σv〉 ∼ 10−9GeV−2 ∼ 10−26cm3/s (4.9)

independently of mχ (except for the log dependence in x f ). This is considered to be a typical
weak scale cross section with σ ∼ α2/(100GeV)2 and α ∼ 10−2. Thus one seems to get the right
relic density, independent of mχ just by having new physics near the weak scale. This was called
a “striking coincidence” in the review article [109]. Later it came to be known as the “WIMP
miracle.”5

To be more quantitative, we need to solve the Boltzmann equation, similarly to the case of X ′

decays in our toy model of baryogenesis. We define Yχ = nχ/s and assume nχ = nχ̄ in case χ is
not self-conjugate. As before x = mχ/T takes the place of the time variable. Then

ṅχ +3Hnχ −〈σv〉
(

n2
χ −n2

χ,eq

)
(4.10)

5This term was introduced by Jonathan Feng at the SLAC Summer Institute lectures in 2001. He was motivated by
a sense of frustration that particle theorists did not take the striking coincidence very seriously. His strategy seems to
have worked. The name first appears in a research article in 2008 [110], when it was already in common use.

43



P
o
S
(
T
A
S
I
2
0
1
8
)
0
0
1

Early Universe James M. Cline

becomes
dYχ

dx
=−xs〈σv〉

H(mχ)

(
Y 2

χ −Y 2
eq

)
(4.11)

where

Yeq =
45

4π4

gχ

g∗,s
x2K2(x)∼=

45
2π4

(
π

8

)1/2 gχ

g∗,s
x3/2e−x (4.12)

for a nonrelativistic particle with gχ degrees of freedom (1 for a real scalar, 2 for a complex scalar
or Weyl fermion, 4 for a Dirac fermion), g∗,s was defined in eq. (3.18), the entropy density is

s =
ρ + p

T
∼= 0.44g∗,s

m3
χ

x3 (4.13)

and the Hubble parameter

H = 1.66
√

g∗
T 2

Mp
(4.14)

is evaluated at T = mχ , with g∗ defined similarly to (3.18), but with (Ti/T )4 instead of (Ti/T )3,
such that the energy density is ρ = (π2/30)g∗T 4.

The cross section is thermally averaged, and the v appearing there is usually considered to be
the relative velocity between the annihilating particles, but there is some subtlety in this identifica-
tion that becomes relevant when the annihilations are relativistic [111], which is not the case here.
Since the particles are highly nonrelativistic for thermal freezeout, it is a good approximation to
use Maxwell-Boltzmann statistics so that

〈σv〉 ∼
∫

d 3 p1 d 3 p2 e−E1/T−E2/T
σ |~v1−~v2| (4.15)

A proper treatment of v in [112] allows this to be expressed as a single integral over the Mandelstam
s = (p1 + p2)

2 (= 4E2 in the center-of-mass frame),

〈σv〉= 1
8m4T K2

2 (m/T )

∫
∞

4m2
ds
√

s(s−4m2)K1(
√

s/T )σ(s) (4.16)

p1

p2

p3

p4

φ

Figure 20: Left: generic annihilation of dark matter particles (1 and 2) into standard model particles (3 and
4). Right: resonantly enhanced annihilation.

For purposes of estimation it is often adequate (if one does not insist on great precision) to
ignore the thermal averaging and just compute σv in the limit v→ 0, since for s-wave annihilation
this is just a constant. Then for the case of DM annihilating into equal mass particles, with particles
labeled as 1+2→ 3+4 as in fig. 20(right),

σ =
∫ t1

t0
dt

|M |2

64πs p2
1,cm

∼=
|M |2 p3,cm

16π s p1,cm
(4.17)
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in terms of the matrix element M , the center of mass momenta of particles 1 and 3, and the
integration limits

t0,1 =−(p1,cm± p3,cm)
2 ; (4.18)

See the kinematics review of [1]. Taking vrel = 2p1,cm/E = 2
√

1−4m2/s ∼= 2p1,cm/m, s ∼= 4m2

and p3,cm =
√

1−m2
3/m2, we find

σvrel ∼=
|M |2

32πm2

√
1−m2

3/m2 (4.19)

(times 1/2 if particles 3 and 4 are identical). For simplicity we have assumed that m4 = m3, which
is usually the case.

The relative correction from thermally averaging should be of order v2 ∼ T/m ∼ 1/20. Of
course this does not work if the cross section is p-wave suppressed since then σv→ 0 in the limit
of v→ 0. Generally one can write

〈σv〉 ∼= σ0

(
T
m

)n

(4.20)

in the low-temperature limit, with n = 0 for s-wave annihilation, n = 1 for p-wave, etc. Another
case where the simple estimate fails is when the cross section is resonantly enhanced by an inter-
mediate particle whose mass happens to be close to twice that of the DM, as in fig. 20(right). The
thermal averaging is then imporant since it allows s to vary near the pole of the propagator in

M ∼ 1
s−m2

φ
+ imφ Γφ

(4.21)

Yeq

Yeq

Y0

x

ln Y
χ

0

freeze−out

Figure 21: Solution of Boltzmann equation (solid curve), compared to the equilibrium abundance (dashed).

To find the relic density, one must integrate the Boltzmann equation (4.11), whose solution
looks qualitatively like fig. 21. But it is numerically challenging to follow the whole evolution
since the abundance changes very rapidly around the epoch of freezeout, so one often tries to avoid
writing code from scratch. Publicly available codes like micrOmegas [114] and DarkSUSY [115]
are commonly used.

For a fast estimate, in the case of s-wave annihilation, one can simply look up the value of the
cross section for a given DM mass that yields the observed relic density, [113], reproduced in fig.
22. (An improved version of this result can be found in fig. 3 of [115].) The “canonical” value
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Steigman et al., 1204.3622

Figure 22: Value of σv needed to get the observed relic density, for Majorana or self-conjugate scalar DM,
reproduced from ref. [113].

of 3× 10−26 cm3/s ∼= 25× 10−10 GeV−2 assumes self-conjugate DM, like a Majorana fermion or
a real scalar. For Dirac or complex scalar DM, one should multiply this result by 2, as can be
seen from comparing the rate of annihilation in the two cases. For self-conjugate DM, the rate of
annihilation per χ particle is

Γ = nχ〈σv〉 (4.22)

leading to the density nχ ∼ H/〈σv〉. But for Dirac or complex scalar DM, it is

Γ = nχ̄〈σv〉 (4.23)

where now the total DM density is given by nχ +nχ̄ . The estimate nχ ∼H/〈σv〉 remains the same,
but 〈σv〉 must be doubled to get the same value for the total density. Notice that for Dirac DM,
the total abundance is Yχ +Yχ̄ , so the same Boltzmann equation (4.11) can be used for Dirac or
Majorana DM.

Finally, there is an approximate analytic solution to the Boltzmann equation [116], slightly
improved upon in [117]. The present abundance can be estimated as

Y0 ∼=

√
45g∗
πg2
∗s

(n+1)xn+1
f

mχMpσ0
(4.24)

with n and σ0 defined in eq. (4.20), and

x f ∼= lny f − 1
2 ln lny f

y f =
gχ

2π3

√
45
8g∗

mχMp(n+1)σ0 ; (4.25)

compare with eq. (4.6). This approximation scheme is valid in principle for any DM mass, so long
as freezeout occurs when x f � 1 so the particle is nonrelativistic. But there is an upper limit on mχ
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from partial wave unitarity [118],

〈σv〉. 4π

m2
χ

〈
1

vrel

〉
(4.26)

assuming s-wave annihilation. One cannot get a large enough cross section to sufficiently suppress
the relic density if mχ becomes too large. Taking the modern value of ΩCDM, this limit is mχ .
140TeV, assuming self-conjugate DM. Of course this bound does not apply if many partial waves
contribute, which would be the case for composite DM made from weakly bound constituents,
giving a geometrical cross section (see for example ref. [119]).

4.3 Asymmetric dark matter (ADM)

Although thermal freezeout seems like a generic mechanism, the fact that baryonic matter gets
its abundance from the matter-antimatter asymmetry makes it quite reasonable that dark matter
could have a similar origin, if it has a conserved number density analogous to baryon number.
This is a large subject that cannot be done justice in the little time I have here; see ref. [120] a
comprehensive review. I will not say anything about the specific mechanism for generating the
dark asymmetry, but simply assume its existence.

Whereas the density of baryonic antimatter in the universe is negligible, this need not be the
case in the dark sector, where there can be a significant symmetric component to the density in
addition to the dominant asymmetric component. We can define the two as

nsym = nχ +nχ̄ −|nχ −nχ̄ |= min(nχ ,nχ̄)

nasym = |nχ −nχ̄ | ∼= max(nχ ,nχ̄) (4.27)

For ADM, it is assumed that nsym� nasym. Then indirect detection signals from χχ̄ → f f̄ in the
galaxy will be suppressed relative to thermal DM. The question is, how much will the constraints
be weakened? One has to solve the Boltzmann equation again, but now taking into account the
conserved particle number in the asymmetric component.

The fact that nasym cannot be reduced by annihilations leads to qualitatively different results
for nsym than in the case of thermal DM, where the annihilations turn off once the density falls
below neq. For ADM, the density can no longer fall like neq once it reaches nasym. Therefore
the annihilations continue longer than for thermal DM, and nsym becomes much smaller than the
corresponding thermal relic density. This was worked out in ref. [121], with the result shown in fig.
23. The solid curve shows the ratio of abundances, nsym/nasym as a function of the cross section,
in units of the canonical value for thermal DM. The dashed line shows the resulting suppression
factor in any indirect detection signal from annihilations at late times. Interestingly, for the case of
χχ̄→ e+e− or other electromagnetically interacting final states, this leads to a lower limit on 〈σv〉
in order to sufficiently suppress annihilations [122],

〈σv〉&
{

1×10−25 cm3/s, mχ = 10GeV
7×10−25 cm3/s, mχ = 1MeV

(4.28)

If the ADM is bosonic, there can be a different kind of indirect signal, from its accumulation
in neutron stars. Bosons may achieve such a high central density that a black hole can form that
will consume the neutron star. This gives a limit on the cross section for scattering on nucleons of
σχN . 10−47 cm2 in a range of masses mχ ∈ [5MeV−15GeV], where direct detection constraints
are relatively weak.
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Graesser et al., 1103.2771

suppression factor for indirect detection−/n+n

Figure 23: The suppression of the ratio of symmetric to asymmetric components of asymmetric dark matter
as a function of annihilation cross section (solid curve) and the resulting suppression factor for indirect
detection signals (dashed), from ref. [121].

χ

χ

λ λ

f

f

Figure 24: An annihilation process that is suppressed at high temperatures, where freeze-in may be taking
place.

4.4 Freeze-in

It is possible that DM interacts so weakly that it never came into thermal equilibrium in the
early universe. Then initially we would have Y ∼= 0 and the Boltzmann equation would be approx-
imately

dYχ

dx
∼=

xs〈σv〉
H(mχ)

Y 2
eq (4.29)

Yχ will then slowly approach Yeq from below. We can estimate its present abundance by integrating
eq. (4.29). Unlike for thermal freezeout, it may not be a good approximation to take 〈σv〉 to be
constant because the result, going as

∫
dxx2K2

2 (x), is dominated by x ∼ 0, i.e., high temperatures,
and there will generally be some temperature dependence in 〈σv〉 at high T . For example, consider
the process in fig. 24 with s-channel boson exchange, which gives 〈σv〉 ∼ λ 4x2/m2

χ . We find that

mχY0 ∼ 10−4
λ

4Mp ∼= 4.3×10−10 GeV (4.30)

in order to get the observed relic density, requiring λ ∼ 10−6. This is a very weak coupling com-
pared to that needed for thermal freezeout. To compare them, supposing 〈σv〉= λ 4/m2

χ as T → 0,
and the cross section needed for thermal freezeout is denoted by 〈σv〉0, then

〈σv〉
〈σv〉0

∼
(

0.1eV
mχ

)2

(4.31)
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showing that for any reasonably heavy DM, the freeze-in cross section is many orders of magnitude
below that for freeze-out.

An interesting application of freeze-in is to DM candidates that have only gravitational in-
teractions, since these must be present regardless of model-building choices [123, 124]. In this
case 〈σv〉 ∼ T 2/M4

p which leads to
∫

dxK2(x)2 ∼ (T/mχ)
3: the integral is dominated by the high-

temperature contribution, and is therefore sensitive to the reheat temperature after inflation. Dark
matter of mass up to ∼ 1016 GeV can have the right relic density. It is argued that even such heavy
dark matter could have observable signatures, since quantum gravitational effects are believed to
break any global symmetries [125], including those that might stabilize dark matter. Then, for
example, fermionic DM could decay through the operator χ̄HL, just like a heavy sterile neutrino,
suppressed by the action of a gravitational instanton via e−S.

V

V
0

10 V
0

φ

Figure 25: A step discontinuity in the inflaton potential, that enhances power in fluctuations at a specific
scale. A factor of ∼ 10 change in V is required to get a factor of ∼ 107 enhancement in the power.

arXiv:1607.06077

Figure 26: Upper limit on the fraction f of DM in PBHs of a given mass, assuming monochromatic distri-
bution of masses, from ref. [126].
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4.5 Primordial black holes

The recent LIGO discovery of black hole mergers with masses of ∼ 30M� [127] has renewed
interest in primordial black holes (PBHs) as dark matter. There are many constraints on PBH
dark matter, which ostensibly rule them out as being all of the dark matter at any mass, assuming
their masses are all the same (monochromatic mass function). Fig. 26 from ref. [126] shows the
maximum fraction f of the total dark matter that is allowed in PBHs of a given mass. Ref. [128]
found f . 0.1 for 30 M� PBHs, using FIRAS observations of the CMB spectral shape. This would
have been distorted by X-rays from material accreting onto the PBHs. Since the LIGO discovery,
this constraint was reconsidered and shown to be weaker in ref. [129], leaving room for PBHs
below 100 M�. Complementary constraints from lack of disruption of a star cluster in Eridanus
disfavor the 30 M� mass region [130] but are subject to large uncertainties.

It is sometimes said that PBHs are a very conservative DM candidate because they require no
new physics, but this statement ignores the new physics that is probably needed to produce PBHs
with the observed relic density. Hybrid inflation can produce PBHs, but in a mass range far below
the LIGO region [131]. A more exotic inflationary scenario seems to be needed in order to produce
density fluctuations of sufficient power at wavelengths λ associated with the desired mass scale
(quantified below). A nearly scale-invariant spectrum extending to these scales (extrapolated from
the COBE scale) has far too little power, since the fluctuations are presumed to be Gaussian and
one needs a large amplitude δρ/ρ ∼ 1 to produce a black hole [132]. The simplest way to produce
a spike in the power at a given scale is to introduce a sharp step in the inflaton potential [133] (see
fig. 25), that the inflaton crosses during the late stages of inflation, at the moment when the scale λ

of interest first crosses the horizon.
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Figure 27: Constraints on power of δρ/ρ fluctuations versus wavenumber, adapted from ref. [134]. The
corresponding black hole mass on the top scale is estimated as MPBH ∼ ρcrit/k3. See [126] for a summary of
excluded PBH mass ranges.

In particular to get PBHs to be all of the DM, we need a boost of order 107 times in the power
spectrum Pδ of δρ/ρ , at the scale k∼ 106 Mpc−1, nearly a million times smaller than those probed
by large scale structure, ∼ 3 Mpc−1. The situation is illustrated in fig. 27, based on ref. [134]. The
dashed curve near the top shows the power needed to produce PBHs with the right relic density,
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concentrated at a given mass scale. (The shaded regions refer to constraints from ultracompact
minihalos, which can be ignored in the present discussion.) I have overlaid on that figure a rough
scale of PBH masses and a few constraints neighboring the LIGO mass region, compiled by ref.
[126]).

The PBH mass corresponding to a fluctuation of physical wavelength λ is the mass contained
in a horizon volume when that scale crosses the horizon, MPBH ∼ ρλ 3 ∼ ρ/H3. For most modes of
interest, horizon crossing occurs during radiation domination, and so one must take into account the
additional redshifting of density when relating this mass to comoving scales. The result is roughly
[135]

MPBH ∼ 2MH,eq

(
keq

k

)2
∼= 6×1013 M�

(k ·1Mpc)2 (4.32)

where MH,eq = 3.5× 1017 M� is the horizon mass at equality and keq = 0.01Mpc−1 is the corre-
sponding wavenumber. The power of 1/k is 2 instead of 3 because during radiation domination,
ρ scales as k4 rather than k3. Hence if the relevant scale crosses the horizon during radiation
domination, there is an extra factor of k to account for.

Fig. 27 demonstrates how fast the power in density fluctuations has to rise as a function of wave
number, to grow from its small value well-constrained CMB region by seven orders of magnitude
within six decades of k. A correspondingly sharp feature in the inflaton potential would be needed.
Not only should the feature be in a special location, but the magnitude of the step (fig. 25) must
be tuned very precisely to get the right relic density. This is because the density fluctuations are
Gaussian, hence exponentially sensitive to the power. This is quantified in problem 4 below. From
the theoretical viewpoint, this makes PBHs look like a peculiar dark matter candidate.

4.6 Fuzzy or axion-like dark matter

One of the earliest DM candidates, and still very popular, is a very light scalar field, the axion
[136, 137], having a tilted wine-bottle potential (fig. 28),

L = 1
2 f 2(∂a)2−Λ

4 cosa (4.33)

giving it a mass

ma =
Λ2

f
(4.34)

Notice that we have taken a to be dimensionless here so it is an angular variable. The basic idea
(see lectures of A. Hook, this school) is that the axion would have been a Goldstone boson of a
spontaneous broken symmetry, but the symmetry is explicitly broken by nonperturbative (instan-
ton) effects, at a scale Λ that might be suppressed by a small tunneling probability. In the case of
QCD there is no such suppression because large instantons correspond to large running couplings,
with small tunneling actions, and the favored axion mass range is ma ∈ [10−6, 10−2] eV [138].

On the other hand, string theory generically predicts many axion-like particles whose masses
are exponentially suppressed [139], and could naturally be much lighter. An interesting mass scale
for cosmology is m ∼ 10−22 eV, whose corresponding de Broglie wavelength λ ∼ kpc coincides
with the size of the central region of a Milky Way-like galaxy. Recall the core-cusp problem,
discussed in section 4.1. Such a large λ would prevent central cusps on this scale. The cusp is
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“fuzzed out,” and the scenario is known as “fuzzy dark matter” [140]. Despite the small mass, it is
another form of CDM since it is presumed to be too weakly coupled to have thermalized.

Figure 28: Potential for an axion-like DM candidate.

Axion-like particles (ALPs) can get their relic density from the misalignment mechanism,
if the potential term Λ4 cosa is negligible at early times. For example for the QCD axion, this
term is suppressed by powers of T at high temperature [141]. Then during inflation, due to its
quantum fluctuations, a will take a random initial value ai ∈ [0, 2π], which becomes homogenous
in a given causal patch during the inflationary expansion. As the universe cools, eventually the
Λ4 cosa becomes important: as soon as H falls below ma, the axion starts oscillating around the
minimum of the potential, with decaying amplitude

a(t)∼ ai

(
Ri

R

)3/2

= ai

(
T
Ti

)3/2

(4.35)

Here R is the scale factor, and Ri its value when H(Ti) = ma. At the corresponding temperature
T = Ti, the energy density is of order ρa ∼ Λ4. Therefore the present density of axions is

Ωa ∼
Λ4

ρcrit

(
T0

Ti

)3

= 0.28
( ma

10−22 eV

)1/2
(

f
4×1016 GeV

)2

= 0.28
( ma

10−3 eV

)1/2
(

f
7×1011 GeV

)2

, (4.36)

highlighting fiducial values corresponding to QCD-like axions and fuzzy DM, respectively.
An important caveat is that we assumed the approximate global symmetry was already broken

at a scale above that of inflation. If the phase transition happens after inflation, then there can be
important additional contributions to the relic density from the formation and decay of axion strings
and domain walls. It is difficult to reliably quantify these extra contributions; simulations of the
string network are needed. See for example ref. [142].

4.7 Self-interacting dark matter (SIDM)

It doesn’t exactly fit into my general scheme of classifying DM models by their production
mechanisms, but it is important to mention the possibility that dark matter may have strong self-
interactions [143], since this has become a popular approach to solving the small-scale structure
problems of CDM that were discussed around eq. (4.1); see [144] for a review.
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SIDM can produce cored DM profiles as illustrated in fig. 29. An energetic DM particle in an
elliptical orbit may scatter with a DM particle in the central region, giving it energy and allowing it
to move out of the central region. Velocities are higher in the outer regions [145] so this provides a
way of transferring energy to the lower-velocity particles that would otherwise be trapped near the
center. This is confirmed by N-body simulations incorporating SIDM [146, 147]. Cross sections
of order

σ

m
∼ 0.1

cm2

g
= 0.17

barn
GeV

(4.37)

are found to solve the cusp-core and other small-scale structure problems, while being compatible
with the Bullet Cluster constraint [148]. (For reference, nucleons in the real world have σ/m ∼
20 b/GeV.) The combination σ/m is relevant because the scattering rate is

Γ = nσv = ρ
σ

m
v (4.38)

and ρ is fixed by ΩCDM.
It is natural to expect self-interactions if the DM is part of a larger hidden sector [149]. For

example, DM could be charged under a hidden U(1) gauge symmetry which could lead to strong,
velocity-dependent scattering. DM could be in the form of dark atoms in such a scenario [150], for
which the geometric self-interaction cross section can easily be very large [151].

DM

halo

Figure 29: Coring of a cuspy halo by DM self-interactions.

In one class of models, the self-interactions can be important for determining the relic density:
Strongly Interacting Massive Particle (SIMP) DM is a scenario where χχ → f f̄ is absent or sub-
dominant, and instead one has strong χχχ→ χχ annihilations, taking the DM to be a scalar [152].
The prototypical example is pions in a dark sector, annihilating through a Wess-Zumino-Witten
interaction [153, 154]

L ∼ 1
f 5 εµναβ tr(π∂

µ
π∂

ν
π∂

α
π∂

β
π) (4.39)

in the notation of chiral perturbation theory [155].
We can repeat the order-of-magnitude estimate for the relic density for 3→ 2 annihilations.

The rate of annihilation per DM particle must now depend on the density squared,

Γn2〈σ3→2v〉 = H(mχ) ∼
m2

χ

Mp
(4.40)

leading to
n∼

mχ√
Mp〈σ3→2v〉

(4.41)
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Notice that σ3→2 has different dimensions than a 2→ 2 scattering cross section. To define its
thermal average, one should examine the collision term in the Boltzmann equation; see for example
[156]. If for simplicity we imagine there is only one dimensionful scale in the dark sector, so that
σ3→2∼ 1/m5

χ , we find that mχ ∼ 1GeV is needed to achieve the observed relic density; see problem
7 below.

4.8 Exercises

1. Annihilation kinematics. In the center of mass frame for two annihilating DM particles,
the velocities are ±p/E along some axis. Show that the relative velocity is 2

√
1−4m2/s. Gener-

alize this to the case where the annihilating particles have unequal masses, which would be relevant
for coannihilating DM scenarios. (For more about coannihilating DM, see ref. [157].)

2. Thermal averaging. Suppose the DM annihilation cross section has a resonant enhance-
ment, so that (ignoring factors of order 1)

σ =
λ 4m2

χ√
1−4m2

χ/s
[
(s−m2

φ
)2 +m2

φ
Γ2

φ

]
where φ is the particle exchanged in the s channel. In the narrow-width approximation for the
resonance, you can treat the Breit-Wigner factor as a representation of the delta function. Use this
approximation to evaluate the Gondolo-Gelmini thermally averaged σv. Then take 4m2

χ = m2
φ
−ε2,

where ε�mχ , and suppose that T = mχ/30 (which could represent the freezeout temperature) for
evaluating the T -dependent functions. How does the result compare to the naive procedure of
evaluating σv at s = 4m2

χ = m2
φ

?

3. Freeze-in from above. Suppose that the DM particle χ was never in thermal equilibrium,
but its initial abundance Yi (at some initial xi) was � Yeq. If Y (x) remains � Yeq throughout the
evolution, we can solve the Boltzmann equation ignoring the Yeq term.
(a) Carry this out, and show that in the regime where Y changes by a large factor, its final abundance
is independent of Yi.
(b) Show that the time scale for Y to reach its present value is typically much shorter than the time
scale governing Yeq. Use this observation to derive a bound on the relevant parameters, from the
requirement that Y � Yeq at all times.
(c) A similar combination of parameters determines the relic density. If this matches observations,
what constraint must mχ satisfy in order for this version of freeze-in to work?

4. Primordial black holes. We will try to roughly estimate the probability of producing a
PBH of a given mass from inflationary density perturbations. See astro-ph/0109404 for details.
(a) The mean-squared relative mass fluctuation σ2 = δM2/M2 in a region of size R can be obtained
from the power spectrum Pδ (k) for the density perturbation δρ/ρ using the formula

σ
2
R =

〈(
δM2

M2

)
R

〉
=

〈(∫
d 3rWR(r)δρ(~x+~r)

ρ
∫

d 3rWR(r)

)2
〉
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where V is some large fiducial volume averaged over, ρ is the mean density, and WR is a window
function that selects a region of size r . R, for example the top-hat Θ(R− r) or the Gaussian
exp(−r2/2R2). We will take the Gaussian for simplicity. By Fourier transforming everything and
using the definition of the power spectrum〈

δρk

ρ

δρk′

ρ

〉
= δ (~k+~k′)

Pδ (k)
k3

(corresponding to δρk being a Gaussian random variable), show that

σ
2
R =

1
2π2

∫ dk
k

e−k2R2
Pδ (k)

Here Pδ is normalized so that a scale-invariant spectrum would have Pδ constant. However remem-
ber that Pδ has an extra power of k4 since δρk/ρ ∼ k2Rk (R is the 3D curvature invariant, whose
power is nearly scale-invariant). For the present crude estimate, take

Pδ (k)∼ As

(
k

aH

)4

where As ∼ 10−9 is the amplitude of the scalar power spectrum (in the region of k measured by the
CMB), and k/aH is the physical wave number at the moment when the comoving scale k re-entered
the horizon.
(b) The relative mass fluctuation δM = (δM2/M2)R in a region of size R is also a Gaussian random
variable, whose variance we just estimated in part (a). To form a black hole, we need a rare
fluctuation from the tail of the distribution such that the fluctuation is large, δM ∼ 1. Show that the
probability to have a fluctuation in the interval δ ∈ [δ1,δ2] is dominated by the lower limit,

P∼ σR√
2π δ1

e−δ 2
1 /(2σ2

R)

If δ1 ∼ 1, a black hole will form, whose mass is of order the total mass contained in the region of
size R, namely M ∼ ρR3. If R is taken to be a comoving scale, then we can evaluate this today,
taking k→ 1/R in eq. (4.32).

Assuming the scalar power is really scale-invariant, with the COBE normalization, estimate
the probability to form a black hole of mass ∼ 30M�.
(c) To increase the probability, one needs to assume that the scalar power spectrum is much larger
at the wave numbers k ∼ 1/R of interest. How large must it be to get a probability of order 1 to
form a ∼ 30M� black hole?
(d) In problem 5 of set 1, you estimated the boost in power coming from a step in the inflaton
potential. Translate your result from part (c) to estimate how large the step in the potential must be.

5. Misalignment mechanism. Derive the result for the relic density of an axion-like particle
given in the lectures,

Ωa ∼ 0.3
( m

10−22 eV

)1/2
(

f
4×1016 GeV

)2

6. Self-interacting dark matter. Suppose dark matter is a scalar particle with self-interaction
λφ 4 and λ ∼ 1. Find the mass that corresponds to a cross section such that σ/m∼ 0.1 cm2/g.
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7. SIMP dark matter. Consider scalar DM with mass m and a 3→ 2 cross section of order
σv∼ 1/m5. Estimate the mass that gives the right relic density.
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A. TASI—recommended road bike rides

A useful bike map for the Boulder area can be found here.
The Boulder Creek bike path heading west is a good warm-up, though not going very far before

becoming hard-packed dirt and then ending. At this writing, Fourmile Canyon Road is closed to
cyclists due to reconstruction. Boulder Canyon Drive is not recommended, having heavy traffic,
no shoulder, and a tunnel. A longer ride can be found by taking the sign for Settler’s Park and
heading toward 4th St., a designated bikeway. It ends at Linden Dr., which provides a 7.3% climb
for masochists, with little reward on the descent since much braking is required.

For a longer ride, Hygiene is a popular destination. Avoid Highway 119 even though the
shoulder is wide enough; too much traffic. Boulder Creek path to Pearl, then 61st is much better. A
fine loop that includes Hygiene is along US 36, turning at Hygiene Road and returning to Boulder
on 65th/63rd. The route north offers interesting possibilities for variations that require much more
climbing, mainly Olde Stage Road, with a quite gratifying descent along Lefthand Canyon Drive,
back to US 36 near Altona.

A more ambitious variation is Lee Hill Drive, connecting to Lefthand Canyon Drive. The latter
is recommended for a longer foray into the mountains as it is quite smooth and has little traffic. (At
this writing, James Canyon Dr. is still damaged by the flooding and becomes dirt at some point.)
From the dorms, take Folsom/26th to Tamarack, Spotswood, 22nd, Upland, 19th, and catch the
bike trail after crossing Violet; it brings you to Lee Hill Dr.

The climb up to NCAR is quite scenic, though not very long. I followed it up by continuing
south out of town on the Broadway trail, which turns into Marshall Road, eventually turning into
C170, a smooth highway with a good shoulder and not too much traffic. When C170 reaches
US 36, you can cross underneath it and return via the Turnpike bike path, giving a great view of
the mountains and very speedy descent. At the bottom of the descent, instead of crossing back
underneath US 36 I turned right and found my way to the South Boulder Creek bike path (heading
north), which was worth the trouble. It joins up with the usual Boulder Creek path heading back
toward CU. Get off at Folsom for a direct path to the dorms.
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