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Effective Field Theory Timothy Cohen

1. The View from the Deep IR

We begin with the big picture. The purpose of these lectures is to systematically explore
quantum field theory! in the presence of a large separation of physical scales m < M. Feynman
diagrams yield an expansion in a coupling(s) &. In the limit m < M, it is typical that this o
expansion will generate terms which go as a”log*(m/M), for some integers r and s (where s is at
most 2 r for relativistic four dimensional field theories). Then there exist regions of parameter space
where these logs can become large enough to significantly reduce the quality of the convergence of
perturbation theory. The approach taken here for finding an improved perturbative expansion relies
on matching an ultraviolet (UV) “FULL THEORY” model onto a judicious choice of Effective
Field Theory (EFT) description of the physical system of interest. This allows one to break apart
the large logarithms into single scale pieces and to sum as opposed to them using renormalization
group equations (RGEs).? This connects the UV multi-scale theory to an infrared (IR) theory that
is only aware of the dynamics associated with m. Along the way to systematically setting up the
technology that achieves this goal, we will encounter general lessons relevant to many applications
within particle physics, condensed matter, cosmology, and more.

There are two main goals of the EFT program: improving a given UV theory (calculational)
and characterizing a physical system systematically (conceptual). Our focus here will be on the
computational aspects of EFTs. However, it is worth emphasizing that central to the conceptual
side of the EFT philosophy is that essentially any system whose dynamics are due to the small
fluctuations of some underlying modes can be described as an EFT (see Appendix A for more
details and references). Physicists are all indoctrinated from birth with the notion that physics is
essentially dimensional analysis and the judicious application of Taylor expansions. The beauty
of EFTs is that they make these concepts extremely plain through a notion of “power counting.”
Power counting allows one to generalize the idea of dimensional analysis by hierarchically orga-
nizing the allowed operators, while simultaneously providing a small parameter which can be used
to Taylor expand away higher order corrections. The relation to dimensional analysis should be
familiar from previous experience organizing a relativistic Lagrangian in terms of the mass dimen-
sion of the operators, which also provides a polynomial expansion of the observables. Here we
will generalize this expansion to loop integrals, by relying on an awesome technique known as the
method of regions. Furthermore, EFTs are shockingly smart in that they both predict how many
free parameters are required to compute to a desired accuracy, and that they tend to show signs of
inconsistencies when pushed outside their regime of validity.

In these lectures, we will devote our attention to an amazing aspect of EFTs, namely their
ability to model physics across a huge range of physical scales through the application of renor-
malization group (RG) techniques.’ We assume the reader is familiar with integrating a set of RGEs

LA straw person might posit that a quantum field theory must be well defined in the UV, while an EFT comes with
an associated scale signifying the need for a UV completion. Specifically, EFTs are often viewed as an expansion that
allows for higher dimension operators, implying non-renormalizability. We do not find this distinction useful here, and
as such treat quantum field theory and EFT as identical concepts in these lectures.

2Through these lectures, we have chosen to use the phrase “summing logarithms” to describe what is accomplished
by integrating the RGEs, in contrast with the common choice to call this “resumming.”

3For emphasis, we repeat that the immensely important conceptual aspects of the EFT approach and the application
to modeling real physical systems is not the focus here. Specifically, the reader should be aware that EFTs are not just



Effective Field Theory Timothy Cohen

to evolve a FULL THEORY description to the IR scale that is characteristic of the physical process
of interest, followed by an extraction of observables. This is known as RG improved perturbation
theory. However, if one encounters a multi-scale problem, large logarithms can in general remain.
The RG approach can be extended by invoking the concept of matching between the FULL THE-
ORY and an appropriate EFT that captures the dynamics of the propagating IR degrees of freedom.
Matching will allow us to systematically model more difficult multi-scale problems using one or
more simpler single scale theories. In other words, we will learn to interpret the EFT as the single
scale IR field theory, whose Lagrangian is constrained by whatever symmetries remain, and whose
operator structure is organized as an expansion in terms of the power counting parameter. This
allows one to Taylor expand away as much complexity as possible, while retaining the essential
features of the system.

This multi-scale problem is central to these lectures, so we should explain what we are refer-
ring to in a bit more detail. The Feynman diagram expansion at loop level introduces a spurious
unphysical RG scale (. Then one can derive a set of RGEs by requiring that observables are in-
dependent of u, which allow one to maintain control of these parameters when evolving them to
different scales. However, when dealing with a multi-scale theory, the Feynman diagram expan-
sion can yield logarithms that do not explicitly depend on t, and so it is no longer obvious how to
derive the appropriate RGEs. For example, if one performs final state cuts, these parameters can
appear inside of logarithms, which can in principle be large. This is where EFTs, augmented with
matching and running, come in to save the day by peeling apart these problematic logs into mul-
tiple single-scale contributions. Furthermore, the action of separating scales inside the logarithm
requires the introduction of a new dimensionful parameter. It is this parameter that can be identified
with an RG scale u, allowing one to simply apply the standard techniques to sum the now separated
logarithms. Furthermore, this approach fails unless the appropriate EFT model of the IR dynamics
has been identified, thereby providing physical insight into what degrees of freedom persist to the
IR.

One non-trivial aspect of the power-counting expansion procedure is the fact that perturbation
theory is plagued with infinities, and that the appropriate regulation of these infinites yields log-
arithms. In fact, one can prove that the Feynman diagram expansion can only yield powers and
logarithms of the power counting parameter [1]. Powers are easy to interpret, and they tend to
play well with the order of limits issue inherent when choosing to Taylor expanding an integrand
versus an integrated result. Physically, this can be traced to the fact that power corrections that
emerge from the loop expansion are localized at a scale. On the other hand, logarithmic corrections
arise when an integral receives contributions across all scales. This feature of logarithmic correc-
tions is straightforward to see by evaluating a simple quadratically divergent integral using a cutoff
regulator in the UV:

,/d“e 1 1/Auvd£ I
‘) erF w8 ), 2 +m?

1 m* + A}

for summing logarithms, e.g. Fermi theory, heavy quark effective theory, etc.
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where we Wick rotated and integrated over angles in the second step, and this integral is IR finite
so we can take the lower limit of integration to zero. Next, we imagine that we are interested in
taking Ayy > m, and so you might think that we can Taylor expand the integrand assuming small
m, which yields

1 Auv 3 me omt

2
1 |:m210gAUV m4< 1 1 >_|_:| (1.2)
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where now the second (and higher order) integrals are IR divergent, so we introduce an IR cutoff
regulator Ajr << m. So we see that the analytic properties in the IR for our expanded integral do not
track that of the full integral.* This mismatch of the IR divergences is a characteristic of working
with the wrong EFT description, and we will go to great lengths to ensure that the IR of our FULL
THEORY and EFT agree.’

As we will emphasize many times in what follows, matching and running provides a me-
thodical approach that will allow us to Taylor expand before integration. Additionally, we can
augment this procedure using an interpretation in terms of an EFT operator expansion organized
by the power counting parameter. Imagine that the FULL THEORY includes two dimensionful
scales m < M, so that our power counting parameter is A ~ m/M. Then one of the key aspects of
matching between the two theories is that we want to construct a description defined just below the
scale M such that the EFT parameters are fully determined by the UV FULL THEORY to arbitrary
precision, and are furthermore insensitive to the details of the IR. This implies that we must match
between the FULL THEORY and the EFT in such a way that the description of the physics at M is an
analytic function of m (for example, the EFT coefficients in the UV cannot depend on logm?/u?).
This is critical since we need to be able to take these light parameters to zero without causing any
troublesome (non-analytic) behavior in the UV. Otherwise, the UV would know about the IR, i.e.,
a breakdown of decoupling. If we want a local field theory description, we must judiciously apply
the methods detailed in these lectures to separate scales and maintain perturbative control of our
EFT. The magic happens if we can find the right EFT description (and can be strong enough to
keep track of all the various factors of two that appear). Decoupling will save the day and yield a
local improved perturbative expansion.

These lectures are organized around two settings. The first are a variety of simple relativistic
scalar field theories, with a light field of mass m and a heavy field of mass M. Depending on the

“If we did this kind of manipulation using dimensional regularization, we would see that the expanded approach
yielded only scaleless integrals which vanish, making the contrast between the two “theories” even more stark. A
detailed discussion of scaleless integrals and dimensional regularization is provided in Primer 2 below.

5 Another feature of this example is that the logarithmic dependence on the physical scale m is naively lost by using
this incorrect approach to expanding in ¢/m. However, one could recover the full integral by performing this expansion
to all orders and then resumming the integrated results into a logarithm. Then the limit Ajg — 0 would be finite and we
would recover Eq. (1.1).
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details of the interactions, a variety of interesting physical effects emerge. After discussing the
systematics of constructing EFTs and matching at tree-level, we will show how to account for the
loop-level decoupling of heavy particle contributions to running couplings, and we will see how the
hierarchy problem appears in models with a large ratio of scales (specifically we will clarify how
to think about this issue from an EFT point of view using dimensional regularization). We expect
that much of what is presented in this first part will be familiar to the reader. We will then move to
the cornerstone of this section, which is to show how we can separate scales that result from a loop
with both a heavy and a light propagator (see Sec. 3.5). Another benefit of first working within
this more familiar setting is that it provides us with the opportunity to frame setting up EFTs in a
language that easily generalizes.

The second main topic is to explore an EFT that captures the soft and collinear divergence
structure of relativistic quantum field theory. When there are light-like external states with re-
strictions on the external particle phase space, these divergences can manifest as the generic phe-
nomenon of the Sudakov double logarithm. We will focus on setting up a scalar theory that realizes
a large Sudakov double log in the IR, and then will use the techniques of soft collinear effective the-
ory (SCET) to separate the scales inside this double log and sum it. Learning SCET is useful due to
its practical relevance to a wide variety of applications to real world processes (see the discussion
in Sec. 7 below). Additionally, it is of tremendous pedagogical value to work out this example,
since dealing with the highly non-trivial mode structure of SCET will expose many of the issues
that arise when attempting to separate scales. We will close by making connections between the
toy SCET theory and the realistic version that is relevant for gauge theories with charged matter.
Then in a final concluding section, we will briefly touch on some physical applications of (Gold-
stone boson) EFTs and SCET. Finally, note that a variety of Primer sections are provided along
the way which include technical details and conventions — while they are necessary for getting the
right factors of two, we have chosen to sequester them as their concepts are likely familiar to the
reader and could be skipped in a quick first pass reading of these lectures.

Before leaving the introduction, we will provide a general discussion of the scalar fields and
interactions that will be used throughout what follows. This will allow us to normalize notation
and emphasize some aspects of our approach using toy model EFTs.

1.1 The Scalar Playground

As has already been emphasized, the goal is to focus our attention on the EFT techniques of
matching and running. Essentially all of the physics of interest® can be exposed in the context of
simple toy theories’ built out of a light real scalar field ¢ and a heavy real scalar field .

We will define the “FULL THEORY” using a Lagrangian that provides a good description
above a scale g4 > M. Our various FULL THEORY models will utilize a subset of the following

5The only example that will fall outside this set of toy models (where we will need to introduce an extra scalar state
x) will appear briefly in Sec. 4.2.
7Qur scalar examples do yield a few minor idiosyncrasies, which will be highlighted as they are encountered.
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terms

in
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1 1 1 1 1
FuLL _ _ * 3 1 2FH 282 - 36 4
L= 3!a¢ 2b¢ 0] 4K¢) 0] 3!p¢ b 4!11(;) . (1.3)

Note that we are already breaking the EFT rules in the FULL THEORY (before we have even
stated them properly, see Sec. 2) in that we have set many terms to zero that are allowed by the
symmetries, e.g. ¢, ®*, ¢ &3, and so on. Furthermore, as you will see below, we are only going to
analyze the impact on the IR dynamics from turning on one or two interaction terms at a time. We
are not claiming at any point to have completely captured all of the physics implied by the FULL
THEORY, but are simply using this toy approach to explore the scalar one-loop integral structures
of interest. Everything that will be done in what follows is self consistent, it is just not generic.

Our goal will be to match a given FULL THEORY onto a low energy EFT. We do not write down
a general form for the EFT Lagrangian here, since the symmetries and power counting depend on
the interaction structure of the FULL THEORY, along with the chosen process we want to compute;
as we will see, our relativistic EFTs look very (very) different from SCET.

We will quickly make contact with a simple example so that the path forward is clear. As-

FULL _

sume that there are two interactions, .2,/ = —% KP>P? — % p ¢3 @, which have the associated

Feynman rules
N ,® O, ,®
=ik / ——ip. (1.4)
¢ NO ¢ X
Then we can match this theory at a scale u ~ M onto an EFT with only ¢ as a propagating degree

of freedom. We emphasize that technically this is a different ¢ field than the one in the FULL

THEORY. Diagrammatically, we see that .,iﬂlﬁtULL induces a tower of local contact operators in the

EFT as one flows to the IR. For example, at tree-level in the FULL THEORY we have diagrams like

0. ¢
o ., 2 A\‘G;b
G enee it RCLLEE ¢ X b (1.5)
o
¢ ¢ ¢ N

¢ o ¢ - P L9
\x Ve N ',' \\\ / ~ e
Rl Y X V . (1.6)
BN — VAR "1 ‘\ B L, s‘\
¢ D ¢ ok b i
All of these processes can be modeled using the EFT Lagrangian
1 1 1 11 11
EFT _ * BapY_ ~ 242 L 4_ L 1 6_ L 1 8. ...
L =5(0u0)(949) —5m* 0" = 5o = 259" — oGP e (L)
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where we are neglecting higher dimension operators involving derivatives. Determining how to
map the FULL THEORY parameters K and p onto the EFT parameters Cj is exactly the kind
of matching calculations we are going to perform in detail in what follows. Note that the non-
genericity of the UV theory leads to C4 being generated at loop level, while Cs and Cg are generated
by tree diagrams. If we had included 1 ¢* in the UV, then C; would clearly be generated at tree
level as well. Also, note that there is a Z, symmetry in the UV where ¢ <+ —¢ and ® < —P
simultaneously, which implies that no ¢-odd terms are generated in the IR (assuming no vevs are
induced by loop effects).

Our hope is that this discussion has established the context of these lectures, and motivated
the reader to chase us down the rabbit hole. However, for the unconvinced, we provide two appen-
dices with more information and resources regarding the study of EFTs. Appendix A provides a
lightning fast overview of some important EFTs that appear in nature. These examples highlight
physical systems where the technical apparatus we are going to develop can be applied. Then in
Appendix B, we provide an annotated bibliography to help the reader navigate the extraordinary
resources that already exist on the topic of EFTs, and in particular SCET. For those who are not
interested in this detour, we turn to the first topic of these lectures. Our starting point is to explain
how to utilize a notion of power counting to construct an EFT Lagrangian that additionally respects
some set of symmetries relevant to the physical process of interest.

2. Power Counting and Symmetries

We begin by setting up the fundamental rules for building an EFT. The goal is to write down
a field theoretic description of the modes that continue to propagate as one flows to the IR. Given
these “light” degrees of freedom, one is then tasked to construct a kinetic term that models their
fluctuations, and to write down all allowed interactions, ideally following some organizing princi-
ples. In these notes, we will emphasize situations where we not only know the FULL THEORY, but
it can be described perturbatively at the high scale where we match onto the EFT. This allows us to
utilize a matching procedure to determine the Wilson coefficients at this matching scale, and then
we can use the RGE to evolve the EFT down to the low scale, thereby summing large logarithms
and improving the convergence of perturbation theory.

The two central concepts are “power counting” and “symmetry.” The idea of enforcing a sym-
metry should be familiar to the reader from their background in quantum field theory, and as such
we will assume a working knowledge of this topic. Power counting generalizes the idea of organiz-
ing a Lagrangian as an expansion in operator mass dimension. With an appropriate identification
of a power counting parameter A, we perform this organization by tracking an operator’s order
in A. For example, A ~ m/M will be our power counting parameter for the example provided in
Sec. 3.5 below. First, we will explain the rules for constructing and organizing the EFT Lagrangian,
followed by their application to a number of illustrative examples.

2.1 The Rulebook

If we are interested in probing the physics around energies E ~ m, it is relatively straight-
forward to calculate in field theories that contain only the single scale m. However, our desire to
model processes in the real world often forces us to solve more complicated multi-scale problems.
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Therefore, it would be ideal to develop an approach for expanding away scales such that we are
left with a single-scale EFT to work with. As we will see, this hope is realizable when we are
working with theories whose scales are hierarchical. This procedure will be organized around a
power counting parameter A ~ m/M for m < M, such that observables are a Laurent expansion®
in terms of A.

We want a systematic procedure that avoids the issues raised above when we compared the
unexpanded Eq. (1.1) with the improperly expanded Eq. (1.2). We can assume that there are some
other couplings « in the theory, such that we will ultimately perform a dual expansion in A and
a. Logarithms will generically be generated by the o expansion.” When we encounter a term that
schematically takes the form " log® A for some integers r and s, we will power count it as (1),
which tells us that if you want to improve the convergence of the perturbative expansion, you must
sum it to all orders.

The whole framework rests on the assumption that physics is local, in that poles in the S-
matrix can only be due to light particles going on-shell. This implies that we should be able to
integrate out heavy modes and encode their influence on the low energy physics as an expansion
in local interactions of the light fields suppressed by powers of 1/M, or equivalently suppressed
by additional powers of A. Assuming we have perturbative control of the FULL THEORY, we can
“match” it onto an EFT as long as the IR limits for both reproduces the same physics. The matching
and running procedure is defined by [2]

1) Pick a physical process o that only has IR degrees of freedom as external states.

ii) Compute the couplings in the EFT at a matching scale iy ~ M by relating the calculation of
o in the FULL THEORY and the EFT

O OBFT = OFyLL — OEFT - (2.1)
and extracting a relationship between the couplings to set d Ggpr to zero.

iii) Evolve the EFT Wilson coefficients down to a low scale p; ~ m using the RGEs derived
within the EFT.

iv) Compute the RG improved observable using the low energy EFT parameters.

The choice to match at a scale s ~ M is made to minimize the logs that appear in the matching
procedure. Then 6 ogpr will have a well defined Taylor expansion in terms of the power counting
parameter A. Notice that we are ignoring mass dimension, contrary to the way one traditionally
orders operators. A term in the Lagrangian should be multiplied by appropriate powers of M to
yield a mass dimensionless action (when using natural units). It can be helpful to interpret this M as
defining the ruler by which everything else is measured. In fact, EFT practitioners will often work
in units where the dimensionful heavy scale M = 1, since all that matters is the power counting.

81t is a Laurent expansion since inverse powers of A can also appear.

°Note that for an EFT like heavy quark effective theory, o is non-perturbative leading to the so-called incalculable
“brown muck.” However, it is not only possible to show that these contributions factorize from the hard process, but
one can also power count the non-perturbative corrections. This implies that to a given power, only a finite number of
non-perturbative parameters are required to predict an (in principle) infinite number of observables.
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As a concrete example, we can consider the low energy limit of a toy theory with a light scalar
¢ constructed using Eq. (1.3). We want to probe the theory at a low scale s;; /M? ~ A%, where
sij = (pi+ pj)* are the Mandelstam invariants, in the parameter space where the momenta are
small so that A ~ m/M < 1. In order to devise a power counting scheme that respects Lorentz
invariance, we need all the components of the ¢ momentum p;, to scale homogeneously

pu~M(A2,A,4) ~m(1,1,1,1), (2.2)

which implies that p> ~ M? A% ~ m?. Note that if Py scales non-trivially with power counting, then
the canonically conjugate variable x;; must also scale such that our quantum mechanical canonical
commutation relations are unsuppressed: [x,p] =i ~ ¢(1). This means that the power counting
for x scales as the inverse of the power counting for p. In our example, Eq. (2.2) implies that
dx ~1/A%.

After a brief detour where we define many of the conventions that will be used throughout,
we will construct the unique kinetic term for our light scalar ¢, by relying on symmetry and power
counting arguments alone. Then we will address interactions and local operators to complete our
picture of the EFT Lagrangian structure.

Primer 1. Conventions

One goal of these notes is to make the source of subtle minus signs and factors of two we
will encounter as obvious as possible. To this end, before we get our hands dirty with some
actual calculations, we should establish some conventions. If ever in doubt, assume we are fol-
lowing the conventional choices made in [3], except that we will define dimensional regularization
with d =4 —2¢&. Obviously, i = c =1, and we will take the standard Fourier transform con-
vention that the measure in momentum space is d*p/(27)*. We use the mostly minus metric
guv =diag(+1,—1,—1,—1), and the index u =0,1,2,3 =1,x,y,z.

We will be computing S-matrix elements using momentum space Feynman diagrams. Specif-
ically, a Feynman diagram should be interpreted as i.«/, where 7 is the amplitude or (S-)matrix
element. The i.¢/ are derived by applying the L.SZ reduction procedure to the time-ordered products
of fields that can be extracted from the path integral using

1 "Z[J]
=) 20 3700y 97 e

= <0|T¢(xl)¢(xn)|0> ) (2.3)

J=0

where Z[J] is the generating functional
Z|J| = /9¢exp <iS[¢]+i/d4xJ(x)¢(x)> : (2.4)

and J(x) are external currents. The action is computed using S = [ d*x.#, which implies that %
carries mass dimension four.
The Lagrangian for a free scalar field ¢y is

1

1
Ziin = 5 (9u90) (9" 90) — §m2 %, (2.5)
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from which one can derive the propagator

d'p i ip (=)
(O[T 9o(x) 90(»)[0) = / Qi it (2.6)

where the i0 factor is shorthand for taking the limit to zero from above — this choice yields a time-

ordered causal pole prescription.'® Then clearly the momentum space scalar Feynman propagators
are

2.7)

We will often drop i0 unless we are evaluating a loop integral using contours.
Speaking of contour integration, it is worth stating our prescription for integrating a function
f(z) along a contour in the complex plane that does not cross any branch cuts:

fazr@) =2miy " Res(r.z), 2.8)
v k

where the closed contour v is taken to be counterclockwise, z; are the poles contained within 7y, and
the residue of f at z; is

Res(f.z) = lim [(z—2) £(2)]. (29)

when the z; are simple poles.
Finally, vertices get a factor of i from expanding the exponent of the path integral. For example,

if the interaction Lagrangian contains a term %, = —k ¢* /4!, or equivalently V = x ¢* /4!, then
N
Bl = —ik (2.10)
¢ X

is the Feynman rule.

Gauge Theory

We will not encounter gauge theory until Sec. 6. But since we are defining conventions, we
might as well include these here. The covariant derivative is given by

Dy = 0u¢i —igAy (T“)l.jqu, (2.11)
where the generators satisfy the commutation relation
[T“, Tb} —j pabe e, (2.12)
The Yang-Mills Lagrangian is
1 1 2
L= > R FY = -2 > (OuAY — 0y AG + g fC AL AS) (2.13)
a a

10We use the notation i0 instead of ie since we will reserve € for the regulator in dim reg with d = 4 — 2¢.
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We will find it useful below to express the field strength tensor in terms of covariant derivatives:
Fuv =~ [D“,Dv} , (2.14)
8

where for the non-Abelian case, this should be interpreted as a matrix expression with Fy,, = Fyj, T
and Ay, = A}, T“. Under a gauge transformation,

Aur) — URA0UR) - ; (9U) UT(x). 2.15)
where
U(x) =exp (ia’(x)T"), (2.16)

and o?(x) is the gauge transformation parameter. In the infinitesimal limit, and expressing this in
terms of the adjoint gauge field with explicit indices, this reduces to

1
AL(x) — AL+ p O o (x) — 7 o (x) AG (x) . (2.17)
Then for charged matter
¢i — Uij¢j- (2.18)

Field Redefinitions

One immediate consequence of the path integral formulation of quantum field theory is that
physical predictions are independent of field redefinitions [4, 5]

¢—>¢+¢f(ji>, (2.19)
where A is a dimensionful parameter. This redefinition has no impact on observables since Eq. (2.4)
integrates over all configurations of ¢ (x), and the measure ¢ compensates any change of variables
due to the Jacobian. There is one additional effect, which is that this change of variables can
introduce new couplings to sources, but this does not typically lead to any complications, see e.g. [6,
7] for a discussion.

After performing a field redefinition, it is typically convenient to then redefine the fields such
that their kinetic terms are diagonalized and canonically normalized. This is done with an invertible
matrix

o — Kior, (2.20)
where the Kjy matrix is derived by requiring that
1 1 1
L5 52(9uhi) (9"9;)  — LD 5ZyKiKjj (9udr) (9#9;) = 5(dudi) (940:) . (221)

where Z;; encodes the initial non-diagonal kinetic term.
Additionally, it is typically useful to diagonalize the mass matrix, so that the propagators are
fully diagonal. Fortunately, if one is given a set of diagonal and normalized kinetic terms, there is

10
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still the freedom to rotate the fields with a unitary transformation (or an orthogonal transformation
for the special case when ¢ is real)

1 1 1
jD—Elej(Pi(Pj — g)—EUingj/m%j/(Pi/(])j/:_Emiz(])iz’ (222)

where m? is the diagonalized mass matrix. This U transformation does not induce any kinetic
mixing terms since the unitary matrix passes through the diagonal kinetic terms. Now that we have
these terms in canonical form, one can still perform further field redefinitions that will only change
the structure of interacting Lagrangian.

Equations of Motion

The principle of least action holds in quantum field theory as an operator statement:

0L 0L
<0‘ 36 —aﬂa(au¢)‘o>:0. (2.23)

It is straightforward to prove this by noting that the contribution to the path integral from a variation
of the action S induced by a variation in 0¢ must vanish since ¢ — ¢ + 0 ¢ is simply a field redef-
inition. This implies that one can always apply the equations of motion to reduce the Lagrangian
to a simpler or more useful form. A demonstration of how this works practically at loop level can
be found in [6].

Integration by Parts

As always in quantum mechanics, integration by parts is extremely useful:

J(9:)[0ug(¢)] = —[9uf(¢:)]&(91), (2.24)

where the fields are assumed to vanish at 4o, !!

e Exercise: We conclude this section with an amusing exercise that demonstrates these prin-
ciples in action. Starting with a free scalar theory, we make the field redefinition ¢ —
¢ +¢> /A, where A is some unspecified dimensionful parameter:

2
2= 5(0u0)(2"0) ~ 300> + 0 (240) (9"0) + 1 0°

42 0% (2,0) (940) + 1 o 225)
A2" 2A27 '

Now it naively appears that the amplitude for the process ¢ ¢ — ¢ ¢ is non-zero. However,
we know that it must be zero since we have simply performed a field redefinition of a free
scalar. Show that the amplitude for ¢ ¢ — ¢ ¢ is zero at tree-level by explicit calculation.

"'Under the assumption that the field configuration does not carry any non-trivial topological structure.
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2.2 Constructing a Kinetic Term

In this section, we will take an overly pedantic walk through the steps for constructing the
kinetic term in the Lagrangian for our EFT scalar field ¢ (x). First, it must be quadratic in the fields
since the time ordered insertion of a field operator ¢ (x) followed by ¢(y) yields the propagations
of a particle in spacetime from y to x. One approach to deriving a notion of propagation is to start
with a time foliation. This user specified choice is tied to the definition of the Hamiltonian H, since
it is this operator that generates time translations in quantum mechanics. For a Minkowski frame,
the obvious choice is the zero component of a spacetime vector.'? Therefore, a kinetic term must
involve at least one derivative with respect to time, dy ¢ (x), and since we obviously want to build it
covariantly, we must lift this to the full partial derivative dj, ¢ (x).

Next, we impose the symmetries of our theory. Since @ (x) is a Lorentz scalar and . is also a
Lorentz scalar,'> we must contract du ¢ (x) with another Lorentz vector if it is going to contribute
to the Lagrangian. The only available vector is dy. Putting all these pieces together yields the
following candidate Lagrangian for the kinetic term

L =710y " 9>+ 2209y 0" ¢+ 73 (9 9) (9% 9), (2.26)

where Z1, Z», and Z3 are constants.
Take the first term:

ud" 9 =3u(209"¢) =2(93,0" 9+ (340) (9"9) ). 2.27)

implying that this term can be absorbed by simply redefining Z, and Z3. Next we can apply inte-
gration by parts to the second term, which yields

/d4x¢ ot ¢ = —/d4x(au¢) (0% 9), (2.28)

such that we can absorb Z; into a redefinition of Z3. The result is the unique kinetic term

1
Zin = Zyp 2 (u9) (0" 9), (2.29)

where Z is the wave-functions renormalization factor for the kinetic term, the sign choice is fixed
to yield positive kinetic energy, and the 1/2 yields the canonical normalization of the propagator if
we assume that Zy = 1 + corrections, as it does in perturbation theory. Note that Zy does not carry
any mass dimension, since the EFT kinetic term operator is mass dimension four — of course this
is by definition, since the requirement that the kinetic term carry mass dimension four is what we
use to determine the mass dimension for ¢.

2.3 Power Counting for Fields

Now we can turn to the power counting for our field ¢. We can interpret the propagator as
summing an infinite number of insertions of the kinetic operator. Therefore, we must be able to

12When we work with light-cone coordinates below to construct the kinetic term for a collinear fermion, the choice
of a time coordinate will be less obvious, see Sec. 6.4.
3Technically . is only required to be a Lorentz scalar up to the parity and time discrete spacetime transformations.
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insert a factor of this operator at no power counting cost. Assuming the power counting for the ¢
momentum defined in Eq. (2.2),

pu~M(A2,A,A) ~m(1,1,1,1), (2.30)

we find that that the kinetic term scales as A2 A2, where each derivative scaling like A is inherited
from the scaling of the ¢ momentum, and A4 is the power counting parameter for ¢. Recall from
above that our power counting choice implies that d*x ~ 1 /A%, such that %, ~ A* so that the
action for the kinetic term scales as ¢'(1). We have derived

Ao = 1. (2.31)

We can additionally infer that marginal or leading power terms in our EFT will power count as
A*. The same kind of argument will be revisited in SCET below, where we will see that not all
propagating EFT fields will have the same power counting. However, in our relativistic EFT, we
see that power counting is identical to organizing by mass dimension.

Note that there is another quadratic term consistent with the symmetries, namely the mass term

1
ZD 5M2 Cy2 7. (2.32)

Note that the coefficient of this operator must carry mass dimension two. But the only parameter
around with mass dimension is M, which is why it appears explicitly in Eq. (2.32). However, this
is the scale we have integrated out to generate the EFT. But if Cy> ~ (1), our “light” field ¢
has a mass of order the cutoff of the EFT, and the whole setup breaks down! This argument is the
conceptual source of the hierarchy problem — we will see this same conundrum appear dynamically
in Sec. 3.4 below.

Obviously, we need ¢ to have a small mass. One consistent (albeit fine-tuned) choice, is to take
Cy2 ~ A% ~ m?/M?. Then it becomes sensible to sum the mass into the propagator, yielding the
massive propagator given in Eq. (2.7). It is worth emphasizing that nothing in this setup requires ¢
to have any mass at all. Once we tune the mass to zero at uy; ~ M, it will stay zero within the EFT
as emphasized in Sec. 3.4 below.!'*

2.4 Interactions and Local Operators

For the sake of simplicity (and to emphasize the role of symmetry), we will assume that the
FULL THEORY has a Z, symmetry that sends ¢ — —¢ and & — —P simultaneously. In other
words, we are only allowing k and 7 to be non-zero, using the notation defined in Eq. (1.3) for
.Zjﬁf“. Since the physics we have integrated out at the scale Ly ~ M does not violate the Z;
symmetry, the EFT should manifest a Z; as well, so we will only consider terms with even powers
of ¢.

The leading interaction is

Lt T D Cpr 9t ~ A, (2.33)

4For a massless theory, it could be useful to define power counting in terms of s; i/ M?, depending on the process we
are interested in modeling.

13



Effective Field Theory Timothy Cohen

so it is a marginal operator in our EFT. We can do an arbitrary number of insertions of this operator
at no power counting cost. Marginal operators are usually considered part of the interacting EFT
Lagrangian, as opposed to being classified as a local operator.

When we go to higher power, we begin to encounter irrelevant operators. Due to the Z,
symmetry of our EFT, they must scale as ~ A% or higher. At next order, there are two possible
terms

ZD %Cw 0% + #Cazw #2092, (2.34)
where M is the dimensionful high scale, and since ¢ ~ A and d ~ A, both terms scale as A°. These
are usually referred to as the “local operators” or “contact operators,” in that they encode non-trivial
interactions among many fields simultaneously evaluated at a single spacetime point. Their role in
the EFT is primarily to model the residual influence of the heavy scale on the light system, that is
mediated by off-shell physics near the scale M. In this context, the division into a “propagating
EFT” (that includes the propagating modes and their super-renormalizable and marginal interac-
tions) and the “local interactions” is a reframing of the more familiar ideas of “renormalizable”
versus ‘“‘non-renormalizable” theories. While this distinction might seem overly pedantic, for a
more complicated EFT like SCET, the UV and IR theories have dissimilarities, and furthermore
the operator building blocks for the local interaction Lagrangian take a still different form. For
now, we can be satisfied that power counting provides a consistent way to categorize our operators
into super-renormalizable, marginal, and irrelevant — keeping with the spirit of EFTs as we are de-
veloping them, we will often refer to the classification of operators as instead being super-leading

power, leading power, and sub-leading power respectively.

The Operator Basis and the Hilbert Series

As should now be clear, there can be tremendous freedom when choosing a basis of operators
to work with, especially in situations with a large number of fields, e.g. the Standard Model. In
particular, the redundancies implied by integration by parts and the equations of motion complicate
the characterization of a basis. Ideally, one would carefully pick the basis that would make a given
calculation as straightforward as possible. Furthermore, the RGE will tend to mix operators. If one
needs to evolve the theory between scales, then a complete basis is required, see e.g. [8, 9, 10, 11]
in the context of the Standard Model EFT up to dimension 6.

Just to emphasize the point concretely, note that the equations of motion in the Standard Model
can be used to relate currents of fermions to derivatives of gauge/Higgs bosons as

¢ =g Z fwf +«— D'Gy,
quarks
- o* i —
gVu:ngyNTf — D"Wlfv—igHTc“ D H
left
= 1 T =
Jsu=Y Yifyuf <« 0 Buy— ¢ H DH, (2.35)

matter

for SU(3), SU(2), and U(1) currents respectively, and where all variable are taken as the canonical
Standard Model definitions, see e.g. [12] for details and applications to the Standard Model EFT.
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Clearly, this implies that care must be taken when performing calculations that depend on higher
dimension operators in the Standard Model.

Given this complexity, an algorithm that would count the number of independent operators
for a theory of interest was an unsolved problem until recently. While the details are beyond
the scope of this review, it is worth briefly mentioning the ideas that underlie this counting [13].
There is a technique which is colloquially known as the Hilbert series approach that can be used
to count the independent elements in the operator basis. This approach was first applied to higher
dimension operators in the Standard Model to construct flavor and CP invariants [14, 15], which
do not involve derivatives. Later, it was first shown how to accommodate derivatives with this
method as applied to a toy scalar EFT that lives in one-dimensional spacetime [16].!5 Now the
task of classifying higher dimension operators in the Standard Model that include derivatives has
been achieved [17, 18, 19]. There are in fact two underlying approaches for dealing with opera-
tors involving momentum [16, 20]. The first is a momentum space approach where polynomials
of the momenta form an algebraic structure known as a “commutative ring.” In this language,
the equations of motion and integration by parts redundancies are an “ideal” of the ring — the
set of polynomials with these redundancies removed is then the “quotient ring.” There is a com-
plementary position space picture for dealing with the redundancies that appear when operators
include derivatives. The first step is to identify each Standard Model field as a representation of the
four-dimensional conformal group. Then accounting for the equations of motion redundancies is
equivalent to “shortening” these multiplets. One then constructs all reducible tensors with a given
mass dimension by taking products of the shortened representations. Next, one decomposes these
reducible tensors into irreducible representations.!® The last step is to extract the primary opera-
tor for each of these irreducible tensors using the Molien-Weyl formula, which accounts for the
integration by parts redundancies. The result is that there are 2,84,30,993,560,15456, ... higher
dimension operators for the Standard Model EFT assuming a single generation of fermions, where
this list corresponds to the number of independent operators ordered in terms the operator mass di-
mension, starting at 5, see [19] for details. Converting the output of the Hilbert series into explicit
operators requires a final step, see e.g [22, 23].

Accidental Symmetries and EFTs

One of the miraculous properties of the Standard Model is that baryon and lepton number
are accidentally conserved. Specifically, this means that if one takes the Standard Model matter
fields and writes down the most general set of operators that are allowed by gauge invariance up
to dimension four, global U(1) symmetries for lepton and baryon number emerge. This idea of an
accidental symmetry is ubiquitous in field theory. In the Standard Model, there is a unique operator
at dimension 5 [24]:!7

Z5 %(HZ)Z +he., (2.36)

13The choice to work in one-dimension implies that the expansion in derivatives truncates at d>¢ = 0, dramatically
simplifying the problem.

16For recent progress automating this step, see e.g [21].

7 This operator accounts for the “2” referred to in the previous section [19], where the doubling is due to their
convention of taking the operator and its hermitian conjugate as independent.
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where L = (v, e) is the lepton doublet, H is the Higgs doublet, we are assuming only one generation
for simplicity, and A is a dimensionful scale suppressing the operator. This operator violates lepton
number, since the gauge invariant contraction is proportional to L? as opposed to L'L. When
the Higgs is expanded about its electroweak symmetry breaking vacuum, this operator leads to a
Majorana mass for the neutrinos, m, ~ v?/A. It has a simple interpretation as being generated
by integrating out a heavy right handed neutrino using techniques that will be discussed below in
Sec. 3.1, i.e., the seesaw mechanism. Going to dimension 6, it becomes clear that baryon number
can also be violated by new physics at a UV scale, which for example can lead to proton decay.
One compelling explanation for A is to associate it with the scale of grand unification [25]. We
see that the accidental symmetries of the Standard Model, augmented by EFT reasoning, gives a
compelling explanation for both the smallness of the neutrino masses and the long lifetime of the
proton.

More recently, accidental symmetries have been used to solve the hierarchy problem (see Sec. 3.4
below) in the context of the Twin Higgs mechanism [26]. These models rely on a global SU(4)
symmetry in the Higgs sector (which requires the addition of new “twin” Higgs fields). How-
ever, the matter sector of the Lagrangian only respects a Z, exchange symmetry, and in particular
does not require the new matter states to be charged under the Standard Model gauge groups —
for this reason, the study of models and signatures associated with this clever application of ac-
cidental symmetries is often referred to as “neutral naturalness.” The magic of this mechanism is
that the SU(4) is maintained by the one-loop corrections to the Higgs potential. In particular, a
light pseudo-Goldstone Higgs state dynamically emerges whose mass parameter is protected by
the global symmetry breaking pattern SU(4) — SU(3), i.e., it does not receive a large quadratic
contribution to its mass parameter. However, this accidental symmetry is violated by higher loop
effects. While the Twin Higgs approach and its extensions [27, 28, 29, 30, 31] only postpone the
hierarchy problem by a loop factor, they intriguingly motivate novel phenomenological observables
at the LHC, in cosmology, and for dark matter detection, see e.g. [32, 33, 30, 34, 35, 36, 37, 38, 39].

Now that we have laid the foundation for how to construct an EFT, we will turn to our main
line of inquiry. We will develop the technology to match a FULL THEORY onto an EFT at both tree
and loop level, and then run the couplings within the EFT in order to maintain precision control of
perturbation theory.

3. Matching and Running

In this section, we explain the matching and running approach to scale separation. Matching
was defined schematically in Eq. (2.1). The procedure is formalized more carefully in this section.
First we work out examples at tree level (see Sec. 3.1) and then at one loop (see Sec. 3.3 through
Sec. 3.5). Matching has two main purposes: it serves to connect the coefficients of the EFT to
a more fundamental UV description, and it eliminates any non-analytic dependence on the IR
parameters that the FULL THEORY Feynman diagram expansion might manifest. Once matching
has been performed, we will show how to derive a set of RGEs that can be integrated to run
couplings from the high scale py to a low scale y;. The perturbative expansion in terms of the
low-scale EFT parameters displays improved convergence, since logarithms are absorbed into the
running of these couplings.
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We will encounter a number of technical and conceptual issues along the way. After our tree-
level example, we will detour into a series of two Primers. The first provides a review of dimen-
sional regularization, the modified minimal subtraction scheme, and then explains the vanishing of
dimensionally regulated scaleless integrals. This is followed by a Primer on RG evolution, where
we show how to derive RGEs. Then we move back into the lectures, where we provide a simple
computation of an anomalous dimension of an operator and use it to run the relevant coupling. We
then turn to a number of interesting subtleties that appear when matching at loop level. First, we
will explore the EFT approach to decoupling the contributions to the anomalous dimensions from
heavy particles, when using a massless regulator such as dim reg. This is followed by a calculation
to highlight the implications of integrating out a heavy state in a model with a light particle whose
mass is not protected by a symmetry — the hierarchy problem. We will additionally see how EFT
reasoning clarifies some confusing aspects of how this problem manifests when using dim reg.
Finally, we will present the most important calculation of this section, where we separate scales
for a “heavy-light” logarithm. Up until this point, the need for the RG will have been an obvious
consequence of the apparent dependence on an unphysical renormalization scale. In Sec. 3.5, we
will explore a toy model from which emerges a logarithm that is a function of only physical scales.
This provides the opportunity to explore how matching can be used to introduce scale dependence,
paving the way to derive a set of RGs. We will end this section with an introduction to the method
of regions using our heavy-light log as an example application. Although this technique is overkill
for the simple case we are presenting here, it will be critical to our understanding of and ability to
calculate within SCET.

3.1 Tree-level Matching

Our goal in this section is to learn how to integrate out a heavy particle at tree level, to express
the FULL THEORY dynamics as an EFT expansion in terms of the light particle interactions. We
will match these two theories at a scale uy; ~ M. For simplicity, the only interaction we will turn
on in the FULL THEORY is'8

U%FULL _ 1

=509 @ (.1)

The first step is to pick a process.!® We will match the two theories by equating ¢ ¢ — ¢ ¢ at the
scale tys. Note that while we will not be careful to distinguish them, the FULL THEORY field ¢y
is not the same as the EFT field ¢gpr. In the case of matching across a relativistic threshold at tree-
level, this distinction is not critical, but we will see it manifest non-trivially below in SCET, where
the EFT degrees of freedom take a different form than those in the FULL THEORY. However, note
that if we were investigating the detailed loop structure of this example, these differences would
manifest in a variety of ways, e.g. the wave-function renormalization for ¢py; ;. would be different
from that of @gpr.

8 Disclaimer: For the last time, we will note that this (and all of our examples) will involve a non-generic choice
of the couplings in the UV FULL THEORY. In particular, if we run the couplings in the FULL THEORY to a scale much
higher than py, additional operators would be induced. This effect will play no role in the physics of interest here.

19While this is not strictly necessary when integrating out a heavy particle relativistically, our goal is to present the
more familiar example in a way that parallels the SCET approach discussed below.
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Next, we need to write down an EFT Lagrangian that can capture the physics at scales p; << M.
Clearly our EFT cannot include ® as a dynamical degree of freedom, since by construction the
EFT is valid when there is not enough energy available to create this heavy state.’ However,
when working with loop diagrams one is still supposed to integrate over all momenta, so one might
naively expect that ® must still be included in loop calculations. To see why this is not the case,
we can appeal to unitarity. Specifically, the optical theorem implies that if there are no external &
particles in Feynman diagrams, then any loop involving & cannot be put on-shell. This in turn tells
us that all dependence on mass of @ must be analytic, i.e., there can be no logs that depend on M
generated within the EFT, and all M dependence that contributes to ¢ ¢ — ¢ ¢ can only result from
the matching procedure that determines the local operator structure of the theory at low energies.
In other words, it is completely sensible to use an EFT to describe the physics at low energies to
arbitrary order in perturbation theory.

Since our FULL THEORY respects a Z, symmetry that acts on the light field, we should enforce
¢ — —¢ within the EFT as well.?! This restriction (plus Lorentz invariance) implies that our EFT
Lagrangian takes the form

1 1 1
gEFT = 5 (aﬂ¢> (a“¢) - §m2 2 JC(“’O) ¢4
11 11
61 32 C(60) 9°— 12242 9%(9°9*) +--, (3.2)

where C(; ;) are the Wilson coefficients specified by the number of fields i and the number of
derivatives j, and we have included factors of M to make all the Wilson coefficients dimensionless.
Next, we define our power counting in the m < M limit as we did above in Eq. (2.2):

po~M(AA L L), (3.3)

Following the same logic that led to Eq. (2.31), we find that ¢ ~ A and d ~ A. This allows us
to power count our operators, and we see that ¢* ~ 1%, ¢% ~ 1%, and 92 ¢* ~ A°. Our operator
expansion organized by mass dimension is ordered in power counting.

Now we are ready to compute ¢ ¢ — ¢ ¢ at low energies in both the FULL THEORY and the

20There are techniques for treating the fluctuations of a heavy field ® at low energies. This is known as heavy quark
effective theory, and it is mentioned in Appendix A below.

210f course, we do not need to enforce this. We could instead include all possible higher dimension operators and
then matching would set the Wilson coefficients of operators that violate this symmetry to zero.
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EFT. We begin with the FULL THEORY calculation

N -+t -channel :i%FULL:—inZ 1
¢ R + u-channel p3—M?

’ N S,t,u

. 1 Am?>  s*+12+u?
(L) (st e

b2
NW(1+AZ+A4+---), (3.4)

where in the second line we have power expanded the amplitude assuming our external fields have
small momentum s,7,u ~ m> ~ A2, and we have used the fact that s+ +u = 4m?. Recall that b
carries mass dimension and the appearance of M ensures that amplitude has the same dimensions
as the four point amplitude in the EFT. This diagram produces a Taylor expansion in A as expected.

Next, we compute ¢ ¢ — ¢ ¢ in the EFT. At tree-level, this is given by the ¢* interaction in
the EFT Lagrangian,

3< =ia/™T = —iCyy). (3.5)
(b" \\. ¢

Finally, we are ready to match. At tree level, we simply equate the two amplitudes

i/ UL — o7 BFT (3.6)

order by order in A, where we have chosen the same kinematics within both the descriptions (this is
trivial here, but is important for more complicated examples). Since we are working with tree-level
amplitudes, there are no logarithms to worry about and this matching is completely straightforward:

b 0 b o0

;o FULL — :.' _ 3iﬁ =—iCup) = o< = i%EFT, 3.7
¢', S b ¢,’ . 10)

where we have truncated to leading order in A. Here the blue dot represents the fact that we have
shrunk a heavy propagator to a point. Technically, we should keep in mind that we match this onto
the EFT at the scale uy; = M, implying that our matching procedure yields

Clao) (M) = =3 ( atil )2 : (3.8)

M (piar)

However, since we are working at tree-level, there is no scale dependence to keep track of — we
will have to keep careful track of these scales when we match at loop level in Sec. 3.3 below.
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Additionally, for a more complicated matching calculation one must address the choice of EFT
operator basis, as discussed in Sec. 2.4 above.

e Exercise: The higher power terms computed in Eq. (3.4) include a contribution to C(4 o) and
to C4). You should first convince yourself that we have captured the complete basis of
operators with two derivatives and four fields, and then determine both the C(4 ) and C4 )
Wilson coefficients at ¢(A2) power.

Finally, there is one more interesting subtlety to point out. When matching, we should only
include the contributions that are one-@-particle irreducible. For example, one might be tempted
to compute a matching coefficient Cg ) using a diagram in the FULL THEORY with six external ¢
states. However, this process is already contained within the EFT through diagrams

¢ 90
PR o 1o
Al = b — : 3.9
e P I 0 ’ P G2
¢ 7 0 e
{0

where one must permute the labels to account for all the channels on both sides of the equals sign to
reproduce detailed agreement. Physically, the EFT captures the effects of shrinking & propagators
to a point and Taylor expands around that limit, so that all ¢ lines must be left propagating at the
matching step. Therefore, C,, o) = 0 for all n > 4 in this EFT, which is another non-generic aspect
of this example. Next, we will demonstrate a technique for computing the matching coefficients
that relies on the equations of motion for ®, making the concept of “integrating out” the heavy
particle manifest.

Matching and the Equations of Motion

In this section, we connect the diagrammatic approach that was just explained with a conve-
nient method that relies on the equations of motion for ®. Starting with the FULL THEORY La-
grangian, whose interacting part is given in Eq. (3.1), we can derive the equations of motion for &
following the standard Euler-Lagrange procedure:

b1
20— M2

b
(O-m)@ =29 0?, (3.10)
where dividing by the propagator is interpreted as formally solving for ®; since we are interested
in the EFT where & is far off-shell, we will not encounter any subtleties (such as contact terms)
when interpreting this expression. Plugging Eq. (3.10) back into the Lagrangian yields

1
0—M?

b2
FuLL __
4 =——

nt 3 . (3.11)

(PZ

This is still equivalent to the FULL THEORY Lagrangian, since we have only used the equations
of motion to rewrite it. Although this is an obscure way to write the theory if we are interested in
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physics that depends on external @ fields, it is useful for taking the low energy limit. Using our
expansion parameter A, we have [1/M? ~ A2 since the (inverse) derivatives act on ¢.>> Then the
EFT can be derived by simply Taylor expanding in A

2 2
,gg;}tFT:_%qu (_1\;2) ¢2—%¢2 <—154> 92+ . (3.12)
This gives another way to see that the EFT is simply a Taylor expansion in A of the FULL THEORY.
Just to make sure all the factors work out correctly, we can derive a Feynman rule for the ¢*
interaction from this Lagrangian, which has a coefficient —35? /M?. This agrees with the derivation
in Eq. (3.7) that utilized a diagrammatics.

The equation of motion approach is extremely useful at tree level, but becomes much less
straightforward at loop level. However, this technique has a beautiful path integral interpretation.
Recently, it has been shown how to perform matching and running at one-loop order using the path
integral directly [40, 41, 42], with applications to the higher dimensional operators for the Standard
Model [43, 44, 45, 46, 47]. However, we will stick to diagrammatics as we move on to loop-level
effects. Before we are ready to calculate any loops, we will need the technology discussed in the
following two Primers.

Primer 2. Dimensional Regularization

Dimensional regularization (dim reg) [48, 49] is otherworldly. We are taught to worship it
in our quantum field theory courses primarily because it respects gauge invariance, but also since
it can be applied with relative ease. Furthermore, the way in which dim reg regulates integrals
respects EFT power counting. Related to this fact is the remarkable property that scaleless integrals
vanish when using dim reg. So much of our EFT formalism beyond tree level is made simpler
by this wonderful fact, and we will see the connection to maintaining manifest power counting
concretely as we work through some examples. This feature of dim reg also underlies the difference
between Wilsonian and continuum RG approaches as discussed in Primer 3 below.

The idea for dim reg is to start with an integral that diverges in d = 4 dimensions, and regulate
it by deviating away from four dimensions by a small amount €. We will use the convention
d = 4 — 2¢ throughout.>® As we will see below, this implies that our divergences will always have
companion logarithms in the combination 1/€ +logu?/.#?, where y is the renormalization scale
and m is in general a dimensionful combination of parameters.

When we change the dimension of spacetime, we also alter the mass dimension of our fields.
To derive this effect, we start with the fact that the action is dimensionless for any choice of space-
time dimension. Then the kinetic term for a scalar field is simply

S:/d4x(aﬂ¢)(8“¢) — S:/d“zsx(&”q))(c?“q&). (3.13)

2Inverse derivatives might seem disturbing at first, but they can be understood by Fourier transforming, and working
at finite p?. Note that an inverse derivative is often a sign that a theory is non-local. A non-local theory would emerge
if we attempted to integrate out a light mode that should have been kept as a propagating degree of freedom to low
energies.

23 A word of caution here: many books including Peskin & Schroeder [50] and Schwartz [3] use d = 4 — &, such that
they always get the combination 1/& +logu /. .
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Using [S] =0and [d4728x] = —(4—2¢), where we are using the standard notation that [...] returns
the mass dimension of the object inside the brackets, we find

[(a,m)(a%)] —4-_2¢. (3.14)

Note that the mass dimension of derivatives does not depend on spacetime dimension since [—
i&u] = [p#] =1 for any d. So the mass dimension of our field is

(9] =1—¢. (3.15)
We can then apply this to interactions:
1 4 1 2¢ 44
LD ——Ce¢° 252 L couteos, 3.16

where the dimensionful parameter u appears so that the couplings remain dimensionless when
d = 4 —2¢. Note that the small £ expansion of y?>"€ — n log u? for an integer n.

We will simply quote the following general result, since it is derived in any number of intro-
ductory field theory books, e.g. [50, 3]:

d'e 1 i (C)TO=d2) s
U/P(27t) d(02— n?)P (47r)d/2 I(b) () (3.17)

where . is some combination of variables that carries mass dimension. Since we will only per-
form scalar integrals with trivial numerators, this will be the only form that appears below. This
evaluation utilized a Wick rotation [51] such that a one-loop integral over one (two) propagator
picks up a factor of —i (i). These annoying factors of i and signs will be important for the matching
calculations that follow. For the reader who wishes to take their understanding of dim reg to the
next level, the Collins book on renormalization [52] is an incredible resource that contains many
formal details.

Since we will use them extensively, it is worth presenting the small € expansion for two specific

cases:
“28/ ¢ 1 - Te-l( g2 \(1 el
el e—2 " @Gnpe (1) \aner ) \ a2
2 i
16n2///< —Hog///z—&-l)—i—ﬁ(s) [one propagator|,  (3.18)
and
28/ a%e 1 i T B2 N\ N
Kol end (=22 ~ dnre1(2) \dne % ) \ a2
Ll o +0(¢) [t tors],  (3.19)
o \g Tl wo propagators|, (3.
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where .# has mass dimension one, and we have introduced the notation
2 =4me " pu?, (3.20)

where g is the Euler-Mascheroni constant. Then the minimal subtraction scheme (WS) is 1m-
plementing by first writing integrated results in terms of the MS scale fi, and then defining the n'"
loop counterterms so that they cancel terms proportional to 1/€" for n > 0, see more discussion
below in Primer 3. Note that if you have used Feynman parameters (discussed next) to manipulate
your integral into the general form in Eq. (3.17), you must integrate over these parameters before
expanding in &, assuming your goal is to correctly capture all of the logarithmic dependence.

Combining Denominators

We will use the Feynman parameter trick for combining propagators:

1 ! 1
L :/ dx - (3.21)
AB Jo = [xA+(1-x)B]
which generalizes in the case of n propagators to
1 ! —1)!
:/ dxl...dxna(zxi_1> (D! (3.22)
A1A2"'An 0 [X1A1+"'+ann]

We will also use a less well known variation of this trick that is useful when one encounters
linear denominator factors. Starting with the simple case where A is a standard quadratic propagator
and b is linear,

1 e 1
S oy 323
Ab /0 YAty (3.23)

where the y integral runs from zero to infinity, and y can carry mass dimension as needed for
consistency. This generalizes to the case of n linear propagators as

1 /‘X’ ” n!
= dy / dy , (3.24)
Abiby by o 0 [Atbiyit by
and for higher powers of both propagators
1 T(m+n) [ !
= dy ————— 3.25
T Ty e

where again A is a quadratic Feynman propagator and b is linear, and n and m are positive integers.
We will use these formulas to compute loop corrections in SCET.

Scaleless Integrals Vanish

This subsection will devote some effort to convincing you that scaleless integrals vanish in dim
reg. The phrase “scaleless integral” refers to a loop integral whose integrand has no dependence
on a physical scale that carries mass dimension. Conceptually, one reason that scaleless integrals
must vanish is that dim reg generates logarithms of the RG dimensionful scale u, and, since the
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argument of a log must be dimensionless, there must be some other scale around to produce a
consistent non-zero result. The absence of such a scale implies that the integral must return zero.

Take a scaleless integral that is naively both UV and IR divergent, and simply evaluate it by
enforcing a UV and an IR cutoff, Ayy and A respectively:

d* 1 i Ao i A?
y_/ — = de- = log =¥ | (3.26)
(2m)* e+ 8m? [y, € 16w T Ak

where in the second step we have Wick rotated. Note that when using a cutoff regulator, the integral
is non-vanishing. However, the logarithm only depends on unphysical Ajg and Ayy regulator
scales, so care must be taken when interpreting this result, since it is clearly scheme dependent.

Next, we can see that this integral vanishes when using dim reg. We can rewrite Eq. (3.26) so
that it is regulated by dim reg (see e.g. [53])

d’e 1
_ 2
By introducing a mass scale m, we can rewrite the integrand as
1 ? m?
AT Ae =) A e—m2)’ (328)
which allows us to break the integral into UV and IR divergent terms>*
ddv 1 i 1 2
Ty = p2E = — +log= 2 +1)+0
v “UV/ 2l 2(C—m?) 1672 <£UV log= 7 +1)+0(ewv)
ddy m? i 1 fi2
— 2 _ IR
ﬁR_HHf/Y(Zn)d £4(€2_m2) - 167'[2 <SIR +10g’nz+l> +ﬁ(EIR)7 (329)

where .% = Zyyv — 1r, we have used the three denominator version of Eq. (3.22) to simplify the
second integral, and we then applied Eq. (3.17) to evaluate the loop integral, and integrated over
the Feynman parameters. Since we want to interpret this as two contributions to the same integral,
we should take i3y = ik

i 1 1
g LI R 3.30
167'[2 <8UV 81R> ’ ( )

where the last equality is true when we take gy = €r. This makes precise the notion that scaleless
integrals vanish in dim reg.

e Exercise: Derive Eq. (3.29).

The feature that scaleless integrals vanish is very generic, and includes situations where the
integrand is also a function of single components of the loop momentum. For example, integrals
that depend on ¢ - v, with v# = (1,0,0,0), show up in heavy particle EFTs, or factors like ¢ - n, with
n* = (1,0,0,1), appear in SCET.

Z4Note that for both of these integrals we are using d = 4 —2¢ with € > 0. This is a reasonable choice for .#y since
it converges for d < 4. However, .#yy only converges if d > 4, and thus it should be regulated using d =4 +2¢gr. Then
by analytically continuing €r — —&[r, we derive the result in Eq. (3.29).
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o Exercise: Show that

d
/ e %:0, (3.31)

where v = (1,0,0,0).

Note that this also sharpens the notion of introducing an IR regulator as a way to isolate the
UV divergent part of an integral. If we wanted to extract the dim reg UV divergence of our integral
in Eq. (3.27), we can regulate the IR by hand through the introduction of a small mass parameter
m. One might choose to regulate the integral as #yy given in Eq. (3.29), or one could make an
equally reasonable choice

I = [.128/ ddg ! = i (1 +10g'a[2jv> + ﬁ(EUv) (3 32)
2m) (2 —m2)2 1672 \ eyy m? ’ '

which is just the integral given in Eq. (3.19). Both approaches yield the same coefficient of 1/&yy,
the avatar of the UV divergence, which could then be used to derive an anomalous dimension.
However, note that the finite terms are different. This implies that if one is interested in the physics
associated with the finite terms (as we will be in what follows), then care is required to ensure
that the IR has been consistently regulated in the same way across all diagrams, for both the FULL
THEORY and EFT descriptions.

Primer 3. Renormalization Group Evolution

Quantum field theory predicts the behavior of observables once a set of reference measure-
ments have been fixed. This allows one to derive couplings that are finite to a given order in
perturbation theory, and can in turn be used to make finite predictions. Logarithmic dependence
can be absorbed into running couplings, whose evolution is governed by a set of RGEs.

From a more practical perspective, renormalization and RG evolution are an artifact of one of
the inherent inefficiencies of the Feynman diagram expansion. As opposed to being able to calcu-
late finite matrix elements directly, Feynman loop integrals are often divergent, and counterterms
must be included to derive a physical result. This procedure leaves behind logarithms, which can in
principle become large enough to disturb the perturbative expansion. Fortunately, RG techniques
allow us to derive a set of RGEs that can be integrated to sum these large logarithms and improve
the convergence of perturbation theory. Specifically, we will see that the RG improved coupling C
as a function of a scale 1t can schematically take the form (e.g. see Eq. (3.59) below)

C(A)
CW) = —gan, & (3.33)
1672 A2

where A is some reference scale and J¢ is the anomalous dimension (up to normalization). If our
coupling C is perturbative, and we take (L ~ A, then the logs are small and so we could choose to
expand Eq. (3.33) and truncate to finite order depending on the precision required

C(.u)Expanded = C(A) x (14

1cC(A) . u? <}’CC(A)1 H2>2+... ~C(u). (3.34)

oz 083 T\ ez 02z
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However, when 1t > A or vice versa, the scale dependence of the coupling can no longer be ne-
glected, and the use of the RG improved coupling in Eq. (3.33) dramatically improves our control
of the perturbative expansion by accounting for the largest logarithms that appear to all-orders.

This discussion puts phrases like “spoil the convergence of perturbation theory” into context.
This choice of language should not be interpreted as literally implying that perturbation theory
no longer holds. It is worth noting that a scale does exist where the couplings truly become non-
perturbative as a result of the presence of large logarithms. This leads to an effect known as “di-
mensional transmutation,” and will be discussed around Eq. (3.64) below.? However, even when
probing the theory far from the Landau pole, one is typically interested in making the most precise
predictions possible, and so it is clear that making a scale choice to minimize the size of logarithms
is ideal.

There is additionally a non-trivial interplay between the RG improved coupling and the fixed
order corrections that will appear in the improved perturbative expansion, as will be emphasized
many times in the examples that follow. We will see one important consequence of these fixed
order effects when we study cases where large logarithms arise that are not a function of the RG
scale fi. We will learn to interpret these large logarithms as the manifestation of working with
the “wrong” effective description, and to apply the techniques of matching and running to sum
them. Furthermore, we will emphasize the appealing conceptual picture of flowing from a UV
FULL THEORY in terms of one set of degrees of freedom to an IR description that can appear very
different. The goal of this Primer is to remind us how to derive a set of RGEs for a given theory.

When reading about renormalization, one might encounter the statement, which is usually
credited to Georgi [54], that there are two types of RGs. The “Wilsonian RG” comes with an
intuitive physical picture of integrating out successive momentum shells. This was put on even
more rigorous formal footing in a beautiful paper by Polchinski [55]. The idea of integrating
out degrees of freedom to arrive at a coarse grained description also plays a role in condensed
matter physics and the theory of phase transitions, see e.g. the classic Wilson and Kogut review
article [56]. And as has been emphasized here, the use of the RG to connect different EFTs is tied
to the principle of locality in quantum field theory.

Unfortunately, the Wilsonian RG point of view introduces some calculational complexity. One
obvious issue is that integrating out a momentum shell imposes a hard cutoff which breaks gauge
invariance. Hence, when using this approach one must carefully restore gauge invariance through
the appropriate choice of renormalization prescription order by order in perturbation theory. We
will avoid these complications by utilizing what Georgi calls the “continuum RG” picture, which
is essentially an interpretation of the RG as implemented when using dim reg. At its core, this ap-
proach relies on the vanishing of scaleless integrals to allow the user to integrate over all momenta.
So even when working within an EFT that is defined with respect to a cutoff Ayy, one can still in-
tegrate the loop momenta over the infinite domain. The claim is that the regions of momentum that
lie outside the regime of validity for the EFT only yield scaleless contributions to the total integral,

2This statement is true of UV logs, where a breakdown of perturbation theory is tied to the running coupling
becoming larger than 4 7. However, when working with IR logs, the NLO cross sections can become negative due to a
large contribution schematically of the form 1 — ¢t/(1 67?) log2 (M2 /m?) while o is still perturbative. This is an obvious
breakdown of the perturbative expansion. In such a case, one can tame this issue by RG improving perturbation theory,
which provides a sensible controlled prediction.
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so we might as well integrate over them, simplifying our calculations dramatically. Specifically,
we can naively apply the dim reg formulas discussed in the previous Primer, even when we are
working with an EFT that is only valid up to some finite cutoff scale. We will put this vague dis-
cussion on much stronger mathematical footing when we introduce the “method of regions” [57]
for expanding loop integrals, first in Sec. 3.6 and then in Sec. 4.1 and Sec. 4.2 below. For now, the
rest of this Primer is devoted to technical aspects of the continuum RG implemented in the MS
scheme.

Deriving Renormalization Group Equations

A bare Wilson coefficient C? is related to a renormalized one C” through the use of a countert-
erm Z:26

cC’=zp"c, (3.35)

where we have included a factor of fi"¢ to ensure that the coupling remains dimensionless as in
Eq. (3.16), and n is an integer that depends on the mass dimension of the operator being renormal-
ized, see Eq. (3.16). For a perturbative model,

Z=1+0(C",d"), (3.36)

where C” is the renormalized Wilson coefficient, and a” are additional renormalized couplings
within the theory, e.g. a gauge coupling.?” Counterterms are scheme dependent. We will use MS,
so our prescription is that counterterms are derived by enforcing that they cancel all the terms which
diverge as € — 0 then Z — 1 is the infinite correction generated by perturbation theory. After using
Eq. (3.20) to redefine p — i, the MS RG scale is identified with fi.

The premise of the RGE (also known as the Callan-Symanzik equation [58, 59, 60]) is that the
bare Lagrangian cannot depend on the unphysical RG parameter [i

d d
—0—C'=p—(Z@"Cr). :
0=j— i-—(zp"cr) (3.37)

From here forward, we will specialize to an example for concreteness. We will encounter
some subtle factors of two, which is a reminder that it is typically good practice to derive RGEs

*6Djsclaimer: Technically this expression is missing the wave function renormalization factors associated with
the fields that appear in the operator. For all the examples considered in these lectures, the one-loop wave function
renormalization vanishes, and so we will not include them for simplicity. We caution the reader that these factors appear
at one-loop order in most realistic cases, and therefore must be tracked.

2Disclaimer: There are many conventional choices one can make for how to define the counterterms, which in
principle modify the general form of the RGE defined below in Eq. (3.46). For example, [50] defines the counterterm for
A (1)4 interactions as —iJ; (see Fig. 10.3 and the one-loop result in Eq. (10.24)), while [3] defines the same counterterm
vertex as —iA 8, (see the inline result for §; directly below Eq. (23.94)). Yet another alternative formulation writes
Z as a matrix, see e.g. Eq. (12.108) of [50]. This matrix formulation has the advantage that one can interpret the off-
diagonal ¥;; elements as capturing all the physics that results from operator mixing, when the dependence on the Wilson
coefficients is linear, but this will not always be the case for our examples. Here, we choose to follow the conventions
in [3]. This unfortunately obscures a simple operator mixing interpretation of ¥;. As we will see explicitly in the
examples that follow, both ¥; and %; will have contributions from operator mixing.
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from scratch by starting with Eq. (3.37) for a given theory of interest.”® We want to derive the RG

evolution of the coupling Cy in a scalar non-renormalizable EFT with interactions’

1 G
6! M?
where the Wilson coefficients C4 and Cg are dimensionless. Then we can evaluate Eq. (3.37) order

1
Lipr D 47 Ca0" + ¢°, (3.38)

by order in perturbation theory. At tree-level

_~i 0_~i ~2€ 1
0_“dgc = dg(z“‘ C;)

0 1
[ 1dz” 14dc; 1 oe_1 5
=0l = — —-2¢ Cy it
“\zan Toap et Acin

dcs

where in the last step we rewrote the derivative to be with respect to log fi> and absorbed a factor of
2 in the process, and we have used the fact that Zy = 1 +-- -, and € i’ — £+ O (€?) as € — 0. This
classical result is simply the statement that the dimension of the operator changes as a function of
the spacetime dimension®®

; 1 dc;
lassical 4
= ————>=—F, 3.40
v C; dlog ji? (3.40)
where ¥ is the anomalous dimension for the operator C4. We can perform the same manipulations
for the term Zg Cs ¢ /M? — Zg u*€ Cs ¢°/M?, which yields

. 1 dC¢g

lassical 6
% C; dlog fi? (341)
The next step is to evaluate Eq. (3.37) to the next order in perturbation theory. This will capture
the leading quantum corrections. The example we are working out here is instructive because it
requires keeping track of loop induced operator mixing. Physically this effect occurs when loops
generated by insertions of one operator contribute to matrix elements of a different operator. We

have two diagrams which renormalize C, at one loop:
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281f only working to one-loop order, it is often simpler to just compute the log derivative of the renormalized coupling
directly to extract the RGE, and then integrate the result to exponentiate the relevant logs.

29For simplicity, we will not include the operators with derivative dependence, and are therefore using a simplified
notation C4 = Cy ).

30Due to our choice to define the anomalous dimension with respect to d/dlog fi2, this factor is actually one half
of the change in the dimension, see the 2 in the exponent of Eq. (3.47). We choose to work self-consistency with this
definition and ignore this distinction in what follows.
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This implies that the counterterm depends on both Wilson coefficients Z, = Z4 (C4, C6), and there-
fore Eq. (3.39) generalizes to

d d

- ¢ :f(z Cs,C ~2€c’)
dlogfi2 * dlogfi? 4(CanCo) Gy

1 (0Z4 L AC; 0Z4 i dC;  fi dC; 9

== e = — 2 | Zy 17t C). 3.43
2<acgz4 a Az dn cpap of) G (343)

For a perturbative expansion Zs = 1+ &'(Cy4,Cg), which implies we can expand and truncate 1/Z4 =

1 +---. We then plug in Eq. (3.40) and Eq. (3.41), and solve for the log derivative of Cj, which

yields

dc;, 2074 . . 0Z4

Finally, we identify the anomalous dimensions including quantum effects and operator mixing as

d9Z, d9Z,
=lim(eCi=— —¢ =lim ( 2eC) — 3.45
ha =0 ( +aC; ) 6= 1 < 4 acg) ’ (3-45)
such that the RGE can be written in a general form

WCZ = Yum Cp » (3.46)
where now we include two indices on the anomalous dimensions to account for mixing effects.
One implication of these expressions is that C) will be generated by RG running as long as Cs # 0,

even if C} (ﬂM) = 0. This physics will play a role when we work out our heavy-light example in
Sec. 3.5 below.

Implications of the Renormalization Group

This general form of the RG makes clear why scale separation is a non-trivial problem. The
RGE sums logs that are a function of the RG scale ji. But if one encounters a large logarithm
that only depends on physical scales, then it is not obvious how to apply this formalism. The
key observation emphasized over and over in these lectures is that the matching procedure will
introduce a spurious dependence on i, which then allows us to derive RGEs of the form Eq. (3.46).

Before moving on, we will briefly discuss the connection between the object v and the phrase
“anomalous dimension.” Imagine a case where we are interested in renormalizing a Wilson coeffi-
cient C that receives corrections from some interactions implying a non-zero anomalous dimension
y = const.3! This could occur for example if one had a local operator whose insertion generated

3INote that the anomalous dimension computed from the diagrams in Eq. (3.42) take a slightly different form (even
with the simplifying approximation that C¢ = 0), since Y44 ~ C4 # const. The resulting solution to the RGE does not
make the direct connection to the change in dimension that we are highlighting here. The explicit calculation for ¢*
theory is given in Eq. (3.57) below. For unity of notation, we will always phrase our RGE calculations in terms of
anomalous dimensions, especially since this is the terminology often used by EFT practitioners.
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some external charged lines, and then the leading contribution to ¥y was due to exchanges of gauge
bosons, e.g. our SCET examples below. In this approximation, we can solve the RGE

1
/CrdC’:/}/dlog[Lz

2 7,0\ 27
— (i) =C (fiL) exp (ylog’f@’) = <”H> C (i) - (3.47)
127 ur

This shows that the role of the anomalous dimension is to account for the small change in the mass
dimension of the Wilson coefficient as it is evolved from the high scale to the low scale. Also, note
that the middle expression in the bottom line of Eq. (3.47) makes explicit what is meant by the
phrase “exponentiating logarithms,” since we literally see the appearance of exp (}/log i/ ,Etg) in
the solution to the RGE.

The running Wilson coefficients are a critical component of an improved perturbation theory.
Since this sums large logarithms that could otherwise cause issues with convergence. Now we
have a dual expansion, schematically as a function of % log ,11,2{ / ,Etf and o separately, where « is
a proxy for some coupling constant @ = g/(4x). RG improvement becomes necessary when the
logs becomes sufficiently large that o ~ % log i /.

The anomalous dimension Y can be determined perturbatively, and the order in the log expan-
sion that is being summed is set by the order to which the anomalous dimension has been computed
— we call this the next” leading log expansion (N”LL). This can be compared with the more fa-
miliar expansion in terms of the coupling ¢, which we refer to as the next” leading order (N’"LO)
expansion, where the careful implementation of the matching procedure ensures no double count-
ing will occur. Note this implies that LL begins at one-loop order, in contrast with LO which starts
at tree-level. This dual expansion can be represented schematically as

(3.48)

where o tracks the expansion in the coupling, while L tracks the logarithms. The rows denote the
kinds of terms that appear as one expands in o, while the shaded columns show the series that are
summed at each logarithmic order, starting with leading log (LL) in green, subleading log (NLL)
in magenta, and so on. We emphasize that the complete expressions are not fully captured by
resummed couplings, but also require the inclusion of fixed order terms as we will see explicitly in
many examples that follow.

While this dual expansion is straightforward to keep track of for the UV logs discussed here,
we will see that the interplay of N"LL and N"LO becomes more complicated when summing large
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IR logarithms, see Sec. 6.5 below. We emphasize the remarkable fact that each order in the log
expansion organizes itself this way, and we encourage the reader to be suitably impressed by this
consequence of the RG approach.*

Next, we will apply this technology to a series of examples which will allow us to explore how
to sum logarithms. The first example is an EFT that includes only a ¢* coupling. This result will
not only be of use as a simple pedagogical application of RG techniques, but it will additionally be
recycled when we encounter our first case of separating scales in Sec. 3.5.

3.2 Summing Logs

Now that we have the technology for deriving RGEs, we use these techniques to sum the
leading logarithm that appears in a single particle EFT with the interaction

1
LB — — G o*. (3.49)

We will compute the process ¢ ¢ — ¢ ¢ at threshold. The one-loop diagrams will yield logarithms,
and we will derive the RGE that sums them by running from {17 to fi?:

if

IRGE (3.50)

2 ~2
m ML

Note that our choice to run from a high scale fi; > fi? ~ m? will cause artificial large log problems,
since this is a single scale EFT and we are at threshold which is set by the same scale. However,
we will work out the details as a pedagogical example, since many of the technical features will
appear in the more complicated models that follow.

Our tree-level Feynman rule is

< = —iCy (fnr) , (3.51)
¢ o
and this is also the tree-level matrix element for our process of interest.

Next, we want to compute the one-loop diagrams to derive the counterterm from which we
will extract the anomalous dimension y44. At one loop, the #- and u-channel diagrams take the form

N ST )
\\."' \‘."' 1 ae 2 des 1
K =) | e
o T e
= () L 1og B (3.52)
32m2TH Y e m2)’ '

32The simplicity encountered here can be understood as a consequence of having a linear set of RGEs. In principle,
more complicated RGEs can appear, which would make the interpretation of the resummed couplings more complicated.
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where the 1/2 is a symmetry factor. Then additionally including the s-channel, we find

: )

iof = 323;2 i (c3)’ (; +log % + i) . (3.53)

e Exercise: Note that our choice to study the process ¢ ¢ — ¢ ¢ at threshold implies p =
(m,ﬁ) for all the external states. Hence, there is finite momentum flowing through the s-
channel loop, such that this diagram has a different m> dependence in the denominator than
Eq. (3.52). This is an IR effect and can have no implications for the UV divergence structure.
It does yield the non-log factor that mysteriously appears in the previous expression, which
you are encouraged to check as an exercise.

Then we add a counterterm diagram to these three loop diagrams,

(s

where setting this combination equal to zero is equivalent to taking the MS scheme, and we find

1 1
o uzt (C£)28+---> —in Cy(Zs—1) =0, (3.54)

Z4:1+ché (3.55)
Adding these four contributions together, sending it — fi, and taking € — 0 yields the renormalized
amplitude:
i o BT (¢> o — ¢ ¢) - —iC} [1 — 2 _Cilog Fiy 2 [NLO], (3.56)
3272 m> 3

If [LI%, > m?, this log becomes large and our perturbation expansion begins to break down. There-
fore, we would like to improve perturbation theory through the use of summation so that we can
maintain a well behaved expansion across a wider range of scales.

One resolution is to evaluate the theory at a lower scale (alternatively, we could define the
coupling using a different choice of process away from threshold). However, the nature of the
multi-scale problems we are working towards will force us to deal with exactly this situation, where
a simple scale choice in the FULL THEORY will not be sufficient to keep the truncated fixed order
perturbative expansion under control. Therefore, we will spend the rest of this section deriving an
RGE, which will allow us to evolve our well behaved low scale result to derive an improved high
scale prediction. This will also expose the interplay between LL and NLO, which will be another
reoccurring theme in the examples that follow.

In order to derive the RGE, we plug Eq. (3.55) into our general expression Eq. (3.45) to yield

3
=——0C. 3.57
=550 (3.57)

Now we can use this anomalous dimension and Eq. (3.46) to determine the RGE that runs the Cj
coupling at LL order:

ac; 3
dlogfi2  32x2

(ch)?. (3.58)
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We integrate from our high scale fiy to the IR scale fi;:

/CX(IZLH) c; 3 /ﬂy dlog i

4

13 log@
Ci(A)  Ci(Am) 327 f
c; (i

Ci (i) = i(Rn) (3.59)

1+ Cy(inr) 557 log

This provides us with a running coupling. When we use this in our EFT calculations, we call this
the “RG improved” perturbation theory. For example, we can compute our process at the low scale
to LL + LO accuracy using the high scale coupling

—iCy(fin)
n2
1+ ('aH ) 3237r2 log %21

i/ = —iCh () = [LL]. (3.60)

Note that for the special choice of scale fi; = m, we can expand to subleading order in Cy ([LH) , and
recover all but the finite piece at NLO, which is exactly what we would expect from Eq. (3.48).

We can extend this to include NLO corrections at the low scale by repeating the calculation
that led to Eq. (3.56) but evaluated at fi;. This yields (again using the RG to express our low scale
result in terms of the high scale Wilson coefficient):

—iCy (fin)

i T
1+Cy () 537 log 4

. =2
<1 323 ! C4(.UH) _ (loguLz + i) [LL + NLO] . (3.61)
PG () i log g N

This expression is well behaved, and in particular the factor of log fi? /m? is under control as long
G [
oo log o s small

as Uy ~ m. Next, we see that expanding this LL + NLO result pretending that
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yields>?

. (o pie 3 [i?
ldégnded =—iCy (.UH) { <1 -G (lJH) Wlog ‘?Z)
X 1—ic’(g) log'a—Lz—i—g +0 (C’)210gzé
32m2 4 m? 3 4 2

= —iC} (i (i ﬂlzi 2 2 2%
= —iCy(fn) 4 1~ Ci(ftn) (log 5+ 5 ) +0'( () log o

[LL + NLO], (3.62)

where the higher order terms are those that are summed by the RG at LL order. This expanded
form makes clear that the RG evolution reproduces the high scale evaluation given in Eq. (3.56)
to NLO order. Furthermore, we now see how the RG solves the large log problem we artificially
introduced in Eq. (3.56). Specifically, the summed version of this expression given in Eq. (3.61)
is well behaved for any choice of low scale. If our scales were not particularly separated, then the
expansion performed in Eq. (3.62) would be a good approximation, and there would not have been
a problem to solve in the first place. On the other hand, if fiy >> fi;, then our desire for a convergent
perturbation theory forces us to RG improve.

Although we summed, note that working at LL. + NLO order is only a good approximation as
(Sy)?
o
higher order corrections, and the same story would result from the interplay of NLL and NNLO

long as the next-to-leading log is small: log i—% < 1. If not, then we would need to include
logs, where summing to NLL order requires a two-loop anomalous dimension, and NNLO is the
fixed order contribution at two loops. This interplay persists so that if we were able to work to all
orders in our N"LL and N"'LLO expansion, we would find that all the scale dependence would be
eliminated. Recall that this was the requirement we used to derive the RGEs in the first place, so
the story is self consistent. However, in practice we always work at finite order, so it is extremely
useful to have an RG improved perturbation theory which is well behaved across a huge range of
scales.

Another lesson of Eq. (3.61) is that it provides us with the ability to estimate a “theory error” by
varying the unphysical high and low scales that appear in the logs. For example, instead of choosing
fi;, = m, which eliminates the NLO log completely, one can vary this scale choice — typically for
concreteness the variation is taken to be range from /2 — 2 . This probes the higher logs which
are captured by the RGEs, but are not explicitly included since the finite corrections are truncated
to a given order. Although this scale variation does not have to be the only source of theory error, it
does provide a concrete test of the extent to which higher orders must be computed to achieve the
desired accuracy.

There is one final interesting point to make before moving to our next example. It turns
out, even our RG improved theory can dynamically generate a non-perturbative breakdown of

33This is the first time we have encountered a result that is labeled with an “Expanded” subscript. This signifies
that we have first RG improved, and then expanded our RGE solution to leading order. We are going to do this with
essentially every example in what follows, so it is worth a bit of extra time to make sure you understand the motivation
for why we are presenting the result this way.
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perturbation theory. To see how this occurs, we can solve Eq. (3.59) for the scale fiy at fixed fiz,

1 — SalAe)
17 = i} exp | il (3.63)
32n? C4<“L)

We can then take the obviously non-perturbative limit Cj(A) — oo, where this implicitly defines the
dimensionful scale A. This yields a finite result:

A% =i exp <1> . (3.64)

o Ci(fi)

This scale A is known as a Landau pole. It tells us that the theory is no longer perturbative at a scale
exponentially higher than the reference scale fi;.>* So while the RG improvements have afforded
us an exponentially large region of validity for our EFT, we are not in a position to extrapolate our
theory to arbitrarily high energies.

We emphasize that this dimensionful scale A was generated by studying the behavior of a
dimensionless parameter Cj. This is a non-perturbative effect known as dimensional transmuta-
tion. The same underlying mechanism is responsible for the generation of the QCD scale (albeit
this instead happens as you run to low energies due to the famous sign of the QCD B-function),
and dimensional transmutation could also yield an effect known as dynamically generated super-
symmetry breaking [61] (assuming of course that nature is supersymmetric at some fundamental
scale).

In the next section, we will calculate our first loop level matching correction, and will investi-
gate the role of the finite terms for maintaining decoupling of heavy scales as one evolves a theory
past a heavy mass threshold.

3.3 One-loop Matching and Heavy Particle Decoupling

As we have emphasized many times, heavy physics will decouple as we flow to low energies.
However, this is fact can be obscured depending on the approach one takes to extracting observ-
ables. The detailed demonstration of decoupling for the RG evolution of gauge couplings is known
as the Appelquist-Carazzone theorem [62]. It is straightforward to see this decoupling effect when
regulating divergences with a hard cutoff or some other dimensionful regulator, see e.g. [63, 53, 64]
where this physics is worked out in detail. For a massless regulator like dim reg makes, this is a
more subtle issue, see e.g. [65, 66, 67, 68] for some early work on exploring decoupling for mass-
less regulators.

In this section, we will first write down a FULL THEORY that has a large log problem at NLO.
We will furthermore see that decoupling is naively violated by our MS formulation of the RG. The
resolution to both of these issues will be achieved through the application of matching and running.
Then in the section following this one, we will demonstrate that applying the same strategy to scalar
mass terms leads to a different class of decoupling violation, i.e., the so-called hierarchy problem.

34 A typical choice would be to set fiy = m.
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For concreteness, we will study the process ¢ ¢ — ¢ ¢ at threshold. We begin by defining our
FULL THEORY interaction Lagrangian

1 1
DE/pIEtULL _ _ZK¢2(D2_ET'¢4’ (3.65)

where ¢ has mass m, ® has mass M, and we will be interested in the limit m < M. We will calculate
the one-loop corrections including LL summation for this process, and use matching and running
to make decoupling manifest.

First we will calculate the renormalization factor for 7.3 This has two contributions, one
proportional to 172 and one proportional to k2. The first set of diagrams is identical to the ones
computed in the previous section, so we can pull the answer from Eq. (3.57):

> ," ~’\ ’ 3 ;
N L _ ot
3 X A :‘s - 2

AN R2r

1 [TE)

2¢€ ,,2

- 1 I~ —~ . .
u=n (8+og 2—1—3) (3.66)

The second class of diagrams is the same with m — M (up to subtleties with tracking the threshold
momentum flow through s-channel diagram, which only modifies the result by power suppressed
terms ~ m?/M? ~ A?):

N Y 2
7 3i e o1 i 2
3 x /,1\ /} = [T’ <8 +log 1\/[2> + ﬁ(l ) : (3.67)
¢ 3 ¢
This implies®
3 1, 3 k%1
Zy(n,x) =1+ (3.68)

nelet e e
We also need Z,, which is calculated by extracting the divergent part of the two one-loop
diagrams that contribute to ¢ & — ¢ ®. The first is

o 2 Lo

N7 4 de 1 1
\ i 2 2
2 A A =2 / Qr) 2 — M2 2 —m?
re s o
i 2¢e 21
=S UK =+, (3.69)

812 €
where the overall factor of 2 accounts for the contributions from the s- and u-channel, and we are
neglecting the flow of threshold momentum through the propagator since we are only interested in

3SDisclaimer: We will no longer be careful to delineate the difference between bare and renormalized quantities, so
you will notice the absence of “r” superscripts.
36The strange looking factor of 1 /M appearing in the Zy, expression is due to our convention for counter terms defined

in Eq. (3.35) above.
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the divergent terms, see the discussion around Eq. (3.53). There is a second diagram where only
light particles appear in the loop

~~~~~

NV dd€ 1 i 1
X % = — (u*) ’x / = Zen = 4. 3.70
1 —m?)?  l6n? HoKm e (3-70)

where there is only a z-channel diagram and the 1/2 is a symmetry factor. Then the Z, renormal-
ization factor is

1 1 1 1
Zie(k,m) =14+ Kk—+

_— _p- 371
872 e mm e (3.71)

Now that we have Z, and Z;, we use them to renormalize our couplings. Putting all of this
together yields the NLO FULL THEORY amplitude for ¢ ¢ — ¢ ¢:

i%FULL — _ln +l

3272

g* 2\, . 3 i’
n? <1ogmz+3>+z327t K 1og—+ﬁ(/12) [NLO|. (3.72)

This makes the large log problem clear, since there is no choice of the scale ji that minimizes both
log dependent terms when m < M.

We encountered a similar issue when we took fig >> m in single scale theory discussed above,
see Eq. (3.61). There, we were able to address this problem by working with RG improved cou-
plings: we showed that the LL + NLO single scale result was free of any large log issues. The
reason this worked above is that we artificially introduced a large log problem through our poor
choice of the unphysical RG scale. We will now show that this is not the resolution to the problem
encountered here due to the presence of multiple physical scales in the theory.

The first step is to see that RG improvement does not resolve our decoupling confusion. We
need to compute the FULL THEORY RGEs, which depend on the anomalous dimensions for both k¥
and 7. Following the same steps as in Primer 3 above, we derive the analog of Eq. (3.45) in order
to extract the anomalous dimensions from the counterterms:

0Zy ) 0Zy
Ynn—hm ena——e VTIK:}}H}) 8nW

. aZK' s 8ZK
Yien —}?13(1) <€K an ) Yiex —lg%( P ) ) (3.73)

where we have used the classical anomalous dimensions for 1 and k given in Eq. (3.39). In this

way of formulating the anomalous dimensions, both ¥, and ¥y, will contribute operator mixing
terms to the RGE for 1, while ¥, will yield operator mixing for k:

_ 3 3 K _ 3 K
T =352 30y T = Jeg2 g
'}/K-n = W K YKK == w K (374)
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Plugging these into the general equation Eq. (3.46) yields the RGEs for 1 and k%’
dn 3 2
dogiz 22! Tk
dx 1 5,
dlogiiz 82 * Txg X (3-75)

whose solution sums the leading logs to all orders. Note that this set of coupled equations man-
ifestly violates decoupling, since it has no dependence on the scale M. This implies that RG
improving the FULL THEORY will not solve the large log problem we have encountered here. We
can see this explicitly by putting together the summed LL. + NLO FULL THEORY amplitude for

¢ —0¢is

. 3 _
tigs s (x(it))* log =5 [LL+NLO] (3.76)

where this is considered LL order because we are keeping track of the fi dependence of the cou-
plings that are being run using the solution to Eq. (3.75). We will also find it instructive to expand
the RGE for n(fi) to leading order in the couplings. The only terms that contributes to Eq. (3.76)
at leading order, evolved from a scale fiy — fi; are
~ ~ 3 2, .2 fi;
ML) pspandea =M (Bat) = 3572 (07457 log 7y [LL +NLO]. (3.77)

This expression can be derived by simply solving the 1 equation in the approximation that the
n?/(167?) and k?/(167%) terms are constant, which is why we have written them here without a
scale dependent argument. This is equivalent to first solving the k equation, and then plugging that
solution into the 1 equation, followed by expanding to only keep the leading dependence on the
couplings.

o Exercise: Show that both suggested ways of deriving Eq. (3.77) are equivalent.

Obviously, Eq. (3.77) does not depend on either m or M, emphasizing that the RG can not cure
our perturbation theory ills. It is worth pausing to fully appreciate the nature of the problem we are
trying to solve. The claim was that RG techniques should sum large logarithms and systematically
maintain the convergence of perturbation theory. Yet, we see that no choice of fi can simultane-
ously make all the logs small in our LL + NLO result. Something additional is forced upon us.
Specifically, when we encounter situations with a large separation of physical scales, we must aug-
ment our RG improved perturbation theory by matching onto an EFT that models the dynamics
of the light modes in isolation. This will allow us to run coupling within the EFT to low energies
characteristic of our observable, and tame our large log problem.

37Note that this set of RGEs are technically incorrect as written since they do not include the ®* coupling, and its
influence on the running of k. Since we are assuming this coupling is zero at our UV scale, and we will only write down
an expanded leading log solution, all the resulting expressions we derive are technically correct. However, we caution
that this coupling must be included if one is interested in analyzing the full RG structure.
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Matching onto the EFT and Heavy Particle Decoupling

In order to match, the first step is to pick a process — unsurprisingly, we will continue to use

0 ¢ — ¢ ¢ at threshold. The only propagating degree of freedom in the EFT is ¢, and the EFT

will inherit a ¢ — —¢ symmetry, so the interactions follow the same pattern as Eq. (3.2). For our
purposes here, we will only need

Cy

4!

To match at one-loop order, we must include counterterms and track scale dependence. This im-

LT =——"9%. (3.78)

plies that consistent matching requires the choice of an RG scale fiy;. Noting that dealing with
loop effects leads to scheme dependence, we must take care to regulate integrals in the FULL THE-
ORY and EFT in a self-consistent way, i.e., we must use the same UV and IR regulators for both
theories. To this end, the generalization of the tree-level matching procedure given in Eq. (3.6)
takes the form

gyMateh _ | /FuLL ’Q{thULL} _ [ o/ EFT fchtFT . 3.79)

For our chosen process, this is expressed diagrammatically as

Y
M ’
iﬂMatch = ‘:.:
I' \
b ¢
b, 0 6. L Lo o @ ¢
. ," AN :' “‘ 7 N/ > /'
’ . -
= <. + K R + U
4 N P . N . .
’ . ’ ’ ~ ‘ N\ 7/ *

_ s + X % + c.tBFT [ (3.80)

where c.t.FU" and c.t FFT denote the FULL THEORY and EFT counterterm contributions respec-

tively. At leading order, the RG improved matching relation is

Ca(fir) =1 (fimr) [LOw] (3.81)

where this equality is evaluated at the matching scale fiy;, and practically serves as a boundary
condition when we solve the RGEs to run the EFT couplings. Then the one-loop matching correc-
tions come from the diagram in Eq. (3.80) with the heavy particles in the loop (including all three

38We have augmented our brackets we use to keep track of N”’LO and N”LL order to now include a subscript M,
which denotes the order to which the matching contributions have been computed. We will use this notation below to
distinguish when we have only included NLO matching corrections as opposed to the full set of NLO corrections.
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channels):?’

3

Match
C4 atc ( 327[2

(1 () tog 8 i 14 6(2) INLOy].  (3.82)

far) = -

Note that although the loop expansion in the FULL THEORY depends on terms of the form log ji* /m?,
e.g. see Eq. (3.76), the matching coefficient does not. This observation is critical to the success of
matching at loop level. If CE’[atCh did depend on log fi? /m?, then the m?> — 0 limit taken within the
EFT would be non-analytic at the high scale, implying that separating scales would not be possible.
Said another way, checking for a meaningful m> — 0 limit at the high scale is a useful test that the
EFT models the detailed IR structure of the FULL THEORY. The EFT diagrams in Eq. (3.80) are
present in the matching calculation precisely to enforce this requirement.

The result is that we have now have a one-loop fixed order modification to the boundary
condition for our EFT coupling:

3
3272

IJM

Ca(fimr) = n (fimr) — (< ()’ log 375 [NLOw] , (3.83)

and as long as we choose fiyy ~ M, we avoid any issues with large logarithms for this boundary
condition.

Now we need the RGEs to run C4; down to low scales within the EFT. Note that the RGE
analysis is identical to that provided in Sec. 3.2 above, so we can just take the results from there.
For completeness, we repeat the LL. EFT RGE here

dCy 3

2
- : 84
dlogfiz 3272 (C4) (3.84)

Then we can use this RGE to evolve our coupling from fiy; — fiz, with Eq. (3.83) as a boundary
condition. Including fixed order NLO corrections, our low scale EFT amplitude is given by

3
i/ = —iCy () + vy (C4 (IJL)) <1 0g— A s+ 3> [LL +NLOJ . (3.85)

No terms with logM?/fi? appear, and so this amplitude does not manifest any large log problems.
This is obvious when taking the canonical choice fi; ~ m. Note that in practice, to derive the
most precise answer possible at a given order, it is ideal to choose a scale that minimizes all the
logarithms that appear.

At this point we have everything we need to understand the full picture. Imagine our FULL
THEORY couplings are defined at a scale fi7, and we want to run them past our matching threshold

3Here the superscript “Match” denotes that this is a matching correction, which should be added to Eq. (3.81) to
derive NLO boundary condition for the RGE, see Eq. (3.83).
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fi}, down to a scale i, where our EFT description should be used. Schematically,

I

FuLr THEORY _
fiar (3.86)
EFT

I

Then we can see exactly what has been accomplished by expanding our RGE solutions to leading

iy

fi7

order to see that we reproduce the one-loop fixed order results. Of course, by doing this expansion
we are re-introducing the problem we set out to solve, and emphasize that in practice one should
obviously use the full RG solutions for the summed couplings such that the full tower of LL terms
are included. However, since this calculation provides an insightful closure test, it is worth working
out in detail.

Combining Eq. (3.77) and Eq. (3.83), yields a boundary condition for the EFT RGE at the
matching scale:

- - 3 i 3 2, A3
C4(“M)Expanded - n(uH) 32 112 (nz )log ‘uH (K('uM)) 1Og7M

3272 M2’
= (i) — 2 10g B 4 210 Pt LL + NLO 3.87)

where we have used the expanded solution to the RGE to evolve this coupling from fir down to
the matching scale explicitly. Then to capture the running of C4 down to the EFT scale fi;, we can
equate this expression to Eq. (3.59) with the identification fiy — fiy and fi; — fi. Expanding and
solving for C4 (ﬂL) gives

~ - 3 i fi; il
o (‘uL)Expanded =n(fu) - a (n log ‘uH +C3 log “M + k% log H> [LL + NLOy] ,
(3.88)

where this now includes the term generated from running C4 within the EFT (and then expanding).
The final step is to compute the amplitude including the one-loop fixed order correction at the
low scale, i.e, plugging Eq. (3.88) into Eq. (3.85):

.UH NM
[n log —- .UM +C4 <log + 3>]

i%EEl;gnded =—in ([LH) 32 7-[2

“H [LL+NLO], (3.89)

32r

where the only operational difference between this expression and Eq. (3.88) (besides that this is
now technically an amplitude for ¢ ¢ — ¢ ¢) is the m dependence inside the logarithm and the
finite factor, that are both due to the low scale fixed order corrections.
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This expression is identical to our result in Eq. (3.72), when we take fiy — fi and note that
C4 = 1 to the level of approximation captured when expanding. However, the summed result yields
an improved perturbation theory. To see what was accomplished by matching and running, we re-
mind the reader where each of the terms in Eq. (3.89) came from. This expression provides the
leading order evolution of our system from fiz down to fi;. We have consistently accounted for
the running of the FULL THEORY parameters from fig — fiy;, where the scale M should decou-
ple. Matching leaves us with an EFT description, which can be used to run the C4 coupling from
[y — fip. Critically, the EFT does not receive any dynamical contributions from loops involving
heavy particles. This is exactly the decoupling behavior that we hoped to find by consistently flow-
ing below the scale M. Furthermore, by matching and running we have consistently eliminated any
large logs that could spoil our perturbative expansion to LL + NLO order. Obviously, this proce-
dure is systematically improvable, and one can in principle include corrections to however high of
order the reader has the strength and persistence to compute. Finally, we again emphasize that by
evaluating the summed result for various choices of the scales iy, fim and fiy one can estimate
theoretical “error bars” that result from the truncation of perturbation theory to finite order.

Now we have seen the connection between decoupling and matching a FULL THEORY to
an EFT. In the next section, we will explore a non-decoupling effect that appears in matching
calculation for scalar masses. We will then discuss when small scalar masses might naively be
tuned, followed by a discussion of the implications for physics beyond the Standard Model.

3.4 Quadratic Divergences and the Hierarchy Problem

At this point, we hope you are fully convinced of the need to match and run when computing
with the MS scheme in the presence of a large separation of scales. In this section, we are going
to work out a famous consequence of matching and running, known as the hierarchy problem,
see e.g. [69, 70] for similar treatments in the context of EFTs. Specifically, what we will now
show is that when we couple a light scalar (whose mass is not protected by a symmetry) to a heavy
particle, there will be a matching correction for the light mass that is proportional to the heavy
mass. This is a necessary condition for testing if one’s theory exhibits a hierarchy problem.

There is no in principle obstruction to carefully choosing the parameters at the matching scale
to tune away this large contribution in order to realize a low energy theory containing a paramet-
rically light scalar. However, as we will work out in detail below, if such a tuning is required and
there is a notion of a calculable UV completion, then one expects that nature should invoke some
new mechanism that resolves this seeming issue with the naturalness of the underlying physical
parameters. This is particularly relevant for the Standard Model since we have now observed a
light scalar, the Higgs boson [71, 72]. The Higgs mass parameter suffers the necessary condition
for a hierarchy problem derived in what follows. Therefore, it is compelling to search for exten-
sions of the Standard Model where this tuning is ameliorated, ideally with associated experimental
signatures. Since our focus here is on EFT techniques, we will show how this necessary condition
arrises in detail. Then (since I am frankly not able to help myself) the concrete calculation will be
followed with some musings on the interpretation.

Our focus is on loop corrections to the mass of ¢. The FULL THEORY is the same as in the
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previous section:

L = %(a,“p) (9"¢) — %m%(j)z + % (0u®@) (9 ®) — %MZcp2 — %mpzqnl ~ et o)

4!
where we are writing the mass terms explicitly since they are the focus of this section. The only
terms we need to include in the EFT Lagrangian are the mass and quartic for ¢:

1
L5 (000 (%)~ ynd o>~ o, 391

N —

where we are being careful to distinguish the FULL THEORY mass parameter m% from the EFT
mass parameter m% The next subsection shows that if there is no coupling between the light and
heavy state, i.e., K = 0, then there is no large correction to the light scalar mass parameter. This is
followed by a calculation with x # 0, where the necessary condition for fine-tuning is derived. The
notation for the RG scales will follow the previous section, see Eq. (3.86).

No Heavy Scale Means No Hierarchy Problem

First, we match the FULL THEORY (with 17 # 0 and x = 0) onto the EFT at tree-level: for this
first calculation, the light scalar does not couple to the heavy state. When matching for a mass, we
use the convenient prescription of ensuring that the pole of the ¢ propagator is the same in both
theories:

—i(mg)? = —i(mg)’ [LOw]. (3.92)

Next, we can work out the consequences of the ¢ self coupling.*’ The one-loop correction for
the ¢ mass in the FULL THEORY is

S R | 28/ e 1

Vet - 2 nll'l’

(2m)d 02 — mi

_in
322

1 2
m? [ +logt 114 6(e)] (3.93)

where the 1/2 is a symmetry factor and we have chosen to evaluate this loop at the matching
scale (y. Note that this contribution is proportional to m2, as it had to be since this is the only
scale appearing in the loop integral — this is how quadratic divergences manifest in dim reg.*!
Note that this integral is insensitive to arbitrary physics at short distances (for example gravity
becoming strong near the Planck scale), because the UV region of the dim reg integral is scaleless
and therefore vanishes. This fact can lead to misinterpretations of the hierarchy problem, which we
hope this section will help to clarify.

40This is the simplest theory that exhibits a “quadratic divergence,” which is straightforward to derive by simply
regulating the following integral with a hard momentum cutoff regulator.

41A way to see the relation to quadratic divergences is to notice that there is a pole at d = 2, corresponding to a
logarithmic divergence in two dimensions. There is an EFT driven approach for nuclear physics that uses this fact
to invent a scheme called “power divergence subtraction” [73], which enables on to include quadratically divergent
contributions to the RGEs.
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Then we define a counterterm for the mass

mi g = Z,a Mg, (3.94)
which implies
_ n 1
Zyp = 1+ P (3.95)
where 1 has been renormalized using the results of the previous section.
Next, we calculate the mass correction at the matching scale within the EFT:
. 1o iCy ity
N log=2 +1+0(e 3.96
2_’_“_:: 32 7[2 |: + g E + + ( ) ( )
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As above, matching the quartic at tree level gives 1 = Cy4, see Eq. (3.81). Then we can perform a
one-loop matching calculation for the mass of ¢ at the matching scale fiy;:

—imﬁ,[atch = —im% + 3;17 [log 'l:iM + 1}

F
) iCy iy, :
— (—tm% + 357 m [log m—’}é’ + 1] > =0 [NLOy with k = 0] . (3.97)

Unsurprisingly, we see that the correction generated in the FULL THEORY is compensated by the
analogous correction in the EFT, implying that the EFT mass does not receive a large correction
at the matching scale, and so there is no issue with large logarithms or fine-tuning. This is to
be expected, since we are working with a single scale EFT, which should be well behaved at all
scales (at least once it has been RG improved). Said another way, although this the diagram does
introduce a one-loop correction at low scales fiz,

! :Ecb o C() AL
RS ¢ +¢ e p = ime () + e e logmlza(ﬁL)Jrl

[LL+NLO|, (3.98)

one will not encounter any issues with perturbation theory, as long as the RG improved mass
mk ([LL) is used.

Matching Across a Heavy Threshold and The Hierarchy Problem

Now we turn on K in order to explore the impact of a non-trivial coupling between our light
state ¢ and a heavy particle ®. The one-loop correction to the ¢ mass in the FULL THEORY at the
matching scale iy, receives another contribution:

7 AN
= M? 1 i 1 .
\,V\/ T + ogy +0(¢g)| . (3.99)
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In this theory, the mass counterterm is

2
Za—14 n 1 K M1

3.100
s 32712 32712 e m2 e’ ( )

where now all the parameters have been renormalized.*> Matching between the FULL THEORY and
the EFT implies:

—imgaen (Fr) = ( 32 [log B + 1]) —(—img)

32 [log B 1] [NLOy], (3.101)
where we have not included the contributions from the light loop at an intermediate step since we
have already shown this contribution cancels between the FULL THEORY and the EFT in Eq. (3.97).

As expected, this matching correction does not manifest any non-analytic dependence on m2, such

as logmé / [i2,.

Although the necessary condition for the hierarchy problem is already apparent, we postpone
our interpretation of this result and instead will push our analysis forward to achieve LL + NLO
accuracy by computing the RG evolution of the mass. We need to derive an RGE for the mass
parameter, starting with

1 od 1 ot d
:ml%Z 2 (Hm%+uZ 2) , (3.102)
mg 2

where we have used the fact that the dimension of the mass term does not change when we shift to
d = 4 —2¢ dimensions. The fi dependence of the mass is inherited from the 1) and k couplings,
since dm% /dlog fi> = 0 at tree-level. Then noting that the leading order relationship Eq. (3.40)
applies, we can write

1 i d 1822~d 18,2 d 0Z,, 0Z,,
B i/ e K T T (3903)

Z,, 2dp " Zz an 2dji Zz ok 2dfi an, K
where in the last step we have used Eq. (3.40) which also applies here, and we have expanded
1/ Zmlz: =1+ ---. Finally, we plug this into the previous equation to arrive at our RGE for the mass:

d 2 . 9ng 92,
mmF = Vo2 M with Y2 = hm en an +Ex T | (3.104)
which we can apply to Eq. (3.100) to find
M2

yo = K (3.105)

PR Remd

42The counterterms Zy and Zi can be found in Eq. (3.68) and Eq. (3.71) respectively, and we did not derive the
counterterm factor Zy; since it does not play any role in our analysis.
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The resulting RGE sums logarithmic corrections to the mass of ¢ in the FULL THEORY to LL
order. Note that it contains a contribution proportional to M?, which is one of the sources of the
hierarchy problem.

In order to expose the physics, we solve the L. RGE and expand keeping only the leading

contribution:
2 2
2 (5 2 (5 n o, Hy K 2 Hb
() xpangea = M7 (L) — 55— mi log Pyl log e [LL +NLOy],  (3.106)

where we have dropped the scale dependent arguments of the coefficients of the log terms since
these corrections are higher order. A similar calculation in the EFT yields*}

N _ C. [i7
m% ('uM)Expanded = m% ('uL) o 32 ;2 mlz‘: 1Og [,.:%L/I [LL] : (3.107)

The last required piece is the boundary condition for the EFT mass at the matching scale using
Eq. (3.92) and Eq. (3.101):

K
3212

=2
mi (f) = mf (finr) — M? [log oM 1] [NLOy] - (3.108)

M2

Now in exact analogy with Eq. (3.88), we can run our mass from the scale fiy in the FULL THE-
ORY (noting that iy is a proxy for the UV scale where the fundamental parameters are defined)
down to a scale fi; passing through the mass threshold M:

m% (‘uL)Expanded :mlz: (ﬂH) - 32 12 M”— 32712 m125

2 2
n -, Py G 5 M
TR O T MR
2
K 21 My
Ty M?log 0 [LL + NLO], (3.109)

where we have used Eq. (3.98) to include the fixed order correction within the EFT in analogy with
Eq. (3.89) above. This expression gives the (expanded) RGE solution + fixed order corrections,
and is therefore under perturbative control when the full RG solution is utilized.

This demonstrates that the heavy state does not contribute once you evolve below the scale M,
as it must have been due to the requirement of decoupling. However, there is a very important non-
decoupling difference here as compared to the quartic interaction example worked our previously.
Specifically, there are both log enhanced and finite matching corrections that are proportional to
M?. This implies that the UV scale M contributes to the light mass — the one-loop corrections to
this small parameter are not parametrically under control. We conclude that, as opposed to our
example in Sec. 3.2 above, the RG evolution does not provide any compensating effects to cancel
the fine-tuning required when matching. This is a necessary condition for a theory to manifest a
hierarchy problem.

43The EFT RGE is identical to the one derived for the FULL THEORY calculation with ) = C4 and x = 0.
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To summarize, we can start with the boundary condition for our mass parameter in Eq. (3.108),
which was derived by matching the FULL THEORY to the EFT, and we can run it to a low scale
where we compute the NLO corrections within the EFT to yield

K Cy M?
mg (M) — o M?* = m} (m) — 32n2m123 (1 +1ogm%) : (3.110)

where for simplicity we have taken the scale choices fiy = [fiyy = M, and fi; = m, which can be
interpreted as assuming that the UV parameters are defined at uy = M. This implies that if we
wish to maintain m < M, we must carefully choose the FULL THEORY mass parameter at the
matching scale m? ([LM). This concludes the technical demonstration of this issue, thereby laying
the groundwork for the philosophizing that appears next.

A Brief Discourse on the Hierarchy Problem

For the reader who has not yet had enough of the hierarchy problem, I will now provide my
personal perspective on the interpretation of the necessary condition derived in Eq. (3.110). First,
I will clarify some technical issues associated with the way the hierarchy problem appears when
using dim reg. Then, I will interpret Eq. (3.110) as motivating the need for new physics. One
key point that will be emphasized throughout is that promoting the fine-tuning to a physical effect
requires a calculable UV framework, where the mass parameters in the IR can be interpreted as
predictions of an underlying theory. This is intrinsically a UV issue, and as such there is no model
independent interpretation.

The hierarchy problem for the Higgs boson in the Standard Model**

is often presented in a
not particularly technically accurate way.* In particular, it is easy to argue schematically that a

top-loop would imply a correction to the Higgs mass

d4€ 1 y2 Ayv 63 y2
2 . 2 t t 2
~— __ SR /v S 111
" ly’/(zyr)“ 2 —m? 87:2/0 dfﬁ%—m% T2 MOV G.111)

where y, is the top Yukawa coupling, and Ayy is some hard UV cutoff that regulates this UV di-
vergent integral. This back-of-the-envelope calculation gives the appearance that the Higgs mass
receives a large quadratic correction from some unknown UV scale. However, note that if this
integral were evaluated using dim reg by applying Eq. (3.93), one would find a result that is pro-
portional to the only scale that appears in the integral, namely m,. It might then be tempting to
conclude that the hierarchy problem is a hoax. However, there is no inconsistency here, but instead
the interpretation of Eq. (3.111) requires treating Ayy with care. Specifically, one should be very
cautious when claiming that a cutoff dependent result has a physical interpretation. As I have em-
phasized in the technical part of this section, there is no fine-tuning issue if the only scale in the
problem is m. This is why I coupled ¢ to a heavy state ® in order to expose the necessary condition
for the hierarchy problem — without the physical mass scale M, there is no problem. Note that one
of the remarkable aspects of the Standard Model is that gauge invariance plus chiral symmetry for-
bids mass parameters for the fermions — the Higgs mass parameter is the only dimensionful scale

4The implications for naturalness due to the presence of a fundamental scalar Higgs boson in the Standard Model
were first realized in [74].
431 have certainly been guilty of this doing this myself more than once.
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around. This implies that if there are no additional UV scales beyond the Standard Model, there are
no fine-tuning issues associated with the Higgs mass. This is made plain in the careful treatment
above, see Eq. (3.98).

However, there are many outstanding issues with the Standard Model that very likely intro-
duce new scales*® that are likely to couple to the Higgs at some loop order (due to gravitational
interactions if nothing else). In addition, we lack a detailed picture for what occurs at the physical
scale Mp;, where gravity becomes strong. This has convinced many of us that

i) The Standard Model should UV complete into a calculable*’ framework such that low energy
parameters are predictions in terms of fundamental parameters.

ii) In the absence of a protection mechanism, new high scales would feed into the Higgs mass
48

parameter.
This motivates me to take the fine-tuning problem seriously as an argument for new physics.
Before I discuss specific approaches, I want to distinguish the two “kinds” of naturalness that
are often discussed. The first is “aesthetic naturalness” (or “Dirac naturalness” [76], which could
arguably be credited to Gell-Mann [77]). It is the statement that given a theory with a fundamental
scale A, all dimensionful quantities should be proportional to A with some order one coefficient:

£ coxAt 19 x0, (3.112)
{0}

where O is some operator with mass dimension [O] ,and cp ~ O'(1) is a Wilson coefficient, and the
sum is over the set of operators of relevance {O}. This can be compared with a more nuanced (or
legalistic) definition of natural choices for Wilson coefficients, usually referred to as “technical nat-
uralness” (or 't Hooft naturalness [78]). For theories in this class, a small parameter is considered
natural as along as an additional symmetry is restored in the limit that it is taken to zero:

LY cox A% 0 + Y sxegx A% 0, (3.113)
{0} {0}

where now a special set of operators {O} have been separated off, with Wilson coefficients cy- The
additional factor s is a “spurion” in that it tracks the breaking of whatever symmetry is restored in
the limit that s — 0. This implies that these coefficients can in principle take values sc5 < 1 while
maintaining technical naturalness.

There have been many recent complaints that we should abandon the notion that fine-tuning
in the context of the Standard Model is a serious issue. This can largely be traced to the (as of yet)
non-observation of new physics at the LHC and other experiments, which is driven by the feeling
that aesthetic naturalness should have been realized by nature. However, many technically natural

: int-of view that they are to be taken seriously.
46The most obvious ones are dark matter, baryogenesis, unification, strong CP, ... .
4THere I mean in-principle calculable, since one compelling possibility is that the new physics is strongly coupled.
48The argument is so robust that it has even been extended to show that the Higgs would receive a contribution to its
mass parameter in a situation where the only new scale is associated with a non-perturbative deviation in the anomalous
dimensions of the theory [75].
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A Supersymmetric Detour®’

At this point, a toy model would illuminate the ideas I are trying to convey. I will work in
the context of weakly coupled supersymmetry, since this is a simple field theoretic framework that
makes scalar masses calculable. The purpose of the choices made here is to mimic Eq. (3.90), to
see how the hierarchy problem emerges. This is followed by a more sophisticated example that
manifests masses that are calculable in terms of gauge couplings.

Take a four-dimensional .4/ = 1 supersymmetric model with a light superfield ¢ and a heavy
superfield ®. The Kihler potential is canonical, and the superpotential is>°

1 1 1
W:§m¢2+§M¢2+§K¢2¢'. (3.114)

Famously, the superpotential does not receive any quantum corrections. Therefore, the limit m < M
is radiatively stable, and this theory does not have any hierarchy problem. This is true even though
it contains the same scalar interactions (and more) as our example above with the Lagrangian given
in Eq. (3.90):

L= |mo+ k9D + MO+ K97 (3.115)

In particular, if one were to match onto an EFT with only the @ superfield at a scale near M, one
would find that the extra scalar diagrams that result from terms like M k ®" ¢ +h.c. along with the
loops involving the fermionic superpartners would all conspire to result in no matching corrections
for the light mass.

In order to discover a toy model with a calculable hierarchy problem, one must softly break su-
persymmetry. In particular, adding the following additional terms to the Lagrangian at the matching
scale

Lsoti = —-MKkD 9> —mr¢T oD +hec., (3.116)

would yield the exact same diagrammatic structure in the scalar sector as before (of course there

are still the fermion diagrams which contribute). Then this version of the model would realize a

large correction to the mass of ¢ proportional to k* (M? +m?)/(167%). If one needed to maintain

the small mass for ¢, the UV parameters would need to be chosen with care.!

e Exercise: Work out the matching calculation for the mass of ¢ in the theory where super-
symmetry is maintained. Then do the same when the soft-breaking Lagrangian Eq. (3.116)
is included to verify my conclusions.

49 A working knowledge of the relevant supersymmetry tools (superpotentials and their renormalization properties,
and gauge mediated supersymmetry breaking in particular) is required to follow these arguments. For introductions, see
e.g. [79, 80].

0T will resist the temptation to call the superpotential coupling /%, even though this would more closely resemble
the notation above.

SINote that for the sake of simplicity, I have taken the soft breaking parameters to be exactly the same as their
supersymmetric counterparts, even though there is no mechanism to maintain their equality. In fact, RG evolution makes
this an unstable choice. However, it is straightforward to see that the argument presented here does not require that this
choice be precisely satisfied.
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At the risk of overdoing it, I will introduce a more sophisticated toy model to draw attention to
one flaw in the example I just presented. In particular, since I added soft supersymmetry breaking
by hand, one might argue that this does not satisfy the requirement that the parameters are fully
calculable in the UV. To that end, I will rely on a scheme for deriving calculable soft breaking
masses known as gauge mediation, see [81] for an introduction.

The model has three superfields ¢, @, and ®,, who couple to each other with the superpo-
tential

W=k¢d d, (3.117)

which gives cross quartic couplings among all three scalar fields. Next, assume there are two
gauged U(1) symmetries, labeled by A and B, under which the fields are charged as

field | Oa | OB
¢ +1 0

D, —1 +1

o, 0 -1

(3.118)

Then imagine that these fields receive gauge mediated masses, which are generated at two-loops.
Parametrically, this implies m* ~ [(g5 5/167%) F /My 5| ?, where F breaks supersymmetry, which
is coupled to a set of “messenger” fields with mass My g for the superfield carrying U(1)4 p charges
respectively. This in turn assumes that the F-term derives from a fully calculable source, e.g.
dynamical supersymmetry breaking [61]. Then at leading order, this model could realize a scalar
mass spectrum mé < méllz if there is a hierarchy in the gauge couplings g4 < gp, assuming My ~
Mp. This choice is technically natural, since taking a gauge coupling to zero enhances the global
symmetry structure of the model. However, if one then calculated with this theory to the next
order in perturbation theory, RG evolving to scales below m%bm would yield a non-trivial threshold
correction to mé in exact analogy with above. Then in order to maintain the lightness of the ¢ field,
toy model nature would have to fine-tune the two gauge couplings g4 and gp. This is a concrete
realization of the hierarchy problem in terms of UV parameters, and serves to highlight how bizarre
it would be if the smallness of the weak scale were ultimately traced back to a fundamental physics

conspiracy of this ilk.
End Detour

These kinds of arguments have motivated many of us to seek natural theories for the Higgs
mass. One way to classify these models is through their reliance on either a field-theoretic or a
cosmological mechanism. The field-theoretic approaches introduce a new symmetry>? that can be
used to forbid the Higgs mass parameter. They then reintroduce this parameter in a controlled
way by softly breaking the symmetry, i.e., with a spurion as in Eq. (3.113). The two classic ap-
proaches incorporate supersymmetry (following the same logic underlying the two examples I just
presented), where the Higgs mass parameter inherits the chiral symmetry protection mechanism of

520ne might also classify approaches that solve the problem by lowering the cutoff of the theory to the TeV scale,
although these models do not rely on a new symmetry, see e.g. [82], as field-theretic.
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its Higgsino superpartners, and/or a shift-symmetry, where the Higgs is assumed to be a pseudo-
Nambu-Goldstone boson (a composite state), and therefore has a small protected mass parameter.
For a detailed discussion, see the classic review of the supersymmetric Standard Model [79], and
for some reviews of composite Higgs and other non-supersymmetry approaches, see [83, 84, 85].

The cosmological solutions instead solve the problem outside of field theory. Starting with a
Higgs that suffers a fundamental fine-tuning, these approaches propose that some dynamics in the
early universe selects a small Higgs mass parameter. The classic example is anthropic selection [86]
(especially since this is essentially the only plausible explanation for the small cosmological con-
stant> [88]), but recent years have seen the emergence of many new ideas, e.g. the relaxion [89]
which couples the Higgs mass parameter to the potential of a new axion-like field (which is now
understood to have observable consequences, see e.g. [90]), Nnaturalness [91] with its reliance on
many new degrees of freedom and a novel approach to reheating, and a more recent proposal that
correlates the vacuum energy during inflation with the value of the Higgs mass parameter [92] and
also [93]. It is even possible that some kind of break down of decoupling, a.k.a. UV/IR mixing,
could solve the problem as well, although I am not aware of any plausible example model on the
market that incorporates this notion into the Standard Model.

I want to acknowledge that it is fair to be skeptical of these arguments as a motivation for
new physics since there is no known physical observable directly associated with an unnatural
Higgs mass parameter. Said another way, discovering a hierarchy problem requires the context of
a UV model. As such, one can maintain a perfectly consistent point of view that the perceived
fine-tuning is simply an artifact of the way we do calculations and should be ignored since it
has no implications for experiment. However, I would push back by pointing out that there are
many historical examples where interpreting a quadratic divergence as the harbinger of new physics
has borne fruit: the power law divergent classical self energy of the electron is screened by the
presence of the positron at short distances [94]; the quadratically divergent pion mass splitting is
cutoff by the p-meson; the quadratically divergent mass difference between the long and short
neutral Kaon states were used to predict the charm quark mass [95] — these are all summarized in
e.g. [96]. Additionally, from a theory space point of view, every attempt to build a model where
the Higgs mass is protected by a symmetry (thereby making it a calculable parameter) has yielded
a fine tuning of the Higgs mass parameter when the FULL THEORY parameter space with M > m
is explored. Finally, we note that there are cases where one has control of analogs of the mass
parameters in an experiment: when tuning an external magnetic field in a condensed matter system
(where quantum field theory provides a good description near a phase transition) the presence of
fine-tuning often manifests, see e.g. the discussion in [97].

To summarize, we have seen an ad-hoc Higgs mechanism appear before in the form of su-
perconductors, and this model turned out to have its origins in a microscopic theory such that its
parameters are in-principle calculable. The least radical option is that the same is true for the Higgs
sector of the Standard Model. Furthermore, claiming that the weak scale is simply an incalcu-
lable quantity that is set by a renormalization condition would have tremendous implications for

33Here I are going to display uncanny hubris by relegating a brief mention of the cosmological constant fine-tuning
problem to a footnote. But if I am are honest, this choice is due to the fact that I are not nearly clever enough to have
anything useful to say about this monumental failure of naturalness driven arguments. To this end, I defer to Weinberg
for wisdom [87].
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the reductionist philosophy that has driven progress in fundamental physics since its inception. So
while at the time these notes were written there is still no experimental experimental evidence for
a resolution of the hierarchy problem, I am of the strong opinion that the motivations still stand.
Addressing electroweak naturalness in new ways (especially if they yield novel connections to
experiment) is a worthwhile pursuit.

The next section gets back to technical aspects of EFTs,>* and presents our first example of
separating scales inside a log that has no explicit ji dependence.

3.5 Separation of Scales for a Heavy-light Log

We expect that many of the manipulations and techniques utilized thus far would be somewhat
familiar to the reader. In fact, the purpose of providing so much detail for these calculations was
in large part to set a strong foundation for this section. Here we work with our first non-trivial
example of a logarithm that is not an explicit function of the RG scale fi. Specifically, we will
construct a toy scalar model whose perturbative structure will generate a factor of logm?/M?. We
will then show how to sum this log by matching and running. This is relevant to the parameter space
where power counting will be effective, i.e., A ~m/M < 1. Along the way, we will encounter new
features associated with power counting that will be emphasized.>

The FULL THEORY contains ¢ and & as propagating degrees of freedom, and we only need
one interaction

fIFULL:—%pq)%D. (3.119)

nt
Schematically, our approach will involve the following scales:

22 FuLL THEORY _,
EFT Har

(3.120)
IRGE

2 ~2
m Hr

where in this figure we are correlating the RG scales with their natural size. We want to match our
FULL THEORY at a scale fiyz onto the EFT for the light modes alone. Therefore, we must pick a
process, and — surprise! — we will use ¢ ¢ — ¢ ¢ at threshold. There is a contribution from the
FULL THEORY diagrams,

~ @ ’
t-channel ¢ N, TN Lo ¢ 44 |
. S \/’ — 2 (u2€p)?
+ i =2(ms p) /(2n)d(€2—m2)(€2—MZ)’ (3.121)
u-channel R N
’, ¢ \QS

54For the reader who is interested in more modern discussions of the hierarchy problem, I recommend these re-
cent lectures on BSM physics [98], this essay on “post-modern naturalness” [99], this essay on “naturalness under
stress” [100], and this essay on the interpretation of fine-tuned theories [101].

3 8pecifically, our example actually yields a power suppressed log, A2 log A2. Clearly, the power suppression keeps
it from actually becoming large enough to cause a problem for perturbation theory. Nonetheless, this simple example
will show how the procedure works, and will then generalize to more complicated cases, e.g. SCET as discussed below.
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We will call this a “heavy-light” loop for reasons that we hope are self-evident. There is also an
s-channel contribution which we will evaluate below, see Eq. (3.124). For now we will focus on
these diagrams because they do not have external momentum flowing through the loop. Using the
Feynman parameter trick from Eq. (3.21), this integral becomes

v . dr ! 1
2% . \, — 2 (u3 2/ / dx
":(‘\ "', s\\ (nu’M p) (27-[)(1 0 [62 . (xm2—|— (1 —X)Mz)]z

2iggip* 11 fiy
=—= dx [—+1
1672 J, £+ ©8 xm?+ (1 —x) M?

2i 28 52 1 2 12 M2 2
1672 |e M2—m? m2 M2 2 M?

2i,u1%fp2 1 ai  om? m? m*
el VI PO RS IS B Y 3.122
o2 |e Tlogyp taplegp tIo(qa )|, G122

where in the last line, we used®

2 Y 2 2 2 2 2 2
m iy Hiy m Fi mn Hiy
(‘Mz_mz IOgm+A/12—n1210gA/12> ! (wl"gw‘wmgw“>
2 2 2 72 2 2 4
oy May m m- L My om m m
—logMﬁMz_mzlogMz—logMﬁle‘)gMz“W(w)' G129

Before expanding in small A ~ m/M, this result is m <> M symmetric as it must be. However, since
we are interested in the limit A < 1, the expanded result is relevant.

Intriguingly, this generates a term with the structure A?logA?. So we have produced a log
that is only a function of physical scales as promised, but this log is power suppressed. This power
suppression can be understood from a physical perspective. Going back to the original expression
in Eq. (3.122), we see that this integral is IR finite in the limit that m — 0. Therefore, if m appears
as the argument of a logarithm, it must do so in a way that is also finite as m — 0, explaining the
power suppression.

Next, we turn to the s-channel diagram. Since we are evaluating our process at threshold,
p1L=p2= (m,a) Above, we neglected the potential for this momentum flowing through the
diagram to change our results since we were focused on the UV divergent terms. Here our focus is

55Note that it is easy to derive this expression from the original one by taking fiyy = M. However, since we are
interested in tracking the fi dependence, we will maintain it as a free parameter.
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on a logarithm whose argument depends on m, so we should treat this carefully:>’

o 2 0 ,
ANV ¢ d*/ 1
_channel: : \f = (uZ 2/
s-channe /,1‘\ ",\\ (.uM P) (2717)‘1 ((£+P1 +p2)2_m2)(g2_M2)
¢ Y Y
_ kP’ By

l+1o —+1+m—2 lo m—2+2 +0(2%) (3.124)
1672 |e B2 w2\ %% S

So we see that the s-channel diagram does yield a different result from Eq. (3.122), but it contributes
the same 1/¢€ pole and log terms as the other two channels, yielding a total contribution of three
A%log A2 when we sum channels.

o Exercise: Derive Eq. (3.124).

All together, we find
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where the 1/2 is a symmetry factor, and the overall factor of 4 counts that there are 4 independent
diagrams, one for each choice of momentum assignment. Note that in moving from the first to
the second line, we have expanded pfp ~ A? for the off-shell heavy scalar propagator that appears
before the integral. These higher power corrections play no role here.

These diagrams in Eq. (3.126) are perhaps unfamiliar because they are not naively one-particle
irreducible. However, since we are performing a matching calculation, we should only apply our
one-particle irreducible criterion to the light degrees of freedom. The justification for this assertion
comes from realizing that by working in the A < 1 limit, any ® propagator is always far off-shell,

>7which will lead us to discover that being careful will in fact not change the result for the term of interest...
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and so it is necessary to include diagrams of this form. Note that the power suppression is clear at
the diagrammatic level due to the presence of the heavy off-shell propagator.>

After renormalization using the MS scheme, the NLO FULL THEORY matrix element for
0 ¢ — ¢ ¢ at threshold is

) 2 2 2 2
f o/ FULt = % 3log 24 43+ 0 <3 log 175 —|—2longZ> +6"(/14)} [NLO]. (3.127)
M

The first log can be summed by introducing and subsequently running 1, following exactly as in
Sec. 3.2 above. Our focus here is on separating the scales appearing in the second and third logs,
and showing how the m dependent log is regenerated at a low scale using EFT techniques. Again
we emphasize that this power suppressed log will not ever cause an issue for perturbation theory,
although it could be important if one needs the prediction to a particularly high accuracy. However,
this model provides an excellent pedagogical case study for applying the matching and running
procedure. The power suppression will also impact our interpretation of the RG, as we will show
in what follows.

Matching onto the EFT and the Separation of Scales

Now we are ready to match onto the EFT up to one-loop order. We will need the EFT interac-
tions

1 1 Gg
ZLET 5 ﬂc4<;>“+aﬁ¢6. (3.128)
Our first step is to match the FULL THEORY to the EFT at tree-level. Note that although C4 = 0 at
tree-level due to our UV choice, it will receive a one-loop matching correction from Eq. (3.127).

There is a non-zero tree-level contribution to Cq:

6. s
1/6 “\ P /' 2
5 <3) X (ﬁ""::;h - —(:::""Qb = —llOp <_1‘42> +
. .0
\\ ',/ C
= eeene :;.:: _____ G+ = _’ATGZ’ (3.129)

where the factor of (6 choose 3) accounts for all possible momentum routings. So tree-level match-
ing yields

Cy=0 Co=—10p* [LOy] . (3.130)

38There is yet another way to interpret the physics associated with this diagram. If one were working consistently to
one-loop order in the FULL THEORY, then taking our interaction in Eq. (3.119) and closing a ¢ loop would generate a
mass mixing between ¢ and ®. Then the proper procedure would be to diagonalize the FULL THEORY scalar masses,
which would yield the same result when expanded in A. Additionally, note that at higher loop order the fields would mix
due to wavefunction renormalization.
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e Exercise: Derive Eq. (3.130) by using the equations of motion to integrate out ® in the FULL
THEORY, following the same steps that led to Eq. (3.12).

Now we are ready to match the one-loop power expanded FULL THEORY result Eq. (3.127)
onto the EFT. We need the EFT to generate the same non-analytic structure as a function of the IR
parameter m?> as in the FULL THEORY. This implies that the matching correction will be analytic
in m?. It turns out there is only one class of EFT diagrams to compute

: ; _1Gs / e 1
b @l b Tzt (2m) 12 —m?

_ l‘LLM Ce m?
3212 M?

NM

[ +1lo og° > s +1+0(g)|, (3.131)
where the 1/2 is a symmetry factor, and the RG scale is [Lj%,[ because we are matching at the high
scale where Eq. (3.130) is appropriate. This can be interpreted as an operator mixing effect, since
Ce generates a contribution to Cy at loop level, and as such will lead to a non-homogeneous RGE,
see Eq. (3.135) below. Note that this diagram will only contribute to the RGE at &(12), i.e., it is
power suppressed.

Since it is higher power, we will not need to renormalize Cs when working at one-loop.>® We
renormalize the C4 coupling in the low energy EFT by setting the Z; counterterm to cancel the 1/¢
term as usual. This gives us a counterterm

24:1+C} 32sz21\”;: (3.132)
Now we can apply Eq. (3.79) to match the FULL THEORY and EFT at one-loop:
C}t\datCh(ﬂM) =— 1’6);2 {3 log iy >+ 1+ MZZ <3logl‘nj2 +2log Z}j)]
+ [—fg’;;:; (1 g“M+1>}
:%1626# [31 g'uM—i-3—|——2 (3 log “M+5>] [NLO] . (3.133)

Recalling that we are assuming that the FULL THEORY tree-level ¢* coupling is zero at the
matching scale, see Eq. (3.130), we have now derived the boundary condition for the RGEs,
Cy ([LM) = Cya”h ([LM). Again, we emphasize that this matching coefficient is fully analytic in

391 we wanted to run the Cg coupling, we would need to include operators that power count like A*. In other words,
we would need to include a ¢® local operator in our Lagrangian, which would then both contribute to C4 (at two loops)
and to C¢ (at one loop), implying that we would have to renormalize Cg.
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m as it must be, see the discussion below Eq. (3.82). Note that from the EFT point of view, the
log fi,/M? term is not absorbed by RG evolution, and instead simply contributes as a threshold
correction, exactly as in our previous examples.

Before we finish the calculation, it is worth pausing to appreciate that a non-trivial separation
of scales has now been performed. Inspecting the power suppressed term in Eq. (3.133), we see
that our logm?/M? has now been separated into a log fi;/M?. The other part, logm?/[i? will be
generated by EFT loops. This is what we need to apply RG techniques within the EFT to sum
our log! The rest of this section will do just that, and in particular will show how the LL + NLO
result expanded to leading log order will recombine back into Eq. (3.127). We reiterate that what
matching has done is to take the logm?/M? apart, resulting in a contribution at the matching scale
that depends explicitly on the associated scale fiy;. This provides a boundary condition for our
RG evolution within the single scale EFT down to a low scale fi;, where we then can compute the
one-loop EFT fixed order corrections to derive a summed result that no longer suffers from any (in
principle) large log problems.

Moving forward in the calculation, our next step is to derive an RGE that can be used to evolve
the matched Cy4 ( [LM) to a low scale fi,. We will need the anomalous dimension for the ¢4 operator
in our EFT. Fortunately, we have already computed the running of C4 due to its self interaction,
see Eq. (3.59) above. All we need to do is extract the running due to Cg from Eq. (3.131). This
is straightforward to accomplish through the application of the formulas for the anomalous dimen-
sions we derived above in Eq. (3.45):

3 1 Cgm? 1 m?

S o " 134
2T A 6= 1672 M2 G159

Yaa

Then we use the general form of the RGE in Eq. (3.46) along with Y14 as computed in Eq. (3.57) to
evolve our Wilson coefficient from the high scale fi;; to the low scale fiy:
1 m?

2

d 3
Cy =
dlogi2 *~ 327

Note that we must be careful to track that each insertion of the ¢© operator comes with a power
suppression. Since we have truncated our expansion to only capture terms of & (lz), we can only
consistently include one insertion of this operator when integrating the RGE. Note that this is not an
issue for ¢* since this operator power counts as (1), implying that we can do an infinite number of
¢* insertions at no cost (which is how we interpret what integrating the RGE is doing). Therefore,
to solve the RGE in a way that is consistent with power counting, we take our full Cs solution,
given in Eq. (3.59) above, and perturb it with a single ¢ insertion. If we wanted to go to & (14),
we would need to include the effects of the ¢® operator. This is how renormalization proceeds for
a “non-renormalizable” theory.

We can track power counting order n with a superscript C("), so that Eq. (3.59) solves for
CL(LO). To derive the first sub-leading power contribution due to an insertion of ¢°®, we expand
Cy=C 4(‘0) +C 4(12) and plug this into the RGE

d 0, ~2) _
dlog ji2 <C4 TG )‘

2

(0))2 1 m
C ————C. 3.136
< 4 ) TmarCe (3.136)

3272
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Note that the when we expand Cf consistently, the CiO)Cf) cross term can be neglected since it is
both coupling and power suppressed.®® Then we can use the fact that CA(LO) solves the RGE with
Ce = 0 to derive the leading power correction to the RGE

d @ 1 m?

—_— =——C 3.137
dlogh2 + ~ 32mm2® 3.137)
which is trivial to solve. The solution for the running coupling Cy4 (/JL) to O(A?) isb!
0)
_ Cy 7 (e
Cy (.LLL) = 0) ‘i ( )
1-C ('uM) 3272
2 )
@5 1 m Rz

where Cf) ( aM) is the power suppressed Cg dependent contribution from matching given in Eq. (3.133),
while the non-power suppressed terms from the matching are absorbed into Cé(‘o) (ﬁM).

The last step is to compute the perturbative corrections within the EFT at the low scale. Specifi-
cally, these come from a set of diagrams proportional to (C4) 2, see Eq. (3.56), and a set proportional
to Cs, see Eq. (3.131), but now evaluated at the scale fi;:

) 3 iCo m’

So now we have all the necessary pieces required to derive an LL,> + NLO summed amplitude,
although we will not do so explicitly. Instead, it will prove to be illuminating to expand our RGE
solution and put everything together to show that we recover the FULL THEORY result Eq. (3.127)
when expanding the RG solution to leading log order (recall that Cg (ﬂM) =—10p?):

—10p% 1 m?
167t2 10 M2

F m? m?
iU = [3 logﬁ +2log /12] + [NLOJ;

M

11 2
LA ea = i Co (3 log 43¢ Bt | 5 1og ZM)

‘101672 ° M2
2
: iy
Cs 10
32 2M2 6 g’uZ
2
: m i
i Celog
_ Go Lmfoy 2+210 m n [LL;2 + NLO] (3.140)
‘miomz | % Sz 2 ’ '

01f one were interested in extending this calculation to higher loop order (but same order in power counting), it
would no longer be consistent to ignore the cross term between the leading and power suppressed pieces of C4. One
could still solve the exact RGE with C4 /Cg mixing and then truncate in A, but another strategy would be to factorize the
RGE into separate differential equations with uniform power counting.

6INow the LL ;2 in the brackets is there to track that we are including the sub-leading power correction to the LL
RGE.
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where the FULL THEORY result on the first line only reproduces the power suppressed log depen-
dent terms from Eq. (3.127). The first line of the EFT result is the matching contribution, the second
line is the RG contribution expanded to keep only the leading logs, and the final line is the EFT low
scale loop correction. The final equality clearly shows agreement with the FULL THEORY result,
demonstrating that our procedure for separating scales works as anticipated.

o Exercise: Track the finite terms to show that the complete FULL THEORY result in Eq. (3.127)
can be built by putting together the matching + running + EFT loop contributions.

We see that this exercise exposes all the promised features of matching and running. All
integrals were expanded such that they only were functions of a single scale. Once the scales
were separated, the application of the RGE was completely straightforward, thereby summing all
dangerous logarithms and connecting the high scale description to the low scale.

e Exercise: Famously, the Higgs quartic receives a finite log correction within the Minimal
Supersymmetric Standard Model (MSSM) whose argument is the ratio of the stop mass to
the top mass [102]. This is a very important effect since the Higgs-boson mass is bounded
by the Z-boson mass at tree level in the MSSM, and so the stop-top loop corrections are
critical to achieve a 125 GeV physical Higgs mass. An excellent application of matching and
running is to apply the techniques discussed here to separate scales inside that log and sum
it at one-loop order.

We close this section with one final analysis. We will define the “method of regions” and apply
it to our heavy-light integral in Eq. (3.121). This will lay the groundwork for our investigation of
more complicated integrals that yield Sudakov logarithms, as discussed in Sec. 4.1 and Sec. 4.2
below.

3.6 Method of Regions for a Heavy-light Integral

In this section, we introduce the so-called method of regions [57],5% and apply it to Eq. (3.121),
the heavy-light integral from the previous section. The purpose of this method is to decompose a
complicated multi-scale integral into many simpler single scale integrals by utilizing an expansion
in a power counting parameter A. The result is that one dimensionally regulated integral over the
full domain is expressed as many integrals whose limits of integration are localized about the region
where they have non-trivial support. Then relying on the fact that scaleless integrals vanish in dim
reg, one can extend each of these expanded integrals to the full domain of integration, and then
apply dim reg to regulate them individually. Initially, this will be used as a method for computing
integrals in the limit that A < 1, but then in Sec. 5 we will see that we can interpret each non-
vanishing on-shell region® as contributing a propagating degree of freedom to the EFT.

62Some useful general references are [103] and Chapter 9 of [104]. For a demonstration of problems that can arise
at higher loop order, see [105], and for some work towards a proof of the method, see [106, 107]. In particular, [106]
demonstrates how to use this approach in the presence of zero-bins (which are discussed in Primer 6 below).

93A way to see if a mode can go “on-shell” is to check if it can satisfy p?> = 0 when A # 0. This condition holds
for the hard, collinear, and soft modes of ¢. Regions that do not have an on-shell interpretation will yield effects such
as “potential” or “Glauber” exchanges, see Eq. (6.103) for the scalings. These effects will only be briefly mentioned as
they are beyond the scope of these lectures.
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We begin with our heavy-light integral

d?s 1 1
_ 2t
=4 /(27t)d 2_—m? M (3.141)

Define a power counting parameter A ~ m/M. Next, assume a particular A scaling for ¢, and
Taylor expand the denominator factors assuming this ¢ scaling before integrating. Since we want
to reproduce our A%log A2 heavy-light log, we will need to carry these expansions to A2 subleading
order.

The most obvious region has hard scaling

o ~M(1,1,1,1), (3.142)
so that our integral can be expanded as

d*e R d*e, N m2d*e,
(=) (=) G-we) " (G-

(3.143)

which go as ~ & (1) and ~ A2 respectively. We also can expand our integrand assuming a soft
scaling

o ~M<A,7L,7L,/l>, (3.144)
yielding

d*¢ . d*e,
(02 — M?) (2 — m?2) —M2(02 —m?)’

(3.145)

which scales as ~ A2
Next we integrate each of these expanded integrands:

d : 72
© _  2e [ 4% 1 i (1 u
T = /(2n)d (E—m)2 " 16w <s ogya T

d 2 P 72
) se [ 4%, m i m° (1 i}
= /(27r)d (2 —Mm?)ey 1672 M2 <8 Hos e T )

d ; 2 )
2) 2 d*d 1 B i m- (1 il
I5T =M /(271)[,_1”2(6%_”12)——IMZM2 Stlog s +1), (3.146)

where the superscripts n on .% () correspond to the order in power counting that this integral will
contribute, and we used the same evaluation as was needed for Eq. (3.30) above. Then simply
summing the results in Eq. (3.146) yields

2 2 12

0 1 1 i 1 ju m 1
=50+ 4 7 = |:<8+10g1‘42+1>+w <1ogM2

=2
—log ";z)} . (3.147)

We see that the method of regions approach reproduces our direct calculation of the full integral up
to 0(A?), see Eq. (3.122).
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e Exercise: Convince yourself that any other scalings for £ will yield a scaleless integral.
Since our EFT is Lorentz invariant, we can restrict ourself to homogeneous scalings of the
loop momentum EZL ~M (l“, A4 A4 l“), for some choice of a.

e Exercise: Perform the same type regions expansion to evaluate the s-channel diagram given
in Eq. (3.124) to A2 order.

As was mentioned above, identifying the regions has a corresponding interpretation from the
EFT point of view. The hard region contributes to the local Wilson coefficient via matching, while
the soft region corresponds to dynamics in the EFT, modeled by the scalar ¢ and its interactions.
This procedure is unnecessarily sophisticated for this simple heavy-light example (which is why
we are doing it at the end), but it will be critical for our understanding of SCET in what follows.

The next section reviews the physics of soft and collinear divergences, including the identifi-
cation of large IR logarithms that can require summation. This will prime us for our toy version of
SCET that follows in Sec. 5.

4. Soft and Collinear Divergences

Now that we have developed a strong foundation for applying matching and running to sepa-
rate scales, we can turn our attention to some more involved examples. The goal for the rest of these
lectures is that the reader will learn to sum (double) logarithms associated with soft and collinear
divergences using EFTs. To that end, this section is devoted to setting up the relevant background,
before introducing SCET in Sec. 5. Before we get into the physics, we explain light-cone coor-
dinates in the next Primer. This is the natural setting for working with collinear divergences. A
Primer on the systematics of IR divergences in field theory then follows. The main results for this
section are provided in Sec. 4.1 and Sec. 4.2, where we will use the method of regions to evaluate
two archetypical integrals that yield the so-called Sudakov double logs [108] we are interested in
summing.

Primer 4. The Light Cone

We will be interested in taking the collinear limit of momenta, so it is useful to work with re-
spect to a light-like reference direction. To this end, we introduce so-called light-cone coordinates,
where our coordinate system is decomposed along a “collinear” direction n*, an “anti-collinear”
direction 7*, and the two “perp” directions specified with a | symbol, whose defining feature is
that they are perpendicular to n and 71. Calculating in these coordinates is also known as field theory
in the infinite momentum frame or null plane field theory.®*

When we need to be explicit, we will always make the standard choice to point n* along the
+Z light-cone direction:

nt = (1,0,0,1), 4.1

64Essentially all of the light-cone formalism that follows can be found in [109], where they show how to perform
QED calculations when expressed in the infinite momentum frame. They additionally show that the elements of the
subgroup of Poincaré which leave 7 - x invariant are the familiar non-relativistic Galilean symmetries.
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such that n> = 0. Then the anti-collinear direction is defined by the condition that it is light-like,
> = 0, and that it points opposite to 7, such that z -7 = 2 (the 2 is a normalization convention, and

).65

will lead to many subtle factors of two that are easy to miss When we need to be explicit, we

will always take the convenient choice
at* = (1,0,0,—1) . 4.2)

Then the other two directions are defined by having a vanishing dot product with »n and 7. In our
explicit frame, this implies

P =(0,p*p,0). 4.3)

Then the metric tensor can be written as

n*a¥  atnY

2+2

gt = +g'", 4.4

where g’iv is defined implicitly by this equation. Lorentz four vectors are then®®

e nt
pt=—np+—i-p+p, (4.5)
2 2
such that
2—(n-p)(i- 2 4.6
p°=(n-p)(a-p)+pl, (4.6)
where pi =pL-pL= plj_ Plu=— p% — p%. Note the opportunity for minus sign mistakes here; the

“." denotes a four-vector dot-product. Another confusing fact is that n - p is the component of the
momentum that points in the 7* direction and vice versa.

It will also be useful to take light-cone projections of the derivatives. For concreteness, we can
work in the explicit frame specified by Eq. (4.1) and Eq. (4.2), so that

n-p=p’—p a-p=p’+p. (4.7)

Then

u 9 0 d on-p 0 din-p 0 dn-p 0 din-p 0
n _ _

G a0 9 G np  ap anp ap anp ! ap onp

0 N g d N 0 5 0
dn-p Odi-p Odn-p dia-p Oi-p

4.8)

This is another subtle factor of two to watch out for.

95 A choice of conventions that avoids many of these factors of 2 is to instead define n* = (1/4/2,0,0,1/+/2) and
similar for 7" so that n-7 = 1. Here, we have chosen to follow the conventions that are typically used in the SCET
literature.

661t is common to introduce additional notation p- = n- p and p_ = 7i- p. We chose to leave the n and 7 dependence
explicit for pedagogical reasons, at the expense of bulkier expressions.
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e Exercise: Show that Eq. (4.8) is self consistent by writing

J d e d N d
8pﬂ_nu8n-p n”&ﬁ-p ap'’

(4.9)

and evaluating this for d/dp°. Note that this will require inverting Eq. (4.7) and using the
chain rule to evaluate terms like dp°/dn - p.

Next, we introduce light-cone notation for the components of a Lorentz vector:

pt=(n-pii-p,pi), (4.10)

which will be utilized extensively in what follows. For example, the frame specified by Eq. (4.1)
and Eq. (4.2) is written as

n* = (0,2,0) " = (2,0,0), @.11)

which is another factor of two to track.

We will see that SCET is not explicitly Lorentz invariant. One way this manifests is that
momentum can power count non-trivially in different directions. We will account for this fact by
letting p* ~ (A9,A%,A°) for some a, b, and ¢ below — this shorthand assumes that L is treated
homogeneously when expanding around the light cone. Again, we emphasize that this is not a
three-momentum, but should instead be interpreted using Eq. (4.10).

Reparametrization Invariance

Working in light cone coordinates obscures Lorentz invariance, since we have explicitly cho-
sen a frame. Obviously, the underlying physics is still Lorenz invariant — a theory expressed in
light-cone coordinates must know about Lorentz invariance. Operationally, one must work with
operators that respect the transformations that are induced by the broken Lorentz generators, order
by order in the power counting expansion. This is known as reparameterization invariance (RPI).
When working with SCET, there is a non-trivial interplay between Lorentz invariance and power
counting, since we will be truncating our mode expansion around the light cone. Note that if all
orders in A were included, SCET must be equivalent to the FULL THEORY, where full Lorentz
symmetry would be restored. Therefore, the EFT must track the broken Lorentz generators order-
by-order in power counting, so that RPI serves as an additional consistency condition for SCET.
When working from the top down, RPI will automatically be preserved. Alternatively, when work-
ing from the bottom up, one should constrain the operator structure to respect RPI. Due to its
simple nature, RPI will play a minimal role in our toy scalar SCET theory studied in the next sec-
tion. Therefore, the rest of this Primer is most relevant to Sec. 6, where we discuss SCET theories
involving gauge bosons and fermions.

Practically, RPI can be characterized by noting that any choice of n* and 7* which satisfy the

2

conditions 7 -7 = 2 and n> = 0 = 7> must yield the same physics. These conditions are invariant

under three different kinds of reparameterization:

RPLI | RPLII | RPI-IIT
n“—>nu+Aﬁ ny — ny nu—>e°‘nu
iy = iy Ay — iy + & iy — e %y
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where Aﬁ, €1, and « are the transformation parameters for RPI-1, RPI-II, and RPI-III respectively,
andfi-e-=n-e-=n-At=n-At=0.

To make the connection with Lorentz invariance clear, we can express the RPI generators in
terms of the full Lorentz group structure.®’” These transformations were first worked out for SCET
in [111]. A novel approach for dealing with EFT operator structures in the presence of reference
vectors was developed in [112].

We begin with the Poincaré algebra:
[P“,PV_ —0

[M‘“’,Pp_ — ighP PV _ jg"P pH

[M“",M’(p — Qg MYP — ig"P MMK 1 ighP MVK 1 igV< MHP (4.12)

where Py, = idy is the generator of translations, and M*" is the usual anti-symmetric matrix of
Lorentz generators which has an interpretation as generating the rotations M = —¢;j; J* and boosts
MY =K'

|:Ji,./j] = igijkjk [],',KJ} = iS,'ijk [Ki,Kj] = —iSiJ'ka, 4.13)
where €;j; is the anti-symmetric Levi-Civita tensor, e.g. €123 = 1, &3 = —1, €122 = 0.

To expose the broken generators, we project M"Y onto n and 7z as defined by Eq. (4.1) and
Eq. (4.2):

Kl _]2

R =iy MMV = MOV MYV = P

\% 0 3 Kl +]2

RIIL:n.uM“VL:MVL_MVL: KZ_JI
Rt = nyiiy M"Y =2M% =2K3 (4.14)

where v, = 1,2, yielding the five generators of the RPI transformations. Note that the J3 generator
does not appear. This could have been anticipated since rotations about the z-axis leave our n;, and
i, vectors unchanged. When we discuss collinear fermions in Sec. 6.4 below, we will see how
these definitions can be used to infer the fermion RPI transformations from knowledge of the full
Lorentz transformations.

Using the explicit matrix forms of the J; and K; generators for a four-vector basis, it is straight-
forward to check that the identification made in Eq. (4.14) corresponds to the RPI transformations

7For a formulation of RPI in terms of a spinor helicity representation of the light cone, see [110].
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for ny and 71, Then we can check the commutators

RI“RY =0 Ri Ry =0

:R},R}J = iRy :R%,Rﬁ} = iR

:RII,R%I} = —2ils :R%,R%J = 2ils (4.15)
:RII,RIH} — —2iR! :RIZ,RIH} — 2iR?

RY,Run| =2iR} RS Ru| = 2iR% .

This explains the sense in which the RPI transformations encode the full structure of the Lorentz
group, since J3 appears when taking commutators of particular component of RPI-I and RPI-II.
Again, we emphasize that RPI is enforced as a constraint on our EFT Lagrangian. Furthermore,
performing an RPI transformation mixes orders in our power counting parameter, which is a sign
that restoring full Lorentz invariance requires including terms to all orders in A. If one were to
sum up operators to all orders in power counting, the full theory (with the accompanying Lorentz
invariance) would emerge.

o Exercise: Check the identifications made in Eq. (4.14) reproduce the RPI transformations,
and reproduce the commutation relations in Eq. (4.15).

In the next section, we will discuss IR divergences generally. By taking the soft and collinear
limits of a concrete tree and loop process, we will develop some physical intuition for how these
divergences emerge.

Primer 5. IR Logarithms

This Primer is devoted to exploring the systematic properties of soft and collinear IR diver-
gences. Our starting point is the statement that the calculation of a physical process cannot be IR
divergent order-by-order in perturbation theory (when computing with true asymptotic states). This
must be true since there are no IR analogs of the counterterms used to eliminate UV divergences.
However, amplitudes can individually manifest IR divergences, which are the harbinger of poten-
tially large physical IR logarithms that can emerge. Measuring a fully inclusive final state will not
lead to any IR logs, while restrictions of the final state kinematics or particle type can expose the
Sudakov double log. Exploring these concepts is the goal of this Primer.

For concreteness, we will focus on a simple example process. Our FULL THEORY consists of
a heavy scalar ® and a light scalar ¢ with an interaction Lagrangian

1

1
FuLL _ _ + .3 1, 2
e = 3!a¢ 2b¢ o, (4.16)
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Our process of interest will be @ — ¢ ¢, i.e., the injection of large energy into a system of nearly
massless particles. At LO, there is only one diagram

o - = : (4.17)
“

which is trivially finite. At NLO, this process gets contributions from three additional diagrams

. 0] 0]
. . .
. .
.

'Q

¢ -~ ¢ o- - o, (@.18)
N o N

where the first diagram has a soft and collinear divergence from the loop integration (the final
state kinematics is fully specified by momentum conservation), and the second and third diagrams
generate IR divergences when integrated over phase space. The statement of IR finiteness holds at
the level of the observable. In our case, this is the total width for ®, which is given schematically
at NLO by

o 0 ol 0 o]
Cp = / o~ +2Re|®- -  xo-~is —1—/ o-— o+ a-- 6|,
. . .~"~¢

‘\(/) ‘«~¢ ‘.~(/)

\@

(4.19)

where the integrals are over the final state phase space, such that the IR divergences emerging from
the loop integration cancel against the phase space singularities associated with the extra emissions.

This interplay among the IR divergences from different diagrams follows from unitarity. While
a derivation of this fact to all orders is beyond the scope of these lectures, see e.g. [113, 114], it
is straightforward to understand the IR structure of our one-loop calculation of I'g by studying the
“unitarity cuts” of the two-loop diagram

RS j d*¢  d* 1 1 1 1
2=+ | boe-sar L

1
2 21 27)" (po+ 0P (L—KP (po+k2 P&

where ® is on-shell, and the 1/2 is a symmetry factor. First, we note that there is no UV divergence,
since taking |¢| — oo while holding & finite yields

d*k 1 1 d*r 1
Cmm T T G etk k2/ Pr 2D
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and the same holds for |¢| small and |k| — o. Next, we check the limit where |¢| and |k| are
simultaneously large, which yields®®

ST d4£ d4k 1 11 ,
b-— -P ~ / 0= k)2€4k4 — UV finite, 4.22)

-’

. o1 1 1 41
: d'k /(d€ — IR finite, (4.23)

L T e K (a2 2] )

and the same holds for |¢| fixed and |k| — 0. Finally, we check the soft limit where |¢| and |k| are
taken to zero simultaneously

1 d*e  d* 1 11 .
— —d NM4/(27L_)4 L (E—k)zﬁﬁ — IR finite. 4.24)

K
|
L

Note that there are no collinear divergences, since there are no external light-like lines in the initial
or final state that one could take a collinear limit with respect to. We conclude that the integral in
Eq. (4.20) is finite.

o Exercise: Integrate Eq. (4.20) explicitly to demonstrate that it is finite. Note that since there
are no divergences to regulate, one can just combine denominators and integrate without
encountering any subtleties.

Next, we can make the connection with Eq. (4.19) explicit by taking the non-zero unitarity
cuts of our two-loop diagram.®® Explicitly,

d’ ¢
2Im|{p-~ | F-®|=d-+ } -0+0-- i -0
e i J
O b, 6 il
+h- 4 f R b+ d- -0, (425

%8Note that the potentially confusing limit with ¢ = k naively leads to a log divergence, which does not contribute
when preforming the full integral.

%The optical theorem relates the imaginary part of a loop diagram to a set of integrated amplitudes squared. This
can be implemented diagrammatically through the use of the symbol “ | ,” which denotes a unitarity cut: replace each
propagator that crosses with 1/(p* —m? +i0) — —2in(p? —m?) 8(p°), see e.g Sec. 24.1.2 of [3]. Then simply
integrate over the on-shell phase space to derive the optical theorem.
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which must be finite since the full two-loop diagram is finite. Up to normalization (specifically,
a factor of M), these diagrams are equivalent to the NLO calculation represented schematically
in Eq. (4.19). Although the individual pieces are IR divergent, they sum to an IR finite result.”®

With this insight into the IR divergence structure of our diagrammatic expansion, it is straight-
forward to intuit what physical situations will yield functions of potentially large IR logarithms. So
far, we have been discussing the fully inclusive situation, where one should integrate over the full
three-body final state phase space. Then the IR logarithms that are associated with the divergences
we have been discussing will cancel completely between the virtual and real emission contribu-
tions. However, when performing a measurement, one is free to make kinematic restrictions on
the final state. For example, if one were to perform a set of cuts on the decay products of ® such
that any event with more than two particles was discarded, the logarithmic contribution from the
real emission process would be eliminated (of course one must still include the full set of diagrams
when calculating in order to yield an IR finite observable). We conclude that our prediction could
depend on a physical Sudakov log whose argument is a function of the cut parameter. This is
exactly the physical picture one should keep in mind as we study the summation of the Sudakov
double logarithms. But first, we will explore the origin of these loop and tree divergences to help
clarify their physical origin.

Soft and Collinear Divergences at Tree Level

First we will analyze the real emission diagram’! for both the soft and collinear limits. The
Feynman diagram yields

D1 '¢
1 1 1
PO = O — =N p = —iab———— = —iab——— = —jab——,  (4.26)
- éQ ’ (p1+p2)? 2p1-p2 Mxn-p;
Ij -

where we are using a notation that distinguishes p collinear momenta from p anti-collinear mo-
menta (noting that either can then be taken to be soft as this limit is independent of direction). In
the last step, we pointed p; parallel to n, specifically pﬁ‘ = (M/2)xn*, where x is the momentum
fraction carried by p;. Then taking p, soft is the limit x — 1, while taking collinear means taking
p2 ~ (1 —x) for x # 0 and x # 1. Then we can assume a scaling for p, that allows us to take either

01f our goal was to perform a complete calculation, we would also need diagrams of the form - — — -, which is
both UV and IR divergent. The UV divergence yields corrections to the scalar propagator. The IR di\;éfgence is more
subtle. For example, one choice of cuts gives what looks like an additional contribution to the extra emission diagram,
but this is spurious and can be understood in terms of subtleties with defining LSZ reduction in a theory with massless
charged external states. The resolution in this case is to define “dressed states” and the IR divergences are removed at
the LSZ step, as discussed in e.g. [115] Ch. 13. One can avoid all of these subtleties by regulating the IR with a mass at
intermediate steps.

71t is worth noting that one should be cautious when analyzing individual diagrams since spurious divergences can
cancel when considering full amplitudes. For example, one can move divergences among different diagrams with gauge
choices, see e.g. [116].
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the collinear or the ultrasoft limit:’2

M
ultrasoft: p, ~ 5 (lz,/lz,lz)

collinear:  py ~ (1 —x) % (A% 1,1), 4.27)

where we interpret the ultrasoft scaling as homogeneously sending the momentum to zero, while
the collinear scaling is chosen so that it approaches the n direction as A — 0, such that its virtuality
is p? ~ A% for A #0, x # 0, and x # 1. The point is to approach the singularities so that the
virtuality of the mode is always parametrically smaller than the power counting parameter, while
also ensuring that the massless mode can go on-shell. This ensures that one can write down a
propagating mode that captures the relevant singular behavior. A similar story holds for the soft
limit, in that its homogenous scaling allows it to go on-shell.

These scalings set the foundation for what follows. Since the collinear scaling might appear
strange at first, it is worth unpacking the physics. Begin with p pointing exactly in the n direction:
p ~ (0,1,0). We wish to take p just slightly off-shell using our power counting parameter. If we
deform it first in the perp direction, we would have p ~ (0,1,4). Then using the form for p? in
light-cone coordinates, Eq. (4.6), we should scale /- p ~ A% such that p ~ (/12, 1,&) can go on-
shell. Another way to derive this scaling is to take a particle with virtuality A2 in its rest-frame so
that p ~ (A,A4,1), and then to boost it in the —Z direction by an amount 3 ~ 1/A, which shifts
ii-p— Ba-pandn-p— n-p/B and leaves the | component unchanged. This again yields the
collinear scaling in Eq. (4.27).

Going back to the amplitude in Eq. (4.26), we can take the two limits to find

. 1 . 1

il p2 — collinear ~ ﬁ il p2 — ultrasoft ~ ﬁ ’ (4.28)
We see that there are divergences in either of these limits as we take the virtuality of the second
scalar to zero, i.e., A2 — 0.

Soft and Collinear Divergences at Loop Level

Now that we have understood the tree-level divergence structure due to the additional emis-
sions that are generated at NLO, we turn to an analysis of the divergence structure of the one-loop
diagram

d*e 11 1
2m)4 02 (4 p)? (L+p)?

A =B — — 1o :azb/( — b7, (4.29)

where again we are using a notation that distinguishes p collinear momenta from p anti-collinear
momenta, and we are assuming that p flows out of the diagram while p flows in to simplify the
signs appearing in the loop integral.

72Since this scaling is usually referred to as ultrasoft, we will use the same terminology here.

69



Effective Field Theory Timothy Cohen

First we note that this diagram is UV finite, since in the limit that £ — oo, it reduces to
[a¢ ¢/ (62 2 Ez) which converges in the UV. However, as discussed above, we expect this dia-
gram to exhibit both ultrasoft and collinear IR divergences, as defined by Eq. (4.27) in the limit
that A — 0.

We will refer to the diagram in Eq. (4.29) as the massless Sudakov integral, and while we will
solve it below in Sec. 4.1 to leading power with p and p taken slightly off-shell to regulate the IR
divergences. Our goal here is to explore the IR divergence structure when p? = 5> = 0:

M - M -
ph=nk = (O,M, 0) =T = (—M,o,o) . (4.30)
It is straightforward to take the ultrasoft limit for the loop momentum:

SR B | 1 11 1 da?
lim d*¢ — - T = ~
A—0 (2 (L+p)?(L+p)? A*A2i-pAin-p A2

where in the second step we have Wick rotated, rescaled |¢| = A?>M, and dropped the angular
dependence and any overall factors. This demonstrates the presence of the expected log divergence
in the soft limit.

~ (A%da?)

4.31)

Next, we can take the collinear limit. This will prove to be more involved. The reason is that
collinear divergences are inherently Lorentzian, since there is no notion of collinear null directions
in Euclidean space. Furthermore, there is the subtlety that a zero energy collinear particle is also
soft, and as such one must be careful to ensure that one has actually isolated the collinear limit of
the integral. Another concern is that apparent divergences could actually integrate to zero, which
will be true for some ranges of the integration parameters as we will show below. This implies that
we can not simply Wick rotate and take a limit as we did in the soft case, but must instead carefully
manipulate the Minkowski integral to explore the collinear singularity.”?

We begin by aligning ¢ with p:

0= (n'ﬁ, —xM, el) , (4.32)

where x tracks the fraction of ¢ that points in the p direction, and the sign on x is chosen for later
convenience. Note that we are looking for the behavior when x 7 0 to be sure that this is a collinear
divergence. We will revisit this issue of overlapping soft and collinear divergences in Primer 6
below. Then our three denominator factors are

C=—-Mmn-O)x+0%
2 n o 2
(t+p) =C+Mm-€)=Mn-0)(1—x)+ 01
(6+p)° = +Mx~Mx. (4.33)

In the last line, the approximation we are taking holds in the collinear limit, where /> — 0 for fixed
x. Our integration measure is then given by:

d"=d(n-¢)d(7-£)d*¢, = —Mdxd(n-£)d¢ ¢, dl, , (4.34)

73This was first systematically understood by reframing the question of what divergences emerge in the massless
limit into the task of finding “pinch-singularity surfaces” in [117, 118] using the Landau criterion following [119],
see e.g. [120, 114] for introductory discussions.
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where ¢, = |£, | in the last expression and d¢ is the angular part of d?¢ . Then the integral reduces

y~11/2nd /wdxl/wé ar /Nd( 0
- (2m)tM (p—oo xfo UL
1 1

X
M(n-)x—02 —i0 Mn-£(1—x)+ /% +i0’

to

(4.35)

where we have restored the 40 factors in the denominators so that we can do a contour integral
over n-£. Also, note that the critical flipped sign on i0 in the first denominator is due to multiplying
through by a minus sign.

We are now situated to analyze the analytic structure of the d(n - ¢) integral, which will be used
to evaluate it by contour integration. There are poles in n - ¢ at

3 +i0 —0% —i0

(1 )pote =~ (n-O)pote = L (4.36)

Notice that integrand vanishes for n- £ — =+oo, implying that the contour at infinity does not con-
tribute. Then we find qualitatively different behavior in the complex plane as one varies x:

x <0 0<z<l1 r>1
M Im (TL : [) n_f, Im (n . Z) M Im(n ’ 6)

— - » Re (TZ . f) Cl Re(n - ) 'tj Re(n - )

Taking x < 0, both poles are below the real axis, and we can close the contour above to return

# = 0. When x > 1, both poles are above the real axis, and we can close the contour below to
again yield .# = 0. However, in the range 0 < x < 1 the poles are on opposite sides of the real axis;
either contour will imply .# = 0. For concreteness, we choose to evaluate the integral using the
contour above the real axis, letting z=M (n- ) x

1 1 1 1
*dZ =27 —
f[flpperx 2= 02 —i0 z(1—x)/x+ 2 +i0 2

[0<x<1], (4.37)

where we have sent /0 — 0 at the end.”*
We are finally primed to see the collinear divergence. Taking x # 0 and integrating Eq. (4.37)
over the /| direction, we find

oy
fN/ d@ﬁl, (4.38)
0 1

T4For an analysis of the analytic structure of Feynman diagrams, and especially for the intuitive classical picture of
how to interpret the physical region of the integral for the charged pion electromagnetic form factor, see Ch. 18.6 and
18.7 of [121].
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which is a scaleless integral that has both a UV and an IR divergence — the lower bound of this
integral yields the collinear divergence we have been working to expose. As mentioned before, we
assumed x # 0 to ensure that we are not simply accidentally just rediscovering the soft divergence.

Now we can put the pieces together (where the limits of integration on x reflect the results of
our contour analysis) to find

A A O |

j:16n’2MZ/0dxx/0 dﬁﬂ’ (4.39)
where we emphasize that in deriving this result we expanded the propagator in the collinear limit,
see Eq. (4.33). We see there is in fact a double IR log divergence when both ¢/, — 0 and x — 0,
which we interpret as the collinear and soft divergences respectively. This also tells us that our
collinear analysis recovered the soft divergence, which is not surprising since it should be possible
to take the energy of a collinear state to zero, thereby making it soft. This double counting is a
generic feature of these kinds of calculations, and will be revisited in Primer 6, where we discuss
the idea of zero-bin subtraction. But first, we turn to the next section where we perform a regions
analysis to discover the regions that contribute to the massless Sudakov integral, and then use the
resulting expanded integrands to evaluate the Sudakov integral in the leading power approximation.

4.1 Method of Regions for a Massless Sudakov Integral

In this section, we will study the massless Sudakov integral

KXY

a
‘a

dv¢ 1 1 1
NO — B — vy =42 — =d° 4.4
l LOOp @ . ¢ a b/ (275)‘1 62 (g_'_p)z (5—}-]5)2 a b‘ﬂv ( 0)
\~¢

now with the final state legs taken slightly off-shell, p*> # p> # 0, such that the IR divergences are

-

am--

explicitly regulated. For context, one can think of this as a toy model for jets, where p? is measuring

the mass of the final state jet.”>

Then large logs appear because we are restricting our final state to
only contain a pair of two small mass jets, which essentially cuts away the contribution from the
real emission diagrams.

The integral in Eq. (4.40) is difficult to evaluate, as it depends on multiple scales M2, p?, and
p*. However, since we are interested in the parameter space where both external momenta are
parametrically small, p?/M? ~ A2 < 1 and p*>/M? ~ A? < 1, we can utilize the method of regions
to expand the integral into a set of single scale integrals that are straightforward to compute. We
will use this procedure to explicitly derive a Sudakov double log that is only a function of physical
scales. First we will argue for the scalings that capture all of the non-zero regions, and then we will
state the integrated result [122]. For transparency, we will then provide our own detailed calculation
of the collinear integral — the pedagogical evaluation of all four integrals is provided in Appendix B

of [122].

TSNote that one perhaps confusing aspect of working with this example is that the choice of kinematics which yields
real amplitudes is p? < 0. This can be understood by recalling that since the ¢ states are massless, there are always
imaginary contributions from the loops since these particles can go on-shell. It would perhaps be less confusing to work
in a theory with small masses for ¢, but this makes the expressions less straightforward to interpret.
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Allowing the final state momenta to be slightly away from the (anti-)collinear direction with
virtuality p> ~ A% and p?> ~ A2 implies

p~ (2% 1,4) p~(1,A%1). (4.41)
We will focus on the kinematics in the physical region where
Pr=—p?~ A2 PP=—p?~ 22 M>=—(p—p)P~1. (4.42)

In order to expand the integral using the method of regions, we will need to identify all the possible
scalings of / that yield an &'(1) contribution to .#. Consider the following

[hard] h: Oy~ (
[collinear]| c: L~ (A% 1L4)
[anti—collinear] c: bz~ (
[ultrasoft} us: Lyg~ (12,12,12) . (4.43)
Note that the measure scales as d*¢ ~ ¢4, such that

d*, ~ 1 d*. ~ 14 d*e, ~ 8. (4.44)

Next, we check that these scalings contribute at ¢/(1) in terms of the power counting parameter
A. Take the full integral in Eq. (4.40), and expand each denominator keeping the leading terms
according to the power counting in Eq. (4.43). Explicitly in the collinear case, the denominators
are expanded as

P =02~ )2 (U+p)? = (Le+p)? ~ A2 (U+p)? ~iben-pr~1. (445)

Following the same logic for all four regions yields

h: S — —/ d' 1 ! ! o(1)
' ") @t R Evatnp Brnlyn-p
dte. 1 1 1
: n ~ 1
¢S Ses / AR N A
) d: 11 1
¢ S = = /27T4£2n€np(€—i—p) ~ o)
us: I —  Fy / d%, 1 ! ! o(1) (4.46)
- 2m)* By nlysii- p+p* i bysn p+ p2 ' ’

e Exercise: There is one additional scaling that yields an &'(1) contribution, specifically the
Glauber region where £ ~ M (lz,lz,l). First derive the integral that results from this
region. Show by explicit calculation that it vanishes. Then convince yourself that any scaling
of the form ¢* ~ M (l“, AL, l") for a, b, c that are different from Eq. (4.43) yields vanishing
scaleless integrals. This had to be the case as discussed in Sec. 2.2 of [123].
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These integrals are straightforward to evaluate [122]:7°

i T(l+e) /1 1. w? 2;1 n?
= o] FESNE Y L
LY R VE (82+80g Falogys — g HoR)

i T(1+e¢) 1 1. u? ) p?
AL G Oy (L NPV o

812 M2 ( 2 e tp 2% p +6+ (%)

; 2 )
,ﬂg—lr<1+8)< i—llogu——fl gz# +— —i—ﬁ(l))

82 M-? e e °p2 2 6
i T(l4+e) /1 1, w>mM> 1. ,u*mM* nx?
jus:@T <82+810g P2152 +§10g P2P2 +€+ﬁ(k) s (447)

where I'(1 4+ €) = 1 — Yz €+ - -+ will be absorbed by the MS scheme renormalization parameter (.
These integrals all have 1/&? (double log), and 1/¢ (single log) divergences. The scales that appear
inside each of the logs for the integrated results reflect their origin: the hard logs are a function
of u?/M?, the collinear logs depend on p?/P* ~ u?/(M?A?), the anti-collinear logs depend on
u?/P* ~ u?/(M?*A?), and the ultrasoft logs are a function of u>M?/(P*P*) ~ u?/(M*A*). So
power counting has provided us with a tool to reduce our complicated multi-scale integral into four
pieces that are each functions of their own single characteristic scale. We will see that the EFT
approach will provide a systematic way to introduce multiple renormalization scales, such that no
large logs will remain.”’

To achieve our final result, we can sum the integrals for each of the four regions to yield the
power expanded integrated result

; 2 2 2

I = Iyt Ie+ It I+ O(A) = ﬁ# <10g1‘}{210g1‘;2 + 7;) +O(AY). (448
As expected, no € dependence remains: this original integral is UV finite, and we have regulated
the IR divergences with P2 # 0 and P> # 0. This implies that no explicit factors of u? appear.
Moreover, all the log squared terms from the individual integrals combine through what seems like
a magical conspiracy into the Sudakov double log [108], whose physical origin can be traced to the
soft and collinear divergences discussed in Primer 5 above. While this kind of log reshuffling can
typically be done in one’s head when working with single logs, it is significantly less trivial to see
how everything combines for double logs.

e Exercise: Show that

1 2 Ii 2 N 2 IJ s WPM? M? §
3 <10g —log —log” = + log P22 log 5 log = 77 (4.49)
being careful to track the (obvious) complicating fact:
log2 u— =log? u? +log? M?* —2log u’logM?, (4.50)

with similar expressions for the other double logs.

76From here forward, we will no longer track the difference between u and fi.
771t is worth emphasizing that there is a long history of summing IR logarithms pioneered by [124, 125]. These
calculations rely on RG scale invariance and gauge invariance to derive their RG improved predictions.

74



Effective Field Theory Timothy Cohen

The result in Eq. (4.48) exhibits a double log as a function of a ratio of physical scales, that
can become large in the limit that A < 1. In particular, if we want to compute the NLO matrix
element squared

-9 2 0 .,.@‘T
\MNLo\z =|e-~ | +2Re|e-~ xo- ~:j:’§¢ ~ b?
~~~O‘ ’«~¢ '«~¢

» a*  ,M?

Tamn ¢ pr

4.51)
where we have used that the leading order diagram gives —ib to derive the relative sign between
the tree and one-loop contributions here, we have set P> = P? and have not included the finite
fixed-order terms for brevity. Note that for M? > P?, the second term can overwhelm the first,
and our NLO matrix element squared can become negative! This signals a complete breakdown of
perturbation theory. Note that as opposed to the situation with only UV logs, where the breakdown
of perturbation theory was associated with the presence of a Landau pole (see Eq. (3.64)), here all
couplings are perturbative. Fortunately, these potentially catastrophic large IR logs can be summed
using the EFT approach, and in doing so will result in a manifestly positive LL + NLO amplitude
squared. In this sense, the RG takes a failed expansion and restores the efficacy of perturbative
theory.

Our goal in what follows will be to peel apart the log squared derived in Eq. (4.48) using
matching and running. This will introduce scale dependence such that we can apply RG techniques.
Separating the non-divergent integral into divergent sub-pieces is a key aspect of the EFT trick for
separating scales. As we will see in Sec. 5 below, the soft, collinear, and anti-collinear regions
will each be associated with an independent propagating degree of freedom. These modes make
up SCET, with a corresponding set of Feynman rules and power counting structure that reproduces
the individual integrals in Eq. (4.46), and whose RGEs sum the large Sudakov double log. Before
we move into developing SCET, we will first provide a detailed evaluation of the collinear integral,
#. in Eq. (4.46) above, and then will explore the physics of the massive Sudakov log.

Evaluating the Collinear Sudakov Integral

For the sake of demystifying the results in the previous section, we will show how to evaluate
the .#, integral in Eq. (4.46) explicitly, following Appendix B.2 of [122]. The first step is to
combine denominators using Eq. (3.24):

1 /“’ ” 2
— [ ay / dy . (4.52)
Abiby  Jo 0 [A+b1y1+b2y2}3
Then taking A = ¢, by = ({+ p)?, and by = ii-£n- jp, we have
%_2“2&‘/ dyl/ dy2/<2n)d ] — 5. (4.53)
ool (1) (ortr- 2ttt s iz 2)]

Defining

yipt+Syon- pit

0=+
I+

(4.54)
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we can replace £ — 7 to yield

oo oo dr
S.=2u%* dyl% / dy, / e ! (4.55)
(1 +y1) 0 (

d R 3
0 2m) 7 yi pr+3yan-pit Lo
1+y; 1+y; p

with d = 4 —2¢&. Next, we integrate over 7 using the general result for dim reg given in Eq. (3.17):
> 1 (=1 T(1+e¢)
I, =21% dyl/ dy,
‘ 0 (l—i—yl)3 0 (4m)>= T(3)

201 _ _ —1-¢
yip-t+i3yiy2ii-pn-p V1 2
X 5 ~7 p
(1+y1) e

e [T Can (b )
= - +&€ V1 - V2 +syh-pn-p
(4m)>¢ o (1+y) o 2

i <y2>8 1 T(1+€) I(1—¢)(—¢)

(4m)>—e \ P2 %ﬁ-pn-ﬁ € I'(1-2¢)
2 2\ * I(1+&)(—e)?
T M2 (4m)E (PZ> r(1-2¢) (420

where in the last line, we used that to leading power 71- p = —n- p = M. When this result is expanded
in &, it yields the result given in Eq. (4.47). Notice at an intermediate step, we replaced p*> = —P?
to keep our expressions real for simplicity.

Next, we will provide a Primer to discuss a technique known as zero-bin subtraction, which
is required to ensure that collinear integrals do not receive a contribution from the soft region.

Primer 6. Overlapping Regions and Zero-Bin Subtraction

Recall that when we exposed the collinear divergence of the Sudakov integral in Primer 5
above, we introduced a momentum fraction parameter x and required that it be non-zero to ensure
that we were not simply re-discovering the soft divergence in a complicated way. This notion of
double counting the soft divergence in the limit x — O of the collinear integral is a subtlety to be
wary of when expanding integrals using the method of regions or constructing them directly within
an EFT.

The point is that an EFT is built out of modes with particular momentum scalings. However,
diagrams generically involve loops of these modes and we integrate over all possible momenta,
which violates the fundamental power counting rules of our setup. The reason this approach is not
dead on arrival is that essentially all of these contributions are scaleless so that dim reg sends them
to zero. This is how dim reg does not introduce contributions to an integrated result with spurious
power counting. However, one can encounter a “zero-bin” if there are non-trivial contributions
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that scale differently than the power counting assumed when separating the integrand. In other
words, if there are additional scaleful structures in the IR of a (regulated) integral, these zero-bin
contributions should be subtracted from the result to avoid double counting regions by accident.”®
Managing zero-bins can also be accomplished through a clever choice of regulator that treats the
regions differently, as we will see explicitly in this section.

First we revisit the calculation of the massless Sudakov form factor in the previous section to
explain why we did not discuss the zero-bin then. An approach to identifying if there are over-
lapping regions is to take the collinear integrand and re-expand it assuming the scalings of other
modes that contribute at the desired order in power counting. Inspecting Eq. (4.46), we note that
the p° ( pz) dependence from the collinear (anti-collinear) denominators has been expanded away.
In other words, the ultrasoft integral includes a factor of [(n Aysit-p+p*) (A-bysn-p +ﬁ2)] 71,
which is not recoverable from either collinear integral. We could also re-expand assuming a soft
scaling, and would find only scaleless contributions. Therefore, we could simply evaluate the inte-
grals to derive the correct answer. However, we emphasize that the soft region is always there, and
one must keep track of it to ensure that it only contributes to the final result once.

There is a physical way to understanding why no overlap issues arose in the massless Su-
dakov case. The regions analysis we performed identified that the IR physics could be captured
by collinear regions with virtuality ~ A2 and an ultrasoft region with virtuality ~ A*. These re-
gions are separated by virtuality, and as such they do not overlap (although we caution that one
should take care when applying this type of argument generically). By taking p* # 0 and p* # 0
we ensured that this physical distinction was present in the integrands. However, as we will see in
the next section, the massive Sudakov integral does not have an ultrasoft contribution. It instead
requires the inclusion of a soft region, which scales as £; ~ (A,A,1), such that £2 ~ A2. Further-
more, we will evaluate the massive Sudakov integral with p? = > = 0, so we will find non-trivial
overlaps that must be addressed.

A nice way to capture this effect visually is to sketch the hyperboloids traced by these regions
in the n- £ versus 71- £ plane [126]:

n-¥ n-¥

A
h | \D\h
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M b\ 2~ M2 M O‘ 2 M2
‘\
‘\ S
MM M)\ _ .
MX*|- 2~ M2)2 M| TN 2 M2
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>0 -l >/
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On the left, we have illustrated the regions that contribute to the massless Sudakov case, the rele-
vant EFT is known as SCET]}, while the right figure describes the regions for the massive Sudakov

T8Furthermore, if one were careful to interpret the source of this zero-bin contribution by keeping track of 1 /euv
versus 1/¢gR, they would realize that it is in fact due to an IR divergence and as such does not make sense to treat it as a
UV contribution to an anomalous dimension.
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integral, which yields SCETy. The curves show the variation in rapidity along contours of con-
stant virtuality, and the blue dots show the location of the regions that generate our logarithmic
divergences. The left diagram clearly demonstrates that virtuality does distinguish collinear from
ultrasoft. However, the right diagram illustrates that one can use a Lorentz boost to move from
collinear to soft. This implies that they overlap in virtuality. In order to properly separate them,
we will need to introduce some additional rapidity dependence into our integrals that comes in the
form of a new regulator.

We can see this effect appear mathematically, by noting that the collinear integrand derived in
the next section for the massive Sudakov form factor Eq. (4.63) now includes the soft integrand.
Taking the soft scaling and re-expanding such that £2 — 0 so that £, — £:

1 1 1 1
D)

(4.57)

Crn-den-pi-ben-p n-bsii-pi-bsn-p-

Removing this soft contribution from the collinear integral is known as zero-bin subtraction.
We define the “zero-bin” of the collinear integral as the limit of the denominator of the collinear
integrand that reproduces the soft integrand, as in Eq. (4.57) above:

I — Feo=s, (4.58)

where .7,  is the collinear zero-bin, which is equal to the soft integral in the simplest implementa-
tion of zero-bin subtraction.”” Then to implement the zero-bin subtraction procedure, one simply
removes this double counted piece by hand [126]

I = Iyt (Fe=Teo) + (Ie = Iep) + 5, = Iyt Io+ e S, (4.59)

where the last step is only appropriate when Eq. (4.58) holds.

If possible, it is convenient to chooses a regulator so that the soft limit of the collinear integrand
vanishes, implying that zero-bin subtraction becomes trivial. This is the approach taken in [122]
when they evaluate the massive Sudakov integral. We will instead take a different approach in the
next section, where we will use a rapidity regulator that treats collinear and soft differently and has
the added benefit that it yields a rapidity RG interpretation [127, 128].

4.2 Method of Regions for a Massive Sudakov Integral

Before we introduce the framework of SCET, it is worth working out the regions and subse-
quent leading power result for another process that exhibits a Sudakov double log. The toy model
for this example will require the presence of an additional real scalar state, ), whose mass power
counts® as m% ~ A2, so that the x particle is a propagating mode at energies far below the scale

79Note that in general the soft region of the collinear integrand does not have to precisely yield the soft integral,
since at there can be differences at the integrand level due to the choice of regulator, from including (and subsequently
expanding) a “measurement function” (briefly mentioned in Sec. 6.6 below), and so on. We will encounter this explicitly

in the next section where we use a regulator that treats soft and collinear sectors differently.

2
X

suppressed, i.e., ¥ would be non-propagating at these low scales of interest. If we had taken m% ~ A* or smaller, then
the mass would play no important role, i.e., we would just re-derive the massless Sudakov example.

80Note that if we had instead been working in a parameter space where m2 ~ 1, then this integral would be power
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M. The interacting Lagrangian is

1 1
Lot 5 §b<b¢2+§b%x¢2. (4.60)
Again, we are interested in a process where @ — ¢ ¢ with no extra emissions, such that the relevant
diagram is
o - T ey / e 1 1 L b, (4.61)
S . LG S |
4

-

Next, we can perform a regions analysis of this integral, which will expose the differences
with the massless Sudakov case above. Note that we are taking the same momentum routing as
above in Eq. (4.41): the collinear momentum p is outgoing while the anti-collinear momentum p
is incoming. However, here we will take the external lines to be on-shell p? = p* = 0, since having
m%{ # 0 already ensures that this FULL THEORY integral is IR finite.

o Exercise: Following the same logic that led to Eq. (4.31) and Eq. (4.35), where we demon-
strated that the massless Sudakov integral diverges in both the soft and collinear limits, show
that mfc # 0 regulates the analogous divergences for the massive Sudakov integral.

We consider the following regions:

[hard] & £h~(11 1)
[collinear} c: (

| e 4 ~(1 A% 1)

[soft]  s: £~ (A,4,4). (4.62)

[anti—collinear

As before, we can check that these regions contribute at &'(1). Expanding Eq. (4.61), assuming the
appropriate scalings for each of the relevant loop momenta, yields four integrals:

h: % — fx_/d%hl : 1 o(1)
' h— (27'[)4 ﬁﬁ Eﬁ—i—n%hﬁ-p Eﬁ—i—ﬁéhnﬁ
d*e. 1 1 1
. x X = ¢ ~ 0(1
ci I — S /(271:)4 Eg—m% Ctn-leii-pii-ben-p M
d*e: 1 1 1
TR ﬂ:/ ¢ ~ O(1
¢ — € (2m)* E%—m%n-&;ﬁpﬁngn-ﬁc—ﬁ'ﬁ (1)
oot = = S L~ o) (4.63)
: 27r4€2—m2n€npn€np ' '

As promised, the soft region contributes at leading power.
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Since it contributed for the massless Sudakov case, it is worthwhile to check what happens for
the ultrasoft scaling £, ~ (lz,lz, 12):

d*e,, —1 1 1

(2m)* m%( n-lysii-pii-bysn-p

us: I —  gX= / ~ 0(A?), (4.64)
where we have used that m% ~ A2. This demonstrates that the ultrasoft region makes a sub-leading
power contribution (and in fact, this integral can be shown to be zero, see [122]).

Before we get to the solution and interpretation of these integrals, there are a few interesting
features that are worth highlighting. Naively, one might have thought that the soft and collinear lim-
its would be universal, especially given the similarity between Eq. (4.40) and Eq. (4.61). However,
we have now shown that the IR of the massive Sudakov integral has a different regions expansion
when compared to the massless Sudakov integral. This will imply that the EFT one must use to
separate scales and sum depends on the observable! As mentioned in Primer 6, the most common
versions of SCET are known as SCET} and SCETy;. However, when sufficiently complicated situ-
ations are encountered, the reader is cautioned that modes beyond the (anti-)collinear, soft, and/or
ultrasoft could be required, see Sec. 6.6 below which includes a list of possibilities. This justi-
fies why have been pedantic about specifying a process when matching throughout these lectures:
when working out a new example, one cannot blindly assume the same IR description holds for
any observable, and instead must be careful to ensure that the correct EFT is being utilized that
captures the full richness of the IR.

Next, we recall from Primer 6 on zero-bin subtraction that this issue was a concern for the
massive Sudakov integral. In particular, we have a physical process for which collinear, anti-
collinear, and soft all contribute, and all three of these modes have the same virtuality. We must
therefore be careful to account for overlapping regions so that we avoid double counting when
evaluating the integrals. To find the zero-bin of the collinear integral, we must re-expand it now
assuming soft scaling for its momentum /. o ~ (A,A,1), implying 53,0 ~ A2 such thatii-leon-p ~
A. The collinear zero-bin integral is then

d*o 1 1 1
g _ / ¢ = g, 4.65
c0 Q2m)* L2y —mE n-Leofi-p ii-Leon-p ! (09
where in the last equality we have made the identification with the soft integral from Eq. (4.63)
above.

In order to understand the properties of this soft integral in more detail, we can integrate over
£, using dim reg [127, 128]

1 1
n-l+i0a-L+i0"

X ~ / (dn-£) (di-£) (n-07i-€—m3) " (4.66)
This partially integrated result exposes two features. First, the integral only receives a non-trivial
contribution for regions where n- (7 - £ ~ mfc; otherwise the integral is scaleless and hence vanishes.
Second, there are spurious divergences that are not regulated by dim reg when either n-£ — 0 or
nn-£ — 0. These two divergences correspond to where the soft integral overlaps with the collinear
or anti-collinear regions. This implies that we need an additional regulator beyond dim reg, namely
a rapidity regulator, to extract the physical prediction of the massive Sudakov process.
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We now turn to the explicit evaluation of the integrals in Eq. (4.63). As we have already
emphasized, we must be careful not to double count the soft region. Additionally, we need to
regulate the associated rapidity divergences discussed below Eq. (4.66). To this end, we will use
the rapidity regulator introduced in [127, 128], so that our integrals now take the form (the hard
integral is left unchanged):®!

e |a-m 1 1 1
2m)d v Ez—m%€2+n-€ﬁ-pﬁ-€n-ﬁ

c: I — JLX:/(

i |n-m 1 1 1
2m)d v 2 —mEn-di-p P+n-Li-p

9}

= [

dle 26572 1 1 1
2m)d vn/2 2 —mE n-di-pi-fn-p’

s I f]:/( (4.67)

where /3 is the z-component of the loop momentum, 1 is the rapidity regulator parameter (anal-
ogous to € in dim reg), and Vv is a dimensionful parameter that must be introduced to absorb the
change in mass dimension of the integrals (analogous to u in dim reg). Now the integrals will
diverge in both the € — 0 and 7 — 0 limits, but it is critical that the order of limits be taken so that
n/€" — 0 for all n > 0. This will ensure that the soft and collinear limits are taken along the same
mass hyperbola as they are separated in rapidity by the presence of 17 # 0.

For the (anti-)collinear integral, the rapidity regulator effectively acts as a slight deformation
of the exponent for the propagator factor 7i- ¢ (n-¢). From the partially integrated form of the
collinear zero-bin in Eq. (4.66), we see that this deformation eliminates the simple pole at 72 - £.
It is now possible to choose a contour that does not enclose any poles, thereby eliminating the
zero-bin. The form of the regulator for the soft integral can be understood physically through
identifying 2 /3 = n-£ —7i- . Then this has exactly the right form to eliminate the divergence from
the collinear/anti-collinear limits of this integral. Explicit evaluation yields [127, 128]

T'(e S S IO TE R 2 v 11
—iﬂf—”(‘i) +5s5 log‘uzlog_+log‘u2+<1+log_>+1 -
| my Aep my € n-p |

I(e o0 [owr v 2 v 1
—igr = (&) (“) +-= logu—zlog—_+logu <1+log_>—|—1 -
my Tn-p n-p

872n \my 872 e e | 48
I'(e) <u >28 1 [1 [T B TE R B TC IV B B
—iIf=— — — |=log— +zlog"— —zlog—5log—+—=| ——.
4m2n \my 8m? | € 22 22 2 2 e 96
(4.68)

81This same integral was analyzed in [122], where they instead used a so-called “analytic regulator” [129, 130, 131].
The essential idea of their approach is to pick one of the internal propagators and to deform it in all the relevant diagrams
by changing its exponent slightly, e.g. (£ — p)~2 — (£ — p)~2(+®)_ This approach yields .7, = 0, thereby avoiding the
zero-bin subtraction issues in a different way.
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Adding these three together, we arrive at the IR contribution to .7 %,
Ik =9 g = gX+ FE+ X

(2 I T D TE ) 5
=— |+ -log— L
Ry 2 82+8 gM2Jr Jr2 %

u my M2 5i
+ 4 1 +1| - = 4.69
2ogu og- 7 ) 9% (4.69)

where we have replaced /i- p = —n- j = M. A Sudakov factor log? u? /mgzc appears as expected.
Note that there is explicit 4 dependence because we are only computing the contributions to the
integral from the IR, i.e., we are not including the hard region integral, which would provide a
compensating log squared of (/M. In contrast, note that all v dependence has canceled in this
combination as it had to since the rapidity divergence is an artifact of our choice to separate the
total IR integral into soft and collinear.

o Exercise: Evaluate the integrals in Eq. (4.67) to derive Eq. (4.68). You may find it useful
to restore the “i0” factors, and then for the soft (collinear) do the ¢° (n- /) integral using
contours first. Note that sending p <+ 5 and n < 7 within ZZ returns ﬂc-x, so no additional
evaluation is required. Then sum IX + JC-X + 7% to derive Eq. (4.69).

We repeat again for emphasis that we have summed the three IR integrals instead of applying
the zero-bin corrected formula Eq. (4.59) above. This is justified by the discussion above Eq. (4.68),
where we explained how the rapidity regulator eliminated the zero-bin from the collinear integrals,
while still allowing for a non-zero soft contribution. Note that there is a subleading log u?/ mjzc term
that is multiplied by a large log M?/ mfc This is a “rapidity logarithm” and looking at the individual
expressions above Eq. (4.68), we see that the rapidity scale v separates the scales inside this log.
This allows one to write down a rapidity RG that governs the evolution of Wilson coefficients as a
function of v, thereby summing these subleading logarithms [127, 128].

This completes our discussion of the massive Sudakov integral — for the rest of these lectures
we will only concern ourselves with the massless Sudakov case. Our focus for the next section will
be to introduce an EFT of the soft and collinear modes that allows us to sum Sudakov logarithms.
Since we will only sum the leading double logarithm, we will ignore issues of rapidity renormal-
ization for the rest of these lectures (other than a brief mention in Primer 7 below). Next, we will
set up a scalar version of SCET and will use it to derive a set of RGEs that sum the double logs
appearing in Eq. (4.48).

5. Toying Around with Soft Collinear Effective Theory

We have now explored the IR structure of field theory in the presence of light-like external
interacting particles by analyzing various leading power regions of two example integrals. In addi-
tion, this exposed the presence of potentially large double logarithms, whose argument is a function
of only physical scales. In this section, we will introduce an EFT — a Soft Collinear Effective The-
ory (SCET) — whose degrees of freedom capture the IR divergence structure of a wide class of
FULL THEORY processes. As with all EFTs, it is critical to find the appropriate propagating states
along with their transformation rules under the symmetries that persist to low energies. Then by

82



Effective Field Theory Timothy Cohen

tracking power counting, we can organize the allowed operators.®> We will show how SCET allows
us to match and run, thereby separating scales and systematically summing the Sudakov double log
and its subleading counterparts.

In this section, we will explore many features of SCET using a toy scalar model.3* In particu-
lar, we will show how one can sum the massless Sudakov double log that was derived in Eq. (4.48).
Some differences will emerge when lifting these techniques to gauge theory, as will be discussed
Sec. 6 below.

Our first task is to discuss how the FULL THEORY IR logs of interest can be recast as UV logs
for SCET. This is critical to understanding how RG techniques (a UV phenomena) can be applied
to sum the Sudakov double log (that results from dynamics in the IR).

5.1 Mapping IR Logs to UV Logs

There are many non-trivial differences between SCET and the Lorentz preserving EFTs we
have studied so far. As we were reminded in Primer 3, RG techniques emerge due to UV diver-
gences, whose regulation introduces a spurious scale . It is the requirement that physical observ-
ables be u-independent, which yields the RGEs. Therefore, the first question we must address is
how it is logically possible to sum IR logs using an RG formalism. This will yield an interest-
ing insight into the EFT approach since the principles discussed here were also at work above.
Since a full understanding of this subtlety was not really required there, we chose to postpone the
discussion until now.

The use of EFTs to sum logs relies on the fact that the IR of the two descriptions is equiva-
lent. One way of thinking about this is to zoom in on a given scale. From this vantage point, all
other scales can be organize as either contributing to UV or IR divergences. We absorb the UV
dependence into Wilson coefficients through the renormalization procedure, and IR divergences
must cancel by unitarity arguments since we are not resolving the IR by assumption. As a result,
when we take a log that depends on a ratio of two physical scales (generalized to include regulating
scales) and pull it apart into two pieces, the IR log with respect to zooming in on a high scale is
necessarily matched with a UV log with respect to zooming in on a low scale. Again we emphasize
that the UV theory does not have IR divergences, but it can generate the large logs we are trying to
pull apart.

Said another way, in the high energy limit, it should be a very good approximation to take all
the light states to be massless, since we should not be sensitive to the specific features of the IR.
This manifests mathematically in the statement that the matching coefficients must be analytic as
one takes the light scales to zero. On the other hand, the IR description does rely on the detailed
properties of the light modes, but is only sensitive to the UV through matching. The matching
procedure trades the IR divergences of the FULL THEORY (which emerge when the light scales

82For a recent discussion of power counting and higher power operators in SCET applied to the QCD observable
thrust, see [132].

83What follows was heavily inspired by [122], where scalar SCET was written down and many aspects of what
appears below were explained. They worked out the summation for scalar SCET in 6 dimensions, while here we will
provide the RG analysis for a 4 dimensional example. The summation of the Sudakov double logs for ¢ theory in 4 and
6 dimensions is also discussed in the earlier review of Sudakov form factors [133].
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are taken to zero), to the UV divergences of the EFT.3* From the EFT perspective, the logs of
interest are now due to UV dynamics, so that we can apply RG techniques to run the theory to long
distances.

To see how this story plays out mathematically, take a simple IR divergent integral®

| 1
dx— = —. (3.1
//\IR X Ar
Our goal is to map this mock IR divergence to a UV divergence. To do so, break the integral into
two parts using a cutoff Ayy

Auv oo
dxler dx12:<11)+(1) . (5.2)
AR X Awy X AR Auv Ayy
We see that Ayy tracks the IR divergence structure of the full integral. This is exactly what we are
doing when we match and run: we introduce a convenient intermediate cutoff — the matching scale
— which allows us to peel apart the logarithm of interest into a UV and IR contribution. Since the
arguments of our logarithms must always be dimensionless, this procedure necessitates introducing
a spurious scale — the RG scale pt — which can then be leveraged to derive RGEs.

Now that we have a general sense of how SCET can be used to sum IR logs, we turn to setting
up the structure of the EFT. Our focus is on summing the leading Sudakov double log, and as such
we will specialize to the EFT for that process, although many of the features that appear in what
follows generalize.

5.2 Identifying the Modes

Our FULL THEORY process of interest is ® — ¢ ¢, which yields a massless Sudakov double
log, see Eq. (4.40). In order to write down the relevant EFT, we need to identify the degrees of
freedom that model the soft and collinear IR limits of the FULL THEORY. From a Wilsonian point
of view, we want to integrate out the hard momentum shells of our FULL THEORY field ¢, and
leave behind two types of independent propagating modes, one to capture each of the two types of
IR divergences. For our @ — ¢ ¢ process, the physical picture takes the schematic form:

L

S|

where the blue dot in the center is our hard annihilation process (the decay of the heavy state @),
which will be modeled as a local interaction in the EFT, the purple cones are collinear and anti-
collinear degrees of freedom, which are localized close to the n* and 7" directions respectively

84This was the first to noticed in the study of summing the large logarithms that appear for cusped Wilson lines in
gauge theory [134]. See Sec. 6.5 below for more discussion.
85For a more detailed toy example, see Sec. 5.8 of [64].
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(where “close” is determined by our power counting parameter as we will see below), and the
green lines represent isotropic (ultra)soft radiation, which has no preferred direction but whose
momentum is restricted by our power counting parameter. Depending on the physics one is inter-
ested in modeling, additional modes may be required. Identifying the modes is non-trivial, and in
fact the first attempts at an SCET-like theory [135] missed the need for soft modes. Here, we will
largely focus on the massless Sudakov process, so we will restrict our discussion to the appropri-
ate three modes. Note that we will treat them as independent propagating states since p> scales
homogeneously in power counting for each.

From a more mathematical point of view, what we are trying to do is develop a field the-
ory whose diagrammatic structure will reproduce the sum of integrals we derived in our regions
analysis above, Eq. (4.46), and which of course generalizes to higher order in the loop and power
counting expansions. Unsurprisingly, this requires a propagating mode®® whose associated mo-
mentum scales according to each of the on-shell regions that contribute:

[collinear]| O : pe ~ (lz,l,l)
[anti—collinear] Oz : ps ~ (1,2,2,)1)
[ultrasoft] Bus: pus~ (A%, A%,17). (5.3)

In order to construct a Lagrangian for these modes, one can start from the FULL THEORY and
expand the fields in terms of the SCET modes as®’

¢ (x) = Pc(x) + Pz (x) + Pus (x) - (5.4

Using power counting to expand the structure of the interactions allows us to determine a hierarchy
that organizes the allowed operators. This relies on deriving the power counting for the SCET
fields, which is the topic of the next section.

5.3 Power Counting for SCET Fields

In this section, we will derive the power counting for the propagating degrees of freedom in
scalar SCET, as was first done for QCD in [137]. In exact analogy with our relativistic example,
see Sec. 2.3 above, we enforce that the propagation of the dynamical fields is not power suppressed
— the power counting must be chosen so that the contribution to the action from the kinetic term
scales as O'(1):

/ dﬁ%a#(pcm(x) ez s (x) ~ O(1). (5.5)

86 There is an intriguing recent proposal for constructing SCET without performing this mode expansion [136].
Instead, they model the dynamics of each jet in a given process as a copy of QCD that is not able to resolve the detailed
structure of the other jets in the event — from the point of view of one of these QCD theories, the other jets are simply
Wilson lines (see Primer 7 and Sec. 6.2 below). Then the presence of ultrasoft modes and the related issues of zero-bin
subtraction manifest as an “overlap subtraction” that avoids the double counting that occurs when shifting between the
points of view of the different QCD copies.

87This assumes we have already expanded the UV modes of ¢ and have subsequently integrated them out.

85



Effective Field Theory Timothy Cohen

First, we assume collinear scaling for the momentum of our field. Then we can infer the required
scaling of x by enforcing that the exponent of the Fourier transform kernel is scaleless:

1 1
x-pC:En-xﬁ'pc+§ﬁ-xn~pc+)@-pal ~ 0(1), (5.6)
which is satisfied if
1 i ! ! (5.7
n-x ~ n-x~ — ~ = .
A2 LT

such that

1 .
d*x = (dn-x)(dii-x) (d*x,) ~ o [collinear] . (5.8)
Since the collinear virtuality is 9% ~ p? ~ A2, consistency with Eq. (5.5) requires ¢.(x) ~ A. Simply
swapping n < 7 in the previous derivation, we can deduce that d*x ~ A ~* for an anti-collinear
mode, implying that ¢z(x) ~ A as well.

Finally, we perform the same analysis for the ultrasoft mode. Since it scales homogeneously

in spacetime, each component of x ~ A =2 so that

1

4
deﬁ

[ultrasoft] , 5.9)
implying that ¢,s(x) ~ A2. To summarize
Oc(x) ~ A 0z(x) ~ A Ous(x) ~ A%, (5.10)

When we perform this analysis for gauge fields below, it will be more convenient to extract
the power counting of the fields from the Feynman propagator directly. Therefore, we will quickly
demonstrate how to find the power counting from this point of view. The time ordered two-point
function for the free field is given by (see Eq. (2.6) above)

d'p i ()
<0\T¢o(x>¢o(y>!0>=/(2n)4 p2_m2+i0e”’ . (5.11)

If the momentum is collinear, d*p. ~ A* and p? ~ A2, implying that the fields must scale as @, (x) ~
A for consistency. Similarly, if the momentum is ultrasoft, then d*p,; ~ A% and ph o~ 22, and so
Ous(x) ~ A2,

In the next section we will use the naive expansion in Eq. (5.4), augmented by the field power
counting we have just determined, to derive the interaction structure of SCET from our FULL
THEORY Lagrangian.

5.4 Interactions in Position Space: the Multipole Expansion

Our power counting choice implies that summing the two point function into the propagator
is self-consistent. We can follow the same logic to infer the power counting for the interactions
and local operators. First, we will show how to power count interactions in position space. This
will expose a subtlety that arrises when considering collinear-ultrasoft interactions. In the next
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section, we will show how to account for the same effects directly in momentum space, which has
the benefit that the origin of the resulting Feynman rules will be more transparent.

The first step is to determine what interactions are allowed within the confines of our EFT. In
particular, our EFT fields can exchange momentum amongst themselves, and so we must ensure
that these exchanges do not change the nature of a field. For example, a collinear field could in
principle transfer a large amount of momentum to an ultrasoft field, violating the assumed ultrasoft
momentum scaling in Eq. (5.3).

Starting with the FULL THEORY in position space, we expand in terms of our SCET fields at
the matching scale:

a a
Lt D ?‘])3 = 5 (¢c+¢5+¢us)3

= 5 (00402405 +3020c+30.97
302 0ut30: 025+ 302 030025 +6 009 s ) (5.12)

Note that the coefficients of each term are only equal to a at the high scale, and running within
the EFT will cause these to deviate from each other — each interaction must be given its own
independent coefficient when we write the final form of the EFT below, see Eq. (5.20).

Power counting can be used to check if the momentum sum at the vertex is consistent with
the assumed momentum scalings within the EFT. This is done by comparing the power counting
of each momentum component for all the states that are involved in the interaction. The rule is
that there should be two (or more) contributions in each momentum component at the highest order
in A. For example, if p; ~ (1,A% 1) and p> ~ (A%,A2,A%), then p; + p, ~ (1,A% 1), which is
clearly non-zero. The interpretation is that momentum conservation is not possible in this case. On
the other hand, if p; ~ (l,lz,l) and p; ~ (l,lz,l), then p; + py ~ (0,0,0), which is simply a
propagating collinear line.

We start by checking the self-interaction terms, which yield

p1 N( 7171) PIN(I A’Z ) p1 N( l27A'2)
~ (A%, 1,A 1,LAZ, A ~ (A2,A2%,22

‘Pg: P (2 ) ¢533 ( 2 2 ) %353 P (2 2 2)- (5.13)
p3~ (A% 1LA)° p3~(17t A)° p3 ~ (A%,A%,A%)

Epi ~ (07070) Epi’\“ (0,0,0) Z ~ (07070)

So we see that SCET fields inherit cubic self interactions. Next, we can check interactions between
collinear and ultrasoft:®3

p1~ (A% 1,2)
02u: pr~(A214)  ~ 7 (#%1.2) ~ > pi~(0,0,0), (5.14)
c ) (12 1’2 Az) P2~ ()LZ’I’A
3~ ) )

88Note that one of the consequences of breaking Lorentz invariance by working in an explicit frame is that crossing
symmetry no longer holds. So technically, one should specify which momenta are incoming/outgoing when performing
this kind of analysis. For example, p. — p. + pus is allowed, while p. + p. — pus violates EFT momentum conservation.
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and the same holds for ¢ ¢,;. In the second step, we used the fact that the ultrasoft momentum does
not change the power counting of the collinear fields, so we expanded it away. These interactions
are allowed within the EFT, and the interpretation is that the direction of a collinear particle is
unchanged when it interacts with an ultrasoft field.

Next, we can check some interactions that violate momentum conservation:

p1 ~ (A% 1,1)
029c: pa ~ (A% 1,1) ~ (1,0,0) » (0,0,0). (5.15)
p3 ~ (1,A%1)

A similar analysis shows that ¢, ¢§ and ¢, @; ¢,,; also violate momentum conservation. This conclu-
sion is intuitive — an anti-collinear field has a large component of momentum that has the capacity
to change the direction of the collinear field outside the range modeled within the EFT. Therefore,
this interaction should not be included. We conclude that our EFT interaction Lagrangian only
includes terms schematically of the form

1
ZISEET = ? (ac ¢¢3 +ag ¢E3 +ays ¢u3v +3aus (Pcz Ous + 3 ags (PEZ (PMS) . (5.16)

Consistently power counting the interactions requires one additional step, as was first devel-
oped in [138, 139]. In position space, we begin with a multipole expansion for the field ¢ (x). For
example, expanding about the 7i - x direction,

¢(x)=¢(7-x) —HCL'(?L(])(ﬁ-x)—I—%n-xﬁ'atp(ﬁ-x)+%(xl-8L)2¢(ﬁ-x)—|—---. (5.17)

This will be relevant for interactions involving a collinear line that points in the n* direction.

We want to explore the implications for the ¢ ¢, interaction. Given the multipole expansion
of the collinear field ¢., we can power count each term using the scalings in Eq. (5.7) that are
relevant when position is conjugate to collinear momentum:

Oc(1-x) ~ A

xL-(?J_(])C(ﬁ-x) ~ %XAX& =2

%n-xﬁ-aq)c(ﬁ-x) ~1IxA =21
1 > 1 ?
5(xl-aL) Pe(i-x) ~ <)L><A> xA = A, (5.18)
so we see that all the multipole expanded components have the same scaling, and therefore we
should sum the expanded field back into the full field ¢.(x), which is what appears in the interaction
Lagrangian below.%

Next, we specialize to the ultrasoft field. We again power count using the scalings given in
Eq. (5.7) that are relevant when position is conjugate to collinear momentum, since the collinear

89This conclusion could have been anticipated by noting that the collinear scaling for position was derived by requir-
ing x- p. ~ O(1), and we are applying spatial derivatives to the collinear field.
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field dominates the momentum flowing through the vertex:
Dus (ﬁ -)C) ~ A?
1
= xArxAr =23
A
1
En-xﬁ-(?(j)us(ﬁ-x) ~ 1xAZxA2 = A4

XL 8j_¢us (

S
=
SN—
2

2
%(xL.al)Z%S(ﬁ-x) ~ Gxﬂ) xA* = AL (5.19)

This implies that when the ultrasoft field is multipole expanded about the collinear direction, it
organizes itself as a hierarchal expansion in A. In particular, the leading order contribution is given
by ¢,5(7-x), and so we should drop the higher order terms when constructing the leading power
Lagrangian. Similarly, expanding ¢, around the anti-collinear direction shows that only ¢,(n - x)
contributes at leading power. There is an intuitive way to understand what this multipole analysis
is accomplishing. The ultrasoft fields are restricted to only have long wavelength fluctuations, and
as such they are unable to resolve any of the transverse structure of the collinear sector(s). All they
can see is the collinear particle’s world line, so that is the only nontrivial position dependence that
can appear in the interactions involving the ultrasoft fields.

To summarize, expanding to leading power and keeping track of the arguments of the fields
yields the resulting interactions:

3T = 5 (40020 +  02(3) + a4, 04)
43y 02 (%) Bus (71 %) + 3 azs 02 (x) Pus (1 -x)) : (5.20)

which includes both super-leading power interactions, ¢72, ¢, and®® ¢, and leading power inter-
actions ¢ ¢,; and ¢2 ¢,;. We will see a non-trivial interplay between the power counting of these
interactions against that of the local operators when we sum the Sudakov double log below.

This position space multipole expanded result ensures that only the n - p,; components of the
ultrasoft momenta are added to collinear momenta in momentum space interactions. This appears
as an apparent non-conservation of momentum when Fourier transforming the interaction. Since
we are ultimately interested in momentum space Feynman rules, the next section is devoted to
the so-called label formalism, which is an alternative way to capture the impact of the multipole
expansion.

5.5 Interactions in Momentum Space: the Label Formalism

In this section, we will derive the form of momentum space SCET interactions more directly,
utilizing the so-called label formalism [140, 141]. This approach allows one to implement the
multipole expansion by applying power counting to the momenta that flow through the Feynman
diagrams directly by separating the “large” component of momentum from the “small” compo-
nent. The hard background process determines the large component, while the fluctuations within

9ONote that ¢M3S ~ A% is super-leading power since in this case one should use the scaling of J d*x~1 / A8 appropriate
for ultrasoft, see Eq. (5.9).
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the EFT are governed by the small component, see e.g. Fig. 5 of [142] for an illustration of this
separation.
We begin with the Fourier transform of the EFT field

d(p) = / d*xe'7* §(x), (5.21)

where @ (x) is the position space EFT field, and ¢(p) is the momentum space EFT field.

For concreteness, we will focus on the interaction between two collinear fields and an ultrasoft
field. This example is interesting since it is non-trivially modified by power counting as we saw in
the previous section. Furthermore, we will need it for our massless Sudakov example below. Given
a momentum p, we separate it into a large “label” momentum p; and a small “residual” momentum

P
P =pl 4+t (5.22)

The scaling of the residual momentum is always chosen to be the softest scale. For our example,
this is p, ~ ()Lz, A2, 12). This can then be used to derive the scaling for the label momentum that
is appropriate for a given interaction. Taking the example ¢? ¢, the label and residual momentum
scalings for a collinear field are

pL‘.,L ~ (07 172’)

Per~ (A%, A%,17), (5.23)
while for an ultrasoft field,

puS,L ~ (07 Oa O)

Pusr ~ (A%, A%, A%). (5.24)

Then an integral over collinear momentum, including an contributions from both the large and
residual components, is given by

/ d*pe — > / d*pes, (5.25)

p('.L#O

where we have excluded the bin where the label momentum goes to zero, since this corresponds to
the ultrasoft region and we want to avoid double counting.’! An integral over ultrasoft momentum
is simply given by

/‘d4pus — /d4pus7r- (526)

91This is in principle how we would like to formulate the EFT. In practice, when extending the integration ranges
to the full loop momentum space (so that we can simply apply dim reg), one must be careful not to double count any
regions, see the discussion of zero-bin subtraction in Primer 6.
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We can use these definitions to trade our field’s explicit label dependence for a sum over many
fields that are now labeled by their large momentum p;. This can be done using a field redefinition:

d4pr
=Y e / G () = S e, (1) (5.27)

pL#0 pL#0

which decomposes our momentum space field as promised, since now our degree of freedom only
depends on the residual fluctuations within the EFT.

In order to access the label of a field, it is useful to define the label momentum operator @u’
whose action is

‘@H ¢PL (x) = PLu ¢PL (x) . (5~28)

To see the implications of Eq. (5.27), we can Fourier transform a labeled field. Noting that it is p,
that appears in the transform, we have

d*p, .-
¢PL(X):/(25)46 P ¢PL(pI‘)' (5.29)

This implies that label and residual momentum are separately conserved:
/d4xei(”L_qL)'x ePr=ax — amy* s, . 8*(pr—qr). (5.30)

Conservation of label momentum has a variety of consequences:

i) Emitting ultrasoft modes from (anti-)collinear modes leaves the (anti-)collinear labels un-
changed.

ii) Interactions among collinear fields changes labels.

iii) Collinear and ultrasoft interactions preserve the direction n; only a hard scattering process
(which takes us outside the EFT description) can change the direction .

Now the point of this formalism should be clear. The labels provide a self consistent way to
power count momenta that flow through EFT Feynman diagrams. Taking the collinear field (see
Eq. (5.23) for the scalings) as an example, we see that Eq. (5.29) implies that

n-gz(j)C,pL(x
PO py (%) ~ A0 e p, (%)
P ue,p(X) ~ Ae,p, (x)

O P, p (X) ~ A% P p, (x). (5.31)

This is how the label formalism encodes power counting of derivatives within the momentum space
version of the EFT.
Now that we understand the mechanics, it is useful to simplify the notation. Utilizing the &

) ~
)
)
)

operator, we can now rewrite

o) =D e, ()=e Ty 0 )=o), (5.32)

pL#0 pL#0
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where in the last step we have defined ¢ (x) = > ¢,, (x). In other words, the &7 operator allows
us to take the label dependence outside of the sum. One consequence of this manipulation is that
products of fields behave simply as

P(0)d(x) =" (9(x)9(x)) (5.33)
where the label operator acts on both fields within the parenthesis. Conservation of label momen-
tum is encoded in this overall phase factor, which has no impact on the squared amplitude. Hence,
we will drop the labels from here forward since there is no reason to make the labels explicit — their
only impact on the physics is to determine which components of momentum flow through an EFT
vertex.

Finally, we return to our EFT interaction of interest ¢2 ¢,;. By separating into label and resid-
ual momentum using Eq. (5.23) and Eq. (5.24), we see that the collinear label is unchanged by the
ultrasoft exchange. Therefore, the EFT vertex is

(pc,LapCﬂ“) (pC,L> De,r + pus)
ch - = - DO = - ch
.T(o Pus) ) (5.34)

Pus

where the momentum flow is labeled explicitly. There is an analogous derivation for the interaction
02 ¢,s. Practically, this allows us to track the residual momentum flow through the propagators that
connect to this vertex. We will make this explicit when we compute the one-loop diagrams for the
Sudakov process in Sec. 5.7 below.

Now that we understand the SCET degrees of freedom and their interactions, we turn to a
discussion of the local operator structure relevant for our massless Sudakov example. These con-
tact operators encode the physics at the hard scale and provide a mechanism for injecting large
momentum into the EFT.

5.6 Local Operators and the Sudakov Process

We need a portal that can inject a large source of energy and momentum into our EFT. This can
by modeled through the inclusion of what are usually referred to as local operators or contact op-
erators: products of EFT fields and external current sources evaluated at a single (local) spacetime
point. Physically, a local operator is an interaction whose detailed structure cannot be resolved by
the low energy degrees of freedom. Each local operator has a coupling, i.e., the Wilson coefficient,
whose size is determined by a matching calculation at the hard scale. Then summation of large
logs is accomplished by RG evolving these coefficients from the UV to the IR. This will separate
scales in exact analogy with the examples studied above. Although much of what follows will be
specific to our goal of summing the massless Sudakov logs, we will emphasize the general lessons
as they appear.

We can determine the local operator structure and hierarchy within the EFT using symmetries
and power counting. Note that a collinear field can be multiplied by a factor of (- d)/ for any
choice of j since this derivative power counts as ¢'(1). In position space, this implies that the
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tower of operators can be summed into a translation along the collinear direction via the Taylor
expansion:
— (7 e (x) = ¢ (x+17) . (5.35)
Jj=0 J

Therefore, our “local” operators in the EFT should be built out of these extended fields, and we
must include an integral over the affine parameter + when constructing operators. We will see this
manifest in momentum space through the momentum dependence of our Feynman rules, which is
straightforward to derive with a matching calculation.

For our Sudakov process, we want a current that generates two hard back-to-back particles,
i.e., it couples to a collinear and an anti-collinear field. A simple way to model this process is to
imagine that there is a heavy scalar & that decays into our light scalars ¢. We can then perform a
matching calculation starting with our FULL THEORY interaction

b
Q%EtULL — 5(I)¢)2 — — . (5.36)

Aocal D / drdf Cy(,1,7) J (x) 9 (x+171) ¢e(x+7n) — ‘: . (5.37)

where Co(u,t,7 ) is the Wilson coefficient, which is explicitly a function of the RG scale u and
additionally captures the possible dependence on ¢, f (which will manifest as non-trivial momentum
dependence in the Wilson coefficient), and J(x) is a static background source, whose role is to inject
M of energy into the light system (the blue dot in the Feynman rule).

Given our process, we can match the FULL THEORY given in Eq. (5.36) onto the two particle
local operator in the momentum space EFT given in Eq. (5.37). This requires the straightforward
comparison of tree-level amplitudes:

- = = | = Co(um) =b(um) =Co(um), (5.38)

where the identification between C, and C; is trivial since there is no kinematic dependence.

92Here we first encounter the fact that Wilson coefficients can also be functions of kinematics. We are introducing
the notation C to specify that it includes kinematic information. This will be contrast with our use of C below, which is
the non-kinematic part of the Wilson coefficient.
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Next, we compute one-loop corrections to the matching coefficient within the EFT. This will
require a pair of higher power local operators:

gLocalD/dtl /dl‘z/dt_(C3(u,tl,l2,f)J(x)(])C(x—f—l‘lﬁ) ¢C(x+t2ﬁ) (])g(x—i-t_n)

+/dt/dl_1 /dszg(u,t,t’l,fz)l(x)q)c(ertﬁ) q)c-(x-i-f]n) ¢5(x+f2n)

== & + @.. ) (5.39)

where, similar to Eq. (5.37), C; and C5 are Wilson coefficients, which can also include momentum
dependence.”?

From here forward, we will work in momentum space. The impact of the ¢ integrals on Cj
will yield an expansion in terms of inverse derivatives in the “large” momentum direction. There is
a connection to Wilson lines that will be made in Sec. 6 below, where we discuss how to promote
¢ to a gauge boson. Note that one of the idiosyncrasies of scalar SCET (in four dimensions) is
that our coupling ¢? is super-leading power. This will imply that we will need a term in our local
operator expansion that is higher order in power counting to capture the full physics of the massless
Sudakov process at one-loop order. Then the power counting of the diagram involving an insertion
of this sub-leading power operator will be reduced by the super-leading power counting of ¢2,
see Sec. 5.7 where this is made explicit. This is in contrast with the QCD case where the gauge
coupling is marginal. Furthermore, when we move to QCD, we will find that an analogous analysis
will lead us to include Wilson lines in our local operators. Said another way, one feature that makes
our toy theory non-QCD like is that the coupling expansion is tied to the power expansion.

To derive C3, we can again match at tree-level. We power expand and keep only leading power

contributions.
R ¢ . QZS J qsc R4 ¢C
@ &‘: @ ¢"' O‘s ":“’ ¢C
P o+ 2 - & e+ & . (540)
. \‘/ \\ ~~~
% o ™ e " e
Then noting that

RO VEEN (5.41)

9The position space form of these operators is given in Eq. (3.31) of [122]; since we will be able to extract the
momentum space form of C3 directly, we will not include the position space formulas here.
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we can simply compute the matching coefficient by equating

’ P . ¢C
o pl/} . 1 be X |
o= &% = ab =ab =C;s. 5.42
p 0= patpr Chpmp o O
PR P e
So we see that our the Wilson coefficient at the high scale is
1 1
Cs =a b —— =G ) (5.43)
(kar) = a(ptnr) b (ki) 7 = Ca(tar) 5=

at the high scale where we match the FULL THEORY to the EFT, and we have defined Cs as the
non-kinematic part of the Wilson coefficient.

Next, we can perform a similar matching calculation for the diagram with a single collinear
and two anti-collinear emissions:

@ @ e  Pe

. .
’ .
.
¢' 4 . L4
k4 LR Y . .
. 4 -~ . .
. . — _ 5.44
. +
—_— ¢ - = QS — . . ¢C ‘“. . ( .
- L4 .~ . .-~
. k4 M L3R4 Y
. e . . S (b
. —
¢ . . e (&

~~~ ¢ .. ¢ . QSE N QSE
Following the same argument as in Eq. (5.41), we have

p/i,¢ p "¢C

.
.

o . 1 1 _
— =g = e, —  ab =ab =Cs, 5.45
N . Corpr Capnm 64
g e
where again matching yields
_ — 1
s(kar) = a(pnn) blpe) o = Caluw) o — (

These are independent local operators, so we will run their Wilson coefficients separately. This
is another difference from SCET with gauge bosons, where these coefficients will be related to each
other though the enforcement of gauge invariance. Practically, this will manifest as the appearance
of Wilson lines in the QCD local operators. Then we will interpret the Wilson lines as summing
the tower of operators generated by the QCD analogy to Eq. (5.42) and Eq. (5.45). The implication
is that the QCD versions of C,, C3, Cs, ... should be treated as the same Wilson coefficient, see
Sec. 6.2.

The presence of inverse derivatives in the local interaction might appear strange, especially
since inverse derivatives are often a harbinger of non-locality. However, within the EFT, the com-
ponents of the derivatives that appear in these denominators are “large” in that they power count
as 0(1). This implies that one can not access the non-local nature of these interactions within the
EFT, and as such our interpretation that these objects make a contribution to the set of SCET local
operators is self-consistent. Next, we will use these local operators to model the IR of the Sudakov
process, and run the Wilson coefficients to sum the large double log.
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5.7 Summing Sudakov Logs with Scalar SCET

Now that we have the relevant Feynman rules for the scalar SCET that will model the massless
Sudakov double log, we can construct the one-loop diagrams, and use them to derive the RGE for
the Wilson coefficient C,. The relevant scales in the problem are schematically

FuLL THEORY

M2 3
SCET 4 M
RGE
P? P? (5.47)
RGE ! )
********************* My,
22 RGE
Ve

As anticipated when we performed our regions analysis in Sec. 4.1, there will be four contribu-
tions: hard with canonical scale M, (anti-)collinear with canonical scale P? (132), and ultrasoft
with canonical scale P> P>/M?. SCET will allow us to separate scales at i, to absorb the hard
scale into a Wilson coefficient through matching, and then sum the logarithms within the EFT by
running them to a common scale ;. For consistency, we will only run C,, since it is the Wilson
coefficient for the leading power local operator that generates our two light-like directions. The
operators with Wilson coefficients C3 and Cs are higher power, so their running begins as the next
loop order. Along the way, we will carefully track power counting, to justify that we have derived
the leading power contributions to our RGE. We will need a subset of the interactions derived above
in Eq. (5.20):

Int dc
) 3

02+ 55 02+ 502 0us+ 5 02 bus, (5.48)
where a. = a; = a,; = azz = a at the matching scale, and we have not included the ¢3s interaction
since it does not play a role in our one-loop calculation. Two classes of diagrams contribute at one
loop, a pair where a (anti-)collinear particle runs in the loop (see Eq. (5.52) and Eq. (5.53)), and
one where an ultrasoft particle is exchanged between the two light-like lines (see Eq. (5.56)).
Before we calculate, we should understand how power counting determines which diagrams
contribute to the scalar Sudakov process at one loop. We will choose to assign a power counting to
the current J, although this is not typically done since all that matters is power counting relative to

t.94

the lowest order diagram that reproduces the process of interest.”* First, note that our local operator

940bviously, one does not want the source to power count at O(1), since its purpose is to simply model a hard energy
injection into the EFT. One way of thinking about what we are doing here is that we are modeling an exclusive matrix
element utilizing the Lagrangian of the EFT degrees of freedom. The source J cannot play a non-trivial role since it is
external to the EFT. Any conclusions you might try to draw from the power counting of J are irrelevant to our goal of
modeling the Sudakov process.
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given in Eq (53 ;) 18 schematically of the form
d XJ(P (Z)‘ A, 71 5.49
e Pz ~ Aj X 22° ( . )

where we have used that d*x ~ A ~* for collinear fields, and A; is the power counting associated
with the current. Our goal is to sum corrections to this tree-level operator. We know from the full
theory calculation leading to Eq. (4.48), that the one-loop corrections will yield a double logarithm
log? A at leading power. This is in contrast with our heavy-light example above in Sec. 3.5, where
our full theory yielded a power suppressed correction of the form A logA. We should therefore
choose the power counting of J such that this operator power counts as ~ ¢'(1). Concretely, this
implies that A; ~ A2, which then feeds into the determination for the power counting of the local
operators in Eq. (5.37) and Eq. (5.39) that will contribute to our process of interest:

/ d*xJ o, ¢; ~ O(1) / d*xJ ¢ d; ~ A / d*xJ ¢. 92 ~ A, (5.50)

where again we have used that d*x ~ A ~* for collinear fields and A; ~ A2.

We also need the power counting for the interactions in Eq. (5.48):

4 3 l /4 3 l
/dx¢c )L dx¢5‘ l

/d4x¢3¢us ~ 0(1) /d4x¢§¢us ~ 0(1), (5.51)

where we again use d*x ~ A% as relevant for collinear momenta, since these dominate the Fourier
transform kernel in Eq. (5.6). The operators that scale as A ~! are super-leading power. Therefore,
sub-leading power local operators multiplied by a super-leading power interaction can contribute
at leading power. Working with super-renormalizable couplings in an EFT is analogous to working
in a relativistic theory where one can construct a dimensionless operator from the combination of
a®/M?, a diagram that involves two insertions of a mass dimensionful couplings a, and an insertion
of a higher dimension operator suppressed by 1/M?.

Now our task is to find one-loop contributions to Eq. (5.37), which scale as &(1). Note since
a carries unit mass dimension, the appropriate compensating factors of 1/M must (and will) be
generated by a combination of the matching coefficients and the loops themselves. Computing
these loops, extracting the RGE equations, and solving them is the topic of the rest of this section.

The Collinear Diagrams

First, we will analyze the diagram with a collinear mode running in the loop. Using the
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Feynman rules and power counting of the previous section, the leading contribution is”

d*e _ 1
pol :/(M)4<c3(u,n.z,n-z)ac(u)

4
B C3(u)ac(u)/ e 1.1 1 (5.52)

n-p m)* -l 2 (0+p)?’

where in the second step we have used the matching coefficient derived in Eq. (5.43). Note that the

two propagator factors are from the loop, while the additional kinematic denominator comes from

the Wilson coefficient. This diagram is built out of an insertion of the local operator ¢? ¢ and the

interaction ¢2. The scalings in Eq. (5.50) and Eq. (5.51) imply that the diagram scales as &/(1).
Next, we can compute the diagram where an anti-collinear mode runs in the loop:

o _Cs(u)ac-(u)/ de 11 1
®-. 0 - % QayfntC{EpR (5-33)

Similar to Eq. (5.52), this contribution scales as &'(1).

Although we are renormalizing C,, these diagrams are proportional to C3 and C3, implying
operator mixing. As already stated, we can self-consistently ignore the running of C5 and Cj at this
loop order since they are high power operators.

The Ultrasoft Diagram

Now we turn to the remaining SCET diagram at leading power and one loop, which involves

96

an ultrasoft exchange. To get the correct factors for the soft sector diagram,” we need to be careful

about momentum labels. We separate label and residual momentum power counting as above, see
Eq. (5.23) and Eq. (5.24):

P = (PLaPr) ~ ((Oa 1)1)) (2’251252"2>)

p= (p_va_r) = ((17071)7 (12,12712))

Pus = (0, pus.r) = (o, (12,12,12)). (5.54)

9 Naively, one might expect a symmetry factor of 1/2 for this diagram. However, the SCET q)f ¢z vertex treats the
two ¢ states differently, so this accounts for its absence.

91n gauge theory, these considerations are streamlined through the use of Wilson lines, see Sec. 6.3. Wilson lines
including scalars show up in supersymmetric theories, see e.g. [143].
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Then the momentum flowing through the collinear and anti-collinear propagators respectively is
given by the inverse of the [J operator appropriately power counted for our setting

O- L, = (t@c+p,+pus)_2 = (@CQL +i- @cn'pus,r)_l +0(2%)

DL:-:us = (‘@E+ﬁr+pus)_2 = (‘@(%J_ +n- ‘@L_’ﬁ'puss’)_l + 6(3’3)

Oy = Pt (5.55)

Then we can apply this to the propagators appearing in our loop diagram with the identification
Pus = £. We point the collinear momentum p out of the diagram, while p points in as above, and
we take p> = p? = 0, which implies that the @CZ | = 0. The ultrasoft propagator simply implies a
factor of 1/¢2. The resultant ultrasoft exchange EFT diagram is then

. e

4
L4

¢ 11
«  Pus = CZ““S"“S/(M)WZ pn

;ZC

(5.56)

]

This diagram is built out of an insertion of the local operator ¢, ¢; and the interactions ¢? ¢,,; and
0?2 ¢s. Using the scalings in Eq. (5.50) and Eq. (5.51), we find that this contribution power counts
as O(1), and so it contributes at the same order as the (anti-)collinear diagrams. This completes
the relevant leading power one-loop diagrams required to sum the Sudakov double log. Deriving
the RGE:s is the topic of the next section.

Summation

Now we have the one-loop leading power diagrams within scalar SCET that model the IR
of the Sudakov process, Eq. (5.52), Eq. (5.53), and Eq. (5.56). Note that these loops are all IR
divergent (in fact they are scaleless when p?> = p> = 0). Therefore, we must regulate the IR to
extract the UV divergence. We might as well regulate them using same procedure as in Eq. (4.47),
where we took p and p slightly off-shell. As mentioned before, one can think of this physically
as a two jet final state, with non-vanishing jet masses, whose scale is set by —p?> = P? # 0 and
—p?> = P? 0. So we will add IR mass regulators by hand to these integrals.

Before we renormalize, we note that the FULL THEORY wave function renormalization van-
ishes

¢ 1 1 ia> (1 u?
— & _ - —flog— +1 5.57
“/<2n>462<p+£>2 1672 <s+°gp2+  (37)
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where the 1/2 is a symmetry factor. Since this is not proportional to p?, it yields mass renormal-
ization.”” Exactly the same argument holds in the EFT. Therefore, one-loop renormalization only
requires subtracting the divergences from vertex corrections.

e Exercise: Convince yourself that the one-loop wave function renormalization for the collinear
scalar vanishes in SCET. There is a possible contribution to consider from both a (anti-
)collinear loop and a soft loop.

Next, we define counter terms Cg = 7, C,, see Eq. (3.35) above. Then we can use Z, to
compute the anomalous dimension for the C; Wilson coefficient within the EFT. We do this by
summing the tree plus collinear, anti-collinear, and ultrasoft diagrams,

R ¢C L ¢C R ¢C R ¢C
‘ + .E'.x¢c + ‘:.'.\(ba + Q ‘¢us -+ counterterm
"~ e ™ de ¢ " e
C C
=0 |:1 + (Clc 63 B +a5C73 I+ aysags Co fus) - (ZZ - 1):| > (5.58)
2 2

whose evaluation is given in Eq. (4.47). Solving for the MS counter term yields

1 1 C; 1 1. p? C3 1 1, u?
Z—l=——— a2 (-5 —=-log— | +a; = [ —— — ~log =
2 8n2M2[aCC2< g2 eogP2>+aCC2 2 ¢ tp
11 m?
+ s az <82 +~ log ‘;pzﬂ . (5.59)

We compute the anomalous dimensions for C; following the same procedure as in Eq. (3.43)
and Eq. (3.44), but keeping track of the fact that in this case Z, explicitly depends on log u?. Start
with

1 dz,

=—— . 5.60
v Z, dlog u? (5.60)

Although we are not going to include the running for any of the a’s (these contribute to the running
of C, at higher order), C3, or C3 (these are power suppressed as mentioned above), we need to
be cognizant of the fact that in d = 4 — 2¢& dimensions they develop tree-level u dependence to
maintain consistent mass dimension. Following the exact same steps that led to Eq. (3.40), we find
the leading order expression

dCZ dC3 € d63 fop—
dlogu? dlog u? 2 dlog u? 2
Weowm _ _E leading ord 5.61
W = =5 de.dus.is [ea ing or er} . (5.61)

9Note that this comment regarding mass renormalization is technically not quite right since we are regulating the
IR with p2. If p? = 0, then the particle is on-shell you get scaleless integral that vanishes. When using dim reg, a
p you g g g g
contribution to the mass of ¢ requires a non-zero mass.
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We can then iterate our solution as we did to derive Eq. (3.39) above, which gives us a general form

of the one-loop anomalous dimensions”®

li 1 ) 8Z2 i S 822 I S 822 i S 822
=lm—|za=—+-aG=—+-ay—+-ai——
5072 \2 “da. 2 “daz 2 “da, 2 "“dag
€ 07, e 07 07,
—CG3—+-C3— ——— 1 . 5.62
+> 96, +3 395G, dlog 2 [one loop] (5.62)
Plugging in the explicit leading order expression for Z, from Eq. (5.59), we have
11 M? G 2 G 2
Y= SR (—amaus log izpz —|—aCC—210gH +agc—log‘u > . (5.63)

Finally, we can use the general form given in Eq. (3.46) above, to write down the RGE equa-
tion:

e

2 2 2 2
u-M u u
w BTN <—ausausCz log ——== P2 p2 +a.Cslog — P +a:C3 log 2) (5.64)

which can be solved to sum the Sudakov double log!

The explicit full solution is not particularly illuminating, so we will not write it here, in contrast
with the beautiful result provided for gauge theory in Eq. (6.94) below. The difference comes from
the fact that C3 does not run at this loop order, while in the gauge theory case, the analogous Wilson
coefficient does run.

There is plenty we can still learn by studying the leading order expanded solution to our RGE
in Eq. (5.64). Specifically, the algebra is non-trivial due to the presence of squared logarithms, so
it is an instructive exercise to see explicitly how all the moving parts work together. To this end,

we solve this RGE keeping only the leading log squared terms:”’

1 _ uz
(&) (“L)Expanded =C (,uM) + Tom2 [(aus aiCr —a.Cz — a5C3) log2 u—]‘él

P2 PZ PZ PZ
-2 (ausausCzlogMzu2 —a.C3 logu acC3log ,uz) log uM]
L L L L
[LL],
(5.65)

where all the scale dependent terms in the brackets are evaluated at the matching scale .

o Exercise: Derive Eq. (5.65) from Eq. (5.64).

9 For simplicity we will compute the total anomalous dimension directly, which clearly includes the effects of oper-
ator mixing since y depends on both C; and Cs.
9This expression has been simplified using the fact that

H H X H
207 10027 a2 A,
logH —log”L—2logX log — =log 2log —log—.
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Using our tree-level matching relations at iy, namely a. = az = a,5 = ags = a and C3 = C3 = aC»,
we can simplify Eq. (5.65), yielding

1 @ 2 1y, 1 M?
C2 (ML) gy pangea = C2 (M) [1 TN <log ut[ 2log uAZ log — " [LL].  (5.66)

Next we can compute the hard matching one-loop correction at scale

¢,¢..-¢ . ¢c X ¢c R d)c
« v —|& 1@ g +& 6 | = (5.67)
¢ i " ¢s " ¢ " ¢s

where ., is the hard integral given above in Eq. (4.46), and its evaluation is given in Eq. (4.47).
Extracting the leading log, we see that

Ot g — b - pog2 Mt (5.68)
2WHM ) Mach =P 352 32 108 2 :

Then we can use this as a high scale boundary condition for our RGE. Plugging this into the ex-
panded solution given in Eq. (5.66) to run to the low scale derives the expanded Wilson coefficient

C(pe):

1 Ty
G ('uL)Expanded =G ('LLM) < 1672 M2 1 g2 1\/;/21>

2 2
X [lla <log2 Hig —2log — iy logM )]
s uz

1672 M? 7 2 7
1 &2 #2 Ii “2 M2
=0 (.UM) (1 + 62 M2 <log2 M [log2 IJAZ 2log “—Ag log 1%] ))
1 , M?
=G (um) (1 e M2 1 og? iz +- [LL + NLOy] , (5.69)

where the first parenthesis of the first line is from the tree and one-loop hard scale matching, and
the term in brackets is from solving the RGE. This shows how our matching and running approach
yields the low scale result for the Wilson coefficient.

Finally, to derive the full LL + NLO expanded result, we can compute the one-loop corrections
at the low scale (using our P> and P? IR regulators) to leading log order. But this is just the
corrections from %, + .z + .7, evaluated at u;, which gives us the low scale one-loop correction

1 (,12 M2 u ‘LL [JZMZ
C —C 1 - 1 27_1 2 7L -1 2 L 1 2 L_
2 () z( T (og 2 o 0g” 7 +5log” g

1 d M M?
=b (1 TSI <10g 57 log P2>> [NLO] , (5.70)

exactly the form we expected.
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So to summarize, our expanded leading log summed massless scalar Sudakov including the
high scale and low scale threshold corrections is

L d® (oM ig, M?
& (uuL)Expanded =b |:1 - 1672 M2 <10g F _210g7210gﬁ

L L L
1 & 2 M 2 Mf oML L oM
X [14—167:2]‘42 <log @—log ﬁ—log ﬁ+§10g P2 2
[LL + NLO],

(5.71)

where we have dropped the finite terms. This demonstrates that the separation of scales has been
achieved: the first line includes the double log terms that are summed by the full solution to the
RGE in Eq. (5.64), and the fixed order logs are written in the second line.

e Exercise: Note that while we have achieved our goal of summing the Sudakov double log,
we have not actually completed our task of making all the logs small. In particular, if we
make the scale choice /.L,%,I ~ M? and ,uf ~ P2, P2, one fixed order log remains large due
to the simultaneous presence of (anti-)collinear and ultrasoft modes. To make all the logs
small requires an extra step of matching at the collinear scale P> onto a theory with only the
ultrasoft modes. This will have the effect of introducing yet another RG scale such that it
can be chosen to make the ultrasoft fixed order log small. Your exercise is to perform this
additional matching explicitly to minimize all the leading logs. Note that we will come at
this from a slightly different angle below in gauge theory by proving a factorization theorem
that implements this additional matching automatically.

Note that our RGE was complicated by the fact that C, runs at one-loop, while C3 does not.
This can be tracked to the fact that the power counting of the local operators in Eq. (5.50), which in
turn results from the power counting for the scalars. If we wanted to perform an NLL summation,
we would need the set of two loop diagrams, and an operator of the schematic form Cy ¢ ¢z (and
others) would contribute. This is due to the interplay of our super-leading power interaction and the
inherent non-renormalizability of our EFT expansion; at each order in perturbation theory higher
power operators are required for consistency. As we will show in what follows, this issue does not
arise for gauge bosons, where all relevant interactions and local operators power count as '(1).
Furthermore, we will see that the gauge theory factorizes into a set of functions that have their
own independent RGEs. Highlighting these differences, and showing how the LL summation is
performed for QCD are the subject of the next section.

6. SCET in the Real World

Building on the technology developed so far, this section will highlight some new features that
emerge when working with SCET for gauge theories with fermions, i.e., QCD. Obviously, the two
main complications that take us beyond our toy scalar theory are the fact that now particles carry
spin, and that we have to keep track of charge conservation/gauge invariance. We will explain
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the soft and collinear expansion for gauge bosons, we will show how to take the collinear limit
of fermions, we will discuss the connections between collinear Wilson lines and local operators,
and between soft Wilson lines and factorization. All of this physics is explained in more detail
elsewhere (including many applications and examples), e.g. [122, 144, 142] for some reviews.
See Primer 1 for some conventions that we will need for the first time here.

6.1 Soft and Collinear Gauge Bosons

We start with a non-Abelian SU(N) gauge theory and assume that the only modes which
contribute to our process of interest are collinear, anti-collinear, and ultrasoft. In analogy with
Eq. (5.4), we expand our gauge field into these separate modes as

AF(x) = AH (x) + AL (x) +AH (x), (6.1)

with the understanding that each field is restricted have the momentum scaling in Eq. (4.43). These
expressions implicitly assume that if the theory is non-Abelian, then the fields are matrices, Ay =
A4 Te.

u

Power Counting

Next, we can derive the scalings for the gauge fields. If our modes are going to behave as
propagating spin one degrees of freedom in the IR, then they must each have a notion of gauge
invariance within the EFT. Therefore, the SCET gauge boson kinetic terms will take the form F‘%\,,
and each will have a Feynman propagator that takes the standard form (in R¢-gauge):

4 i v
Ofrafmay|o) = [ b e -a-o L

— (1471’ —i 2ghV —(1=&) pHpY 6.2
/(2%)4p4+i0[pg gt ©2)
where Ag is a free field. Noting that d*p/p* ~ &(1), the term in brackets in the second line exactly
tracks the power counting of the combination A* AY, so we will use this to determine the power
counting for the different components of A*.

First, we will infer the power counting for collinear gauge bosons A%, where collinear points in
the n* direction. Recall that collinear momentum has virtuality p? ~ A2. Taking the y and v indices
to be in the L direction, we find that schematically the term in brackets scales as A2g | — (1 —&) A2
This tells us that A“* ~ A. Next, we project A* onto n and 7i. Recall that nyny gt =nyny gt =0,
see Eq. (4.4). Thenn-Acn-Ac~ (1-&) (n -pc)z ~ A% andson-A. ~ A%, Similarly, i-A.7i- A, ~
(1-&)(a- pc)2 ~ O(1), and so 1-A. ~ O(1). Putting this all together, we see that the power
counting for the components of the collinear gauge boson scales in the same way as the components
of its momentum. One can check that the implications for the scaling of the mixed projection

n-Afi-A is self consistent.!?0

1000ne should be wary of the fact that these scalings are not gauge invariant (note the presence of & in expressions),
and additionally we are neglecting any discussion of ghosts, which can generically appear depending on the gauge
choice.
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The scaling for the anti-collinear gauge field Af—f follows from identical reasoning, with n < 7.
The ultrasoft gauge field Al should not have a preferred direction since soft fields are homoge-

neous. It is easy to check that all projections yield a scaling AL; ~ A2. To summarize'?!

AY ~ (A% 1,2) AY ~ (1,A%,1) AL~ (A%,2%4%). (6.3)

e Exercise: Convince yourself that the scaling of the components of the gauge boson should
exactly follow the scaling of the components of its momentum.

Interactions

Now we have the tools we need to take the FULL THEORY non-Abelian gauge boson La-
grangian and expand it by power counting in A [145, 140, 146, 138]. Gauge fixing and ghosts are
treated in the standard way. However, the power counting tells us what interactions are allowed
by momentum conservation within our SCET theory, in exact analogy with Sec. 5.4 and Sec. 5.5
above. For instance, we should multipole expand and power count our interactions as above, which
tells us schematically that three-point interactions take the form (see Eq. (5.20) above):

L D gAus (71 x) Ac(x) Ac (x) (6.4)

so that when working in momentum space, we must be careful to include label dependence and
power counting for soft interactions with collinear gauge bosons.

There is one new feature due to the fact that the different components of the gauge field have
different scalings. The only component of the ultrasoft gauge boson that is not power suppressed
with respect to the corresponding component of the collinear gauge boson is - A,; ~ A% compared
ton-A. ~ A?. This tells us that when computing interactions, we should replace

nlu

nk
Atx) — (n-Af(x)—i—n-Am(ﬁw))f—i—ﬁ-Ac(x)2

AR 6.5
3 +A; (6.5)

Then a Feynman rule for interacting two hard gauge bosons with a soft gauge boson takes the form

e =g /" n-pntg”, (6.6)

C C

where we have drawn lines through the collinear gauge bosons as is standard practice, and the
momentum p* is for the collinear gauge boson associated with either Lorentz index v or p. The
ultrasoft gauge boson has a Lorentz index p, i.e., it must be contracted with n* as follows from
Eq. (6.5). Interactions between anti-collinear and ultrasoft work similarly with the replacement
¢ <> ¢ and n <> 71. The full set of Feynman rules can be found in [142].

101 A quick derivation uses that the scaling of the gauge boson had to track its momentum if there was going to be any
consistent notion of a covariant derivative Dy, = dy, —ig A, with which one could build Fj,y = (i/g) [DH,DV} . However,
note the momentum of a charged field is not gauge invariant, so again we emphasize that care should be taken when
interpreting these scalings.
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Gauge Transformations

In order to determine the gauge transformations of the SCET fields, we can multipole expand
the gauge transformation in analogy with Eq. (5.17), see Primer 1 for a review of the relevant
conventions. This will imply that each sector has its own independent gauge transformations:

Uc(x) =exp (iaf(x)T%)

Uus(x) = exp (iag(x) T, 6.7)

us

and similar for anti-collinear. If these transformations are going to consistently shift the appropriate
gauge fields, they must have a scaling

~ A of(x)
Dol (x) ~ A2 ol (x). (6.8)

Then using these scalings, we can power expand the gauge invariance of the FULL THEORY to
separate soft and collinear transformations in the EFT, yielding

Al U AR ([a#—ig%n-Aus(ﬁ-x)} UC> Ul

c

C:
A'Luls — Aﬁs
) (6.9)
AL — Uy(a-x)AR U (7 x)
A

Aus — UnsAus Ul + £ (0" Uus) Uj

where the anti-collinear gauge field does not transform under collinear transformations, and the
anti-collinear transformations take the same form as in Eq. (6.9) with the replacement n < 7.
Note that there is a global transformation under which the collinear and ultrasoft sectors trans-
form equivalently. We can choose to identify this global transformation with the ultrasoft local
transformation. Then in order to avoid double counting, we must set the boundary condition

Us(n-x — —oo) =1. (6.10)

This is a symmetry of the EFT and holds to all powers.!

Reparametrization Invariance

Finally, we note that RPI for the gauge boson is straightforward to derive since A* is a Lorentz
vector, and as such the total gauge field is RPI invariant. The discussion in Primer 4 provided the

1020pe way to derive these gauge transformations is to use the background field method, see e.g. [147] for a review.
The collinear modes see the softs as slowly varying background fields, which allows one to justify separating the gauge
transformations and fixing the collinear transformation at infinity as we are doing here.
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RPI transformations for the vectors n* and 7*. Therefore, if one wishes to check RPI involving
components of the gauge boson, all that must be tracked is the transformation of n or 7. For
example,

n-A. — n-A.+At-A., (6.11)

under an RPI-I transformation.

Now that we have the basic gauge boson SCET building blocks, we will introduce the concept
of a Wilson line. This is an object that is very convenient to work with when one encounters
charged particle lines in spacetime, as is typically the case when SCET is relevant. As we will
show below in Sec. 6.2, there are independent Wilson lines for the collinear and ultrasoft gauge
bosons. Collinear Wilson lines play a key role in the structure of the building blocks for local
operators, while the ultrasoft Wilson lines can be used to show soft-collinear factorization at the
level of the Lagrangian. This motivates the inclusion of the physics described in the next Primer.
First we provide a discussion of the general theory of Wilson lines. Then we review the soft limit
of gauge theory and the emergence of the universal eikonal factor.

Primer 7. Wilson Lines and Eikonalization

In this Primer, we develop two advanced topics in gauge theory. First, we will introduce the
notion of a Wilson line, and will discuss its role in maintaining the gauge invariance in situations
where one has an extended object charged under a gauge group. Then we will discuss the soft limit,
and explain what it means for a gauge theory to eikonalize. This will provide the background for
understanding the ultrasoft Wilson lines in SCET. For a more complete treatment, see e.g. [3].

Wilson Lines in Gauge Theory

A Wilson line tracks the gauge dependence along a trajectory in spacetime. For example, if
we have a U(1) theory with a charged scalar, then the difference

O(y) — 9 (x) = V) g (y) — " *™ g (x) (6.12)

is not gauge invariant. To write a difference that respects gauge covariance, we define a Wilson line

W (x,y) = exp <ie/xA#(s) ds“> : (6.13)

y

It has the gauge transformation property
W(x,y) — *OW(xy)e V), (6.14)

which is straightforward to derive from the gauge transformation defined in Eq. (2.15) above.
Using the Wilson line, we can define a gauge covariant notion of the difference between fields
evaluated at two points:

W) o) —o(x) — DWW (x,y)e *D ) g(y) — W (x)
=W (x,y) §(y) — 9 (x) |, (6.15)
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which eliminates the ambiguity in Eq. (6.12). A difference of charged product of fields at different
spacetime points is only gauge covariant if the fields are connected by Wilson lines.
The non-Abelian extension requires path ordering for the generators since they do not com-

W= P{exp (ig/xAZ(s) T"ds“) } , (6.16)
y

where P is the path ordering symbol and W is now a matrix. Then the non-Abelian Wilson line

mute:

transforms as
Wxy) — UQWE)UE), (6.17)
where U (x) is the gauge transformation defined in Eq. (2.16).

Soft Gauge Bosons and the Eikonal Factor

Before returning to SCET, we will briefly discuss the interactions of charged particles with soft
gauge bosons. Although our emphasis here will be on the universality of these interactions, there
is also a beautiful connection one can make with charge conservation as was first shown in [148].
The idea of an Eikonal interaction will appear in the soft sector of SCET as we will see below. For
more details, see e.g. Sec. 9.5 of [3].

We begin with a process (illustrated by the pink blob) that involves at least one external nega-
tively charged scalar ¢ with mass m, labeled by j, with momentum p;:

it (p;) = @h------ O . (6.18)

Then we can attach a photon to this external line, carrying away momentum ¢, and keeping p;
fixed, which yields

pi+ (P —a"
itj(p;) = @eg- =e ( _< )12_ 2%(61)%(17/—61), (6.19)
v pi—aq) —m

where € (g) is the polarization vector for the photon. This can be simplified by using the on-shell
conditions p? =m?, ¢>=0,and e-q=0:
)

Pj pj-€
Ai(pj,q) =— A(pi—q) ~—
i(pia) = —e S h(pi—a) = —e

(p)) (6.20)

where in the last step we took the soft limit for the photon momenta, i.e., |- p j‘ < ‘ Dk - Pm|, for
all external momenta pyg, p,.

Attaching the photon to a charged loop suffers extra suppression since those propagators are
off-shell, so deriving the leading soft-photon amplitude only requires considering interactions with

the external charged legs. This yields

o =edh| ) 0

Jj€in

£ . £
pj.q j€out pj.q
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where Q; is the charge of the 7" state, and the sum is taken over all the external charge particles in
the diagram.

This is an amazing result — given an amplitude <7, it is trivial to then compute a new amplitude
&/ that includes one additional soft photon by simply summing over .o multiplied by an “eikonal
factor” p-€/p - q for each charged external line. Moreover, the gauge boson only knows about the
charge of the lines it is interacting with since the eikonal factor is independent of the mass, spin,
or any other properties of the external lines, e.g. if the line is associated with a fundamental or
composite object. We will use this universality to our advantage in SCET, where we will see that
modeling the physics associated with the soft EFT gauge bosons relies on Wilson lines which are
constructed to sum an infinite number of eikonal interactions.

Before we discuss the details of soft Wilson lines, we will work out the detailed properties of
collinear Wilson lines, and will emphasize their role in building the local operators in SCET.

6.2 Collinear Wilson Lines and Local Operators with Gauge Bosons

The goal of this section is explain the role of collinear Wilson lines in SCET. We will avoid
the minor additional complications that arise for non-Abelian gauge theory by working with a U(1)
gauge theory. Our model contains a heavy charged scalar ® of mass M with momentum p = (M , 6)
that can then decay to a light massless charged scalar ¢ and a photon Y using an insertion of a
scalar current J = ®' ¢ (for brevity, we have set the Wilson coefficient for this heavy-light current
insertion to unity):

) ] 2p-8k
e ®...... _ 2 k ﬂ;:_
¢ é;‘ ¢ =ie(2putku)g (prhk2—M2~ “pri2p kM
_ P __ L&
= en~pﬁ-k+ﬁ(m7 eﬁ'k—i—ﬁ(l), (6.22)

where we note that the current insertion can absorb momentum, which allows the limit with ¢ and y
collinear to be physical. In the second line, we have defined A ~ k/M and power counted using the
scaling for both collinear momentum and the collinear gauge field — critically, the factorii-A, /ii- k
power counts as (1) when k ~ n.

Next, we note that we can attach m collinear gauge bosons to our heavy line to yield

e o 4 + perms — —e(2p+2/<1)-ek1 —e(2p+21;n)-ekm+perms
ég (p+ki) —M? (P+ X km) —M?
5

= (eﬁ'&q) (e}&) +perms+ O(A), (6.23)

where “perms” refers to all the possible permutations of the ways to attach the photon lines to the

heavy line. Again, each of these factors scales as &/(1).
The key insight is to realize that there is a natural object one can write down, which accounts
for the potentially infinite number of emissions, thereby generating an operator whose structure is
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) - - &
i =P = — @eennn- = —e— oo [ —e—=2— ) +perms+ O(A). (6.24)
357 (i) = (el ) oo o
~
This object is the collinear Wilson line, associated with the light-like direction n:

B (—e) (7i-Aclkr) -7t~ Ac(kn)
We=>_ Y — ([ﬁ-kl]---[ﬁ'zkm] ) (6.25)

m  perms

which can be Fourier transformed to position space'®3

W.(0, —o0) = P{exp <ig/0 ds -Ac(ﬁs)> } =W,(0), (6.26)

oo

where again P is the path ordering symbol, which is required to correctly lift this derivation to
theories with non-Abelian gauge bosons.!® We have introduced the shorthand notation W,.(0)
because the Wilson line is integrated along a collinear line corresponding to one of our light-like
charged states, so one end is always fixed at —oo and the other end terminates at the local interaction
point.

Before discussing the detailed properties of these collinear Wilson lines, we note the relation
to the scalar theory example above. In Sec. 5.6, we saw a similar phenomena occur. However, we
paid a power counting price for each insertion. This is related to the fact that our local operator
expansion was not homogenous in power counting, which was compensated for by our super-
renormalizable interaction. For gauge theory, the fact that the factor from a collinear emission
power counts as ¢’(1) begs us to sum these vertices, and yields one of the crucial differences
between scalars and gauge bosons.

From the momentum representation of the collinear Wilson line in Eq. (6.25), it is clear that

ﬁ-@WC:ﬁ-9<—g’w+m) :—gZ:];ﬁ-AC(kH—...:—ﬁ-AC(k)WC, 6.27)

where we have used Eq. (5.28) for the action of &?. We can rewrite this in the form of the Wilson
line “equation of motion”

in-DWe =ity (PH +gAM)W. = 0. (6.28)

Using similar manipulations, we can check the action of i7i- D, on a product involving W, and an
arbitrary operator O:

ifi- D (W, 0) = iy (2% + gAk) (W, 0)

= (A (P + gAY W) O+ We (- 20) =W, (7- 20),  (629)

103We have chosen explicitly to point our affine parameter along the 7 direction. However, all that is required is to
introduce a reference null vector r that points away from n, such thatn-r ~ (1).

104We have switched notation for our gauge coupling from ¢ — g to emphasize that all of these formulae hold for
SU(N) gauge theories.
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which can be expressed as an operator equation
in-DW,=W.n- . (6.30)

Then using this result along with the fact that W W, = 1, we have

iii-De=W.ii- PW,] i-P=W!iii-D.W,, (6.31)
which can be inverted to derive
1 1 1 1
=W, Al — =W W, 6.32
ifi-D, ‘a-pc n- P “in-D. © (6.32)

These identities allow one to exchange collinear covariant derivatives for Wilson lines, and will
be useful for re-expressing the canonical couplings between collinear gauge bosons and collinear
charged fermions below.

Finally, we note the gauge transformation properties of collinear Wilson lines, which can be
inferred from the general Yang-Mills gauge transformation for Wilson lines given in Eq. (6.17),
appropriately modified for the collinear and ultrasoft transformations given in Eq. (6.9):

c: We(x) — Us(x)We(x)
us: We(x) — Uus(x)We(x) U (x), (6.33)

where for the collinear Wilson line we have used the fact that we fixed the gauge transformation
matrix at x — —oo to unity, see Eq. (6.10), while for the ultrasoft Wilson line we have used the
fact that the multipole expansion implies that only the ultrasoft field at x contributes. Said another
way, the collinear Wilson line appears as a local operator from the point of view of the ultrasoft
radiation.

Finally, we note that using the label momentum operator allows us to write a compact expres-
sion for the collinear Wilson line

Wel) = [ > e (-5

perms

i -Ac(x)> , (6.34)

where 1/71- &7 acts on all fields to the right, yielding the denominator structure in Eq. (6.25). If
rapidity regulation is required, one can use this form to incorporate the regulator introduced in
Sec. 4.2 as an operator expression [127, 128]:

a-2| "
W, (x) = [Z exp <—ﬁ_‘§z@‘ﬁlﬁ-fxc(x)>] , (6.35)

perms

along with an analogous modification of the soft Wilson line given below in Eq. (6.39).

Local Operators with Gauge Bosons

One of the key applications of the collinear Wilson line is that it allows us to write down a novel
object that can be used to build local operators involving external gauge bosons. We introduce the
combination [140, 149]

B (x) = ; W, (x)iD" | W.(x), (6.36)
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where the covariant derivative only acts on the Wilson line to the right. This operator is gauge
invariant under the collinear gauge transformations in Eq. (6.33), and can be interpreted as a phys-
ical collinear gauge boson emitted from the hard process. This connection is reinforced by Taylor

expanding:'®

u
%flzlgzg‘lJrAfl—_kfiﬁ-Ac,H---, (6.37)
g in-k

where the subscript k refers to the label momentum. We see that this operator includes the physical
perpendicular components of the gauge boson as the first term, followed by a tower of kﬁ X (71 -
Ac k/7i-k)™ emissions (where m is an integer), all of which scale as ~ A, inherited from the scaling
of ki. This object makes it entirely straightforward to model collinear gauge bosons that are emitted
from the hard vertex, and can be used as a building block for local operators.

6.3 Soft Wilson Lines and Factorization

In Eq. (6.21), we derived the eikonal factor, which is a universal coupling between a soft gauge
boson and a charged external line. These factors can be summed in a straightforward way into a
Wilson line:

A(ky) ~--n~A(km)

=3 Y e

(6.38)

where propagators come with +i0. The soft Wilson line Y, (x) is defined with respect to the n*
direction — the only information that the soft gauge bosons know about the collinear sector is the
direction and the charge/representation. Note that the propagators in Eq. (6.38) all have virtuality
~ A2. This implies that we should interpret the soft Wilson lines as living within SCET. This can
be contrasted with the collinear Wilson lines in Eq. (6.25), whose propagators have virtuality of
0'(1), and are therefore interpreted as resulting from matching at the hard scale.

The soft Wilson line can be Fourier transformed to position space:

0
Y,(x) =Pexp [ig/ dsn-Au(x+ns)| , (6.39)

oo

where s is an affine parameter that tracks the collinear direction. There are additional subtleties
which must be kept track of depending on if the external lines are incoming or outgoing [150, 151],
see e.g. [142] for a discussion. If required, the Wilson line can be modified to include a rapidity
regulator [127, 128], similar to Eq. (6.35) above.

The soft Wilson lines satisfy a variety of useful identities. First, note that it is clear from the
definition that

Y (0) Ya(x) = Li(x) Y, (x) = 1. (6.40)
The soft Wilson lines projected along the collinear direction satisfies an “‘equation of motion”

in-DysY,(ii-x) =0, (6.41)

ten " is defined in a slightly more complicated way to eliminate the term see e.g.
1950ften 28!, is defined in a slightly plicated way to eli he 2 [142].
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where
) . _
— _lgn.Aus(n.x) , (642)
X

which is straightforward to derive using the light-cone decomposition of the derivative Eq. (4.8).
Finally, we note that

4
_n’L&ﬁ'x

where again we have used Eq. (4.8). These three properties will be crucial for factorizing the SCET

OuYu(i1-x) Y,(i-x), (6.43)

Lagrangian, which is the subject we turn to next.

Factorizing the Gauge Interactions with a Field Redefinition

We now have all the required tools to factorize the leading power SCET Lagrangian, as was
first done in [152]. The strategy is to use a “decoupling field redefinition” (also referred to as a
BPS field redefinition) involving the ultrasoft Wilson line in Eq. (6.39). The result is a derivation
of independent Lagrangians for the collinear, anti-collinear, and ultrasoft sectors. We will show
how this works for the non-Abelian interactions between the gauge bosons, and will leave the
analogous derivation for fermions as an exercise in Sec. 6.4 below.

Factorization has a long tradition in field theory, beginning with the famous result proving
that the parton distribution functions can be factorized for the Drell-Yan process using FULL THE-
ORY QCD Feynman diagrams.!% For a review of the traditional approach to proving factorization,
see e.g. the review [113] and the book [114].

To explore how factorization is derived in SCET, we begin with the collinear Yang-Mills field
strength tensor, defined by the commutator of covariant derivatives:

g [Dﬂ, DV} , (6.44)
8
which should be interpreted as a matrix expression, see Eq. (2.14), and where
it nt

Dﬂzjn-D—}?liDc—i—DﬁL, (6.45)

with

in-D=in-d+gn-A.(x)+gn-Aui-x)
in-De=n-P+gn-Ac(x)
iD= P +3AL | (x). (6.46)

Then the collinear Yang-Mills Lagrangian

|
o= Tr [F u‘,Ff"} (6.47)

1061t is worth emphasizing that the rigorous demonstration that the parton distribution functions factorize from the
hard process is somewhat different from the factorization of the hard process into hard/jet/soft functions as is done in
SCET.
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includes the interaction between collinear and ultrasoft given in Eq. (6.6).
The decoupling field redefinition for the collinear gauge boson is

AR (x) =Y, (7 x) AV () Y (7 ), (6.48)

C

where AEO)# (x) will be the collinear gauge boson that appears in the factorized Lagrangian. The

superscript (0) makes explicit that this is the leading power field, and emphasizes that the factor-
ization is only being derived to leading power.

Our task is to compute the collinear Yang-Mills Lagrangian after performing this field redefi-
nition, so we need the redefined versions of the covariant derivatives. Two of the components are
trivial

iDe,1 = Yo(ii-x)iD\ " ¥} (i), (6.49)

where we have used Eq. (6.43) to move Y, (/i x) through /- @ and 9!', and the (0) superscript on

the covariant derivative means replace AL — AE-O)“ . The non-trivial component is

in-DO(x) = :in -d+gn- (Y,,AEO) (X)) +gn-Ay(f x)} O(x)

n

- :(in LD+ gn- A x) VY +gn- (YA (x) Y*)} o(x)

:(m -9+ gn- Ay -x))Yn] (¥] o))

+Y, [m 9 (Yja(x))} +Y,(gn- AV (1) Y] O(x))

—v, [in 9 +gn-AY (x)} Y O(x) = Y,in-DV Y 0(x), (6.50)

where O(x) is an arbitrary operator, we have written Y,, = ¥,(72- x) for brevity, in the second line
we used Eq. (6.40), in going from the third to the fourth line we have used Eq. (6.41), and the final
equality implicitly defines n - DS,O).

Putting this all together, we see that

D" =Y, (ii-x) DV* Y (72 ), (6.51)

which only depends on the ultrasoft gauge boson through the Wilson lines Y;,. Then the Yang-Mills
field strength for AEO) is

FEY = Y, () ( DO#, p© "]) iy =Y @) FOM i@y, (652
g
so that
2 = — e[ EQ ¥ o) V() O ()|
1 0) (0
= Tr [F( o )“V} , (6.53)
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where in the last step we used the cyclic property of the trace to eliminate the ultrasoft Wilson
lines. Obviously, the exact same steps can be taken to eliminate the ultrasoft gauge boson depen-
dence from the anti-collinear Lagrangian yielding 05,”6-,(0), by making the appropriate substitutions,
e.g. Yy(ii-x) = Ya(n-x).

Next, we note that the ultrasoft gauge boson Lagrangian is given by

1
20 = 5 Fusuv P (6.54)

where

us’

FAY =Dk, Dy
8
iDH, = id" + gAl (x), (6.55)

which is just a standard Yang-Mills Lagrangian, including self-interactions among the soft gauge
bosons, but which critically does not include interactions with any collinear states.

Therefore, our Lagrangian takes the factorized form'?’

L=+ 20+ 20, (6.56)
implying that our Hilbert space for the gauge bosons factorizes:
[X) = [Xe) @ [Xe) @ | Xas) (6.57)

where ‘X > is a state in the FULL THEORY Hilbert space where all modes above the hard scale have
been integrated out, i.e., in the regime where the EFT is expected to hold. It is now expressed in
terms of a direct product of states in independent EFT Hilbert spaces (to leading power).

The decoupling field redefinition led to the factorization of the interactions between collinear
and ultrasoft fields. However, there is another implication of this field redefinition, which is that
now ultrasoft fields will appear in the local operator structure. For example, our gauge boson local
operator building block in Eq. (6.37) is redefined following Eq. (6.49):

B (x) = Yu(i-x) B () Vo) 6.58)

To explore this further, we will take a simple example. Consider a FULL THEORY process of a
singlet initial state producing a pair of gauge boson final states, e.g a heavy scalar boson (this could

1071t is important to note that the true Lagrangian does not actually factorize due to the presence of the Glauber modes
briefly mentioned in the exercise in Sec. 4.1 above. A true demonstration of factorization requires justifying that the
Glauber contributions can be neglected (as was first done by for QCD [113]). This in turn allows one to ignore the part of
the Hilbert space where the Glauber modes live, allowing us to say that the Hilbert space factorizes. In particular, there
is often a cancelation among the Glauber diagrams that allows them to be absorbed into the soft sector. For an operator
level treatment in SCET, see [153], and in particular their Eq. (8.1) writes the version of this Lagrangian that includes
Glauber effects. Another place where Glauber modes are important is in the demonstration that the hard matching
coefficient for back-to-back quark production when including additional spectator external states is independent of the
choice of which external states to use [154].
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be the Higgs boson in the Standard Model) decaying to a pair of gluons through an interaction
Lo, DCOFy F 1V where C is a constant. Then we can model this process in the EFT [155]
Fuy FYY — By y B =Yo(71-x) BY) (1) Ya(-x) Ya(n-x) BOF () Ya(n-x)T,  (6.59
w PR — By (-2) B () Yol 2) Yaln ) B () Yaln )T, (6.59)
where we have suppressed the color contractions and the matching between the FULL THEORY and
SCET is leading order, see e.g. [155] for more detailed expressions. We want to compute the expec-
tation value of this object in the presence of the collinear and anti-collinear hard lines. Therefore,
we should take a matrix element using the incoming state |Az(p)) and the outgoing state (A.(p)|:

(71 X) 2"

O ) Yai1-2) V(- x) B (x) V() )A >

<Ac (P)

= (0 Y, (72 x) Yy (7 -x) Ya(n-x) Yﬁ(”'X)T}O>uS

x <A5(ﬁ) ‘%ﬁ‘h(x)@c x 5<0 ‘@gu@)

Aa(ﬁ)> : (6.60)

Our task is reduced to computing a “hard function” J#'(M, 1), a “collinear jet function” _Z (PZ, ,u) ,
an “anti-collinear jet function” _Z; (Pz, [.L), and an “ultrasoft function” . (P2 P’/M, /,L). The hard
function is determined by a matching calculation, and the other three functions have operator defi-
nitions within SCET. Diagrammatically, up to one-loop order, we have jet functions

A,
FlPon) = (4cp) |2, 0] 0) — @e200r A, . @BoBar A, +--

Az

Je(Pou) = (0|20 ()|Aclp)) — @RR8%r A, + &84, o o)

where the top line is for collinear and the bottom line is for anti-collinear, and an ultrasoft func-

tion!98

Y(PZPZ/M,M) < }Y ii-x) Yp(ii-x) Y (n-x) Y;,(n'x)w0>us
=K+ QE Ays+--+, (6.62)

such that our final summed observable is given by the product of these four functions, run to
the common renormalization scale p. This factorization can be illustrated schematically as (see

108 This expression makes it seem like we should draw four Wilson lines in our diagram. However, note that the ¥,, is
in the fundamental representation, while the gauge boson is in the adjoint. Then one can interpret a product of two Y,
Wilson lines as modeling an adjoint Wilson line.
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e.g [122, 144])

To summarize, we have shown how to decompose the gauge boson into collinear and ultra-
soft modes. Then calculations for gauge theories in the IR are recast in terms of hard, jet, and
soft functions that can be computed independently, run to a common scale, and then multiplied
together to yield the RG improved amplitude of interest. Moreover, the jet and soft functions are
universal, which implies that can be used to construct predictions for a wide variety of observables.
This procedure separates scales and sums potentially large Sudakov double logarithms. Further-
more, it provides us with a systematic procedure for summing logs of arbitrary high order, and for
computing sub-leading power corrections as an expansion in A.

Below, we will provide an explicit demonstration of how the Sudakov double logs can be
exponentiated using the vector current process built out of charged fermions. To this end, we must
develop the technology for treating fermions in the collinear limit, which is the topic of the next
section.

6.4 Collinear Fermions

In this section, we will explain how to model collinear fermions in SCET, using two-component
notation. Our starting point is a FULL THEORY left-handed Weyl fermion u, which has a momen-
tum scaling of p ~ (lz, l,k). The first step is to find a set of projection operators that allow us
to separate our collinear fermion into the degrees of freedom whose helicity is aligned with the n*
direction u, , from those whose helicity points in the opposite direction u, j.

The Lagrangian for u is

L =iu'(x)6-du(x), (6.64)

which admits the standard plane-wave solution u(x*) = [d* p x(p) exp(—ip*x,). In Eq. (6.64)
and many expressions that follow, the spinor indices are implicitly contracted, following the two
component conventions of [156].

In order to see the connection between the projection operators and helicity, we can boost the

free-theory solution for u(x) along the light-cone n*, which points in the 2 direction:'?

x(p)|, = [\/m (1_203> +VE—p; <1+203ﬂ 69& ~

where &£ is a two-component spinor, we have inserted the appropriate factor of 6y to make the

A
o(1)

, (6.65)

spinor index structure consistent, and for the last step we have used the collinear scalings for the

1090y example, see Sec. 3.3 of [50].
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momentum, 7i-p ~ O(1) and n- p ~ A2. We see that the upper component of x(p)|, is power
suppressed, and the collinear fermion is given by the lower component of x(p)|,. This is allows us
to separate the FULL THEORY fermion into a leading and subleading part.

aa_l(é—é)aa_ 00 ao
T\P0TE T

The following combinations of Pauli matrices

Al (h P

|
Qi

-G 1 10 G\* 1 10]*
n- 0 3 n- _ _\oa
ao
(6.66)
can be used to infer projections operators P, and Py,
u= (Pn+Pﬁ)u:uc',n+uc,ﬁ- (6.67)
Comparing to Eq. (6.65), we can derive the explicit forms
Pouen = %% Uen = Ucin Piuen = _.TG% Uci = Ui (6.68)
P,—,uw,:O P,,uc,—,zo.

These operators project out half the helicity states, namely u. , 1 = 0 and u. ;3 » = 0; the two compo-
nent collinear/anti-collinear projection operators are equivalent to the chiral projection operators.

We can expose a few interesting features by analyzing the free fermion Lagrangian. Starting
with Eq. (6.64), expanding out u = u, , + u, j, and expressing it in components yields

i =t . L _
1%, = U 5" Quens+ Uy ;i dute i

(6:0) % tuepp+u’ (60 uess, (6.69)

c,n,2

+ul
c,ii, 1
where we have used (G- 9)? = i- 9 and related identities to simplify this expression.
We can derive power counting for the fermion as above. Assuming collinear scaling implies
d*x ~ A%, so that %, ~ A% to yield an unsuppressed action. This fixes

Uen ~ A and  ue; ~ A% (6.70)

Next, we must identify a time component, which we take to be n-d by convention. Then
the expanded FULL THEORY Lagrangian, Eq. (6.69), implies that u. , is a propagating degree of
freedom (by identifying that there is a term with a time derivative acting on u, ,), while u. ;; is not.
It will be convenient to write the Lagrangian exclusively in terms of the propagating mode, so we
integrate out the anti-collinear modes by solving for its classical equation of motion:

1
ii-d

e = —_'TG (601) ten. 6.71)
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Then the collinear and anti-collinear fermion modes can both be expressed in terms of the propa-

0 (*‘h,lﬂ'(ﬂ.z)
Uen = Ui = wg  Hem2 | (6.72)
Ucn2 0

gating mode

Plugging Eq. (6.71) into the Eq. (6.69) yields the leading power collinear Lagrangian for a free
Weyl fermion:

“Z,

Ue.n

) 22> \ -6
=ul, <m d— l_ﬁb) 5 ten- (6.73)
Then the propagator for a collinear fermion can be extracted by inverting the free momentum space
Lagrangian:
n-o n-p
> = - . (6.74)
—P 2 (np)a-p)+pl

This is how we model propagating collinear fermions in SCET.

RPI Transformations of Fermions

Before introducing any interactions for our collinear fermion, we will take the opportunity to
discuss its RPI properties, with an emphasis on the connection to Lorentz invariance as discussed
in Primer 4 above. For brevity, we will drop the ¢ and n subscripts on u, , o for this subsection,
and identify the propagating degree of freedom with u, as we did previously. We will use 3 (0) as a
boost (rotation) parameter, associated with the K (J) generators. This discussion follows Appendix
of [110], and more detail can be found there.

We begin with RPI-III, which is just a boost as generated by K3:

Uy —— e P2y, (6.75)
Boost

Due to the structure of o3, we see that

uj e_ﬁ3/2u1
RPL-III
B /2
u — e’y 6.76
2 RPLIII 2 ( )

where we identify the boost parameter 33 with the o parameter of RPI-III. So we see that the two
components of the fermion transform oppositely with respect to RPI-III.

The derivations for the other RPI generators is complicated by the fact that RPI-I and RPI-II
are a linear combination of boosts and rotations, see Eq. (4.14). Using the Lorentz transformation
properties of fermions, we can evaluate the action of the two RPI-I generators:

' 1
vy —— <1+;ejoj—2ﬁjoj)ua. (6.77)

Lorentz

Then for example, we can identify one of the RPI-I transformations by taking the combination
Ky — J», i.e., by setting B; = —6, with all other 6; and 3; equal to zero, which yields

01
o e (9 (30
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where we can identify ; with one of the RPI-I transformation parameters. Then this makes it clear
that RPI-I acts to rotate in the helicity component that has been integrated out:

LA -0)s
e = [0] - lz(Ai 6)12”2] , (6.79)
up RPI-I uz

where now we have expressed the two RPI-I transformation directions using a more covariant
notation.

Analogous steps can be performed to derive the RPI-II transformations, which effectively acts
as a rescaling of the fermion fields u. ,:

0
Uen = E—
’ U RPIL-II

e Exercise: Derive the RPI-I and RPI-II transformations for the fermion using the relations to

0

; . 6.80
(H‘é(gl'a)zi,—,.la(al'é)lz)uzl (6.80)

boosts and rotations given in Eq. (4.14) and the general form of the Lorentz transformation
for a left handed fermion in Eq. (6.77).

Then one can use these RPI transformation properties to constrain the allowed form of the SCET
Lagrangian.

e Exercise: Show that the kinetic term for a collinear fermion Eq. (6.73) is invariant under the
three RPI transformations. In doing so, one must be careful to track the RPI transformations
of the various projected components of the derivatives.

In the next section, we will charge our fermions and develop the technology to build local operators
out of these interacting objects.

Collinear Fermions Coupled to Gauge Bosons

Now that we have a propagating collinear fermion, and have understood its collinear space-
time transformation properties, we can give it a charge and couple it to ultrasoft and collinear
gauge bosons by promoting dy, — D, using Eq. (6.45). Under the collinear and ultrasoft gauge
transformations given in Eq. (6.7),

Uen — Uc(x)Uep
Uen — Uys(i-x)ue p, (6.81)

where the argument of U, has been truncated to leading power.

We are interested in building local operators using the charged fermion fields. This will allow
us to model processes with light-like charged fermions as external legs. Therefore, it is useful to
define a gauge invariant collinear fermionic building block:

Xe (x) = ‘/VcT (x) Uc,n - (6.82)
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Next, we note that the covariant derivative includes A, so our . fermion has non-zero interaction
with the ultrasoft gauge boson. However, we can use the same strategy as in Sec. 6.3 above to
redefine our field and eliminate this interaction. Specifically, the field redefinition

Xen(x) = Yo(i-x) 20 (x) | (6.83)

yields an interacting Lagrangian for the collinear fermion that is independent of the ultrasoft gauge
boson.

e Exercise: Following the same logic as in Sec. 6.3 above, show that the field redefinition
in Eq. (6.83) eliminates the coupling between the collinear fermion and the ultrasoft gauge
boson at leading power.

This provides us with everything we need to model processes involving charged light-like fermions
as external states. In the next section, we will quote the formulas one can derive for the summation
of the fermionic vector current by applying the technology we have developed in this section thus
far.

6.5 Sudakov Summation and the Cusp Anomalous Dimension

In this section, we will provide the key results used to sum double Sudakov logs for a process
with a pair of back-to-back charged fermionic final states. This follows [144], where more details
are provided. Here we choose to highlight the final answer to emphasize new features of working
with real SCET as opposed to the scalar toy SCET above.

We begin with a FULL THEORY vector current process, which injects M worth of energy into
the system with only the light degrees of freedom:

T =uj 6" up +ug ot uj, (6.84)

where uy (uR) is a left (right) handed Weyl fermion charged in the fundamental of an SU(N) gauge
group. This current maps onto the SCET local operator

K10 8 e () + 2o () 0 o ) = Yol -x) (29 (0 8 200 + 2 0y 02X ()

=¥, (-0) (1) () We () 3 W ()5 () + u R (0) W () M W)y () (6.85)

¢,

Following the logic that led us to Eq. (6.63), we know that our matrix element will take the factor-
ized form

= (M 1) J.(PP1?) (PP u*) 7 (PP PP IMP, u?) . (6.86)

Before writing down the explicit form of the RGEs, it is worth highlighting a few features.
Given Eq. (6.86), the anomalous dimensions for each of the functions F take the form

V' = Yeusp L + Vr (6.87)

where L is the logarithm whose argument depends on the scale associated with F', and Yusp 1S @
universal factor that we will describe in what follows. This is the most general form we can have if
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we are going to realize scale separation. Recall that the FULL THEORY result must be independent
of the RG scale u, since this is an artifact of matching onto SCET. In particular, the fact that the
anomalous dimensions are linear in the logarithm and all proportional to the same coefficient ¥eusp
implies that they can recombine to sum to zero and eliminate the u dependence. This not only
provides a constraint on the logarithmic contribution (in that they must all be proportional to the
same factor), but also implies that the non-log dependent part of the anomalous dimensions sum to
Zero:

Y (@) =7 g. (&) =¥ 7. (@) + 77 () = 0. (6.88)

Next, we note that the common factor Y.usp () has a beautiful physical interpretation as a “cusp
anomalous dimension” [157, 158]. This nomenclature is based on the observation that the anoma-
lous dimension for the soft function is equivalent to a divergence which emerges from straightening
a Wilson loop that is cusped, i.e., a change in its direction from 7 to 71 at some spacetime point. This
is exactly the physical situation we are computing in Eq. (6.61) and Eq. (6.62). Then the required
relation between the logarithmic terms in the anomalous dimensions implies that Y., () appears
in all four anomalous dimensions.!!”

We can write the general solution to the RGE equation

d

WF(H) = () F (1), (6.89)

which is solved by

F(ue) = Ur (1, ie) F (1r) (6.90)

where Ur is known as the “evolution kernel”” and encodes the solution to the RGEs, see e.g. [161]
for a general form of Ur. Note that one must also consistently include the running of the gauge
coupling @ when working at a particular NLL order. Both Yeusp and Y can be computed as
expansions in o within SCET.

The arguments for the universality of the eikonal factor, which is used to derive the soft Wilson
line, imply that the cusp anomalous dimension is also universal in that it only depends on the charge
of the states that define the collinear direction. Since it is so ubiquitous and determines the structure
of the log dependent term in the anomalous dimensions, this object has been studied extensively,
e.g. the first two loop calculation for QCD was done in [134]:

a a2 67 w*\ 20
'Ycusp(a) = H“'CF‘F <H> <CACF <9 — 3> — 9I’lfoCF> , (6.91)

where C4 = N and Cr = (N> —1)/(2N) are the quadratic Casimir operators for SU(N) adjoints and
fundamental fermion fields respectively, ns is the number of charged fermion flavors, and 7y = 1/2
for the fundamental representation.

10 A cysped Wilson line additionally has been shown to encode the universal form of the QCD splitting function at
large momentum fraction [159]. Finally, to emphasize the universality of Y.usp, We mention an intriguing connection to
higher spin operators in CFTs, whose anomalous dimensions can be related to the Sudakov factor [160].
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For our vector current process, we can now write the general form of the RGEs:

[ M?

@%(M{u}) = 3 _%USp(a)log iz + (@) | (M, u3,)
s ) = [enteoe 41| )
CHO;%/E(PZ#Q) = —% :%mp(a)log;;HfU(a): /5(132,”}6)

dlo(giu; S <P;1:27 ,Ll2y> = % :%usp(a)logﬁizﬁw(a)] S (P;;z, u;) . (6.92)

where a = g?/(47) is the fine-structure constant for the SU(N) theory. Integrating Eq. (6.92) sums
the large Sudakov double logs that emerge for the vector current at one-loop, and can be used to
systematically sum logs to arbitrary order. Note that we must evolve all four functions to a common
scale uy. However, they each will depend on an initial i, and as such this initial choice should be
made to minimize the logarithms contained within the anomalous dimensions, such that the RG
evolution is kept under good perturbative control. In our simple example, the optimal RG path is
clearly [144]

MX° = H(M?,5,)

M = Te(P?, 1% ) T=(P? %) (6.93)
MM\ l l S(P2]52/M2,M?S)

A

Note the difference with the scalar SCET case above, see Eq. (5.47), where we did not factorize our
matrix element into separate functions, which implied that we only had a single RG scale p;. We
could have used a similar approach here, and just computed the contributions to the vector current
process all together. However, working with factorized individual functions has the benefit that one
can analyze them independently when computing perturbative corrections.

For concreteness, we will sum the leading Sudakov logarithm. This implies that we can treat
Yeusp as a constant, and set the subleading anomalous dimensions to zero: Yy =V g, =V g, = Y =
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0. In this approximation, it is trivial to solve the RGEs in Eq. (6.92)

o (2,157 = o (M2 ) exp |- 2

e (Pz,u%) = 2 (Pz,u}c) exp | =+

AP ai) = () o

P2P2 P2P2 Y uz ‘LLZ ‘u2 2
5”( YR L2> —5”( Y2 ,u/> ex p[ L <log2 Hi; 2loglu‘—?log If;PZ )] (6.94)

This shows that we have separated scales and exponentiated the Sudakov double log!

This summation procedure is systematically improvable by computing higher & corrections to
the anomalous dimension. Following the notation in Eq. (6.87), this expansion schematically takes

the form

) 'YC(uzp Lr

:.1

()" ~ (37

=z mﬁ(%) Yoo

[
() e () s ()
(

() '+ (55) ]

o (2)

n (6.95)

(J )) is coefficient of the j™ order cusp

where Lr is the relevant log for the function F, and yc(flzp (}/F
(non-cusp) anomalous dimension term with the o /(4 ) dependence removed. Then if we ignore
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the running of ¢, the evolution kernel takes the form

U ~enp () dihiz) =1+ ()

1 /703 3
+2 (1) () LE+--

o () e ()

(5 ]

1 702
'}’C(LllgpLIZr:"i‘E (H> (7’0(1112;))2[‘41?

)13+ (1)

47 YI(VI)LFH

1 /o2
v3 () [0h) 2+ 2l 1+ 22+ (1) 23]

1 3
L () ) 13 ()1 L +6 (i) o L

6 \4m
+3 (o) (1) Lt + 6 1 L+ (1) 3]+ (6.96)
So we can identify a pattern'!!
al o
o’ L3 o’ L2 o’ L a? (6.97)

ak L2k—1 Oék L2k:—2 O&k sz_3 akz L2k—4

where as in Primer 3 above, the green shaded region corresponds to LL. summation, the purple is
NLL, the blue NNLL, and the red schematically contributes at NLL. Note that the pattern is non-
trivial, due to the fact that the anomalous dimension now includes two independent expansions in ¢,
the cusp anomalous dimension Y.ysp and the non-cusp anomalous dimension ¥r. Note again, we are
neglecting the running of ¢, which further complicates the expansions in Eq. (6.96). This shows
how SCET can be used to systematically sum the large logarithms due to IR soft and collinear
divergences to arbitrary precision.

6.6 A Few Remaining Concepts

There are a few important additional ideas/techniques that often show up in SCET (and pertur-
bative QCD) calculations, but were not required for our simple example processes explained here.

1 For a more sophisticated treatment of the interpretation of what logs are summed at what order, see [162]. In
particular, they explore how to make direct comparisons between summed QCD and SCET results, providing insights
into both approaches.
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Therefore, we will conclude our discussion of SCET technology with a brief mention of a few of
the most important ones.

SCET was invented to calculate the partial width for the heavy quark decay B — X, v (here X;
is a “jet” that includes a strange quark) including the summation of large Sudakov logs [145], see
the discussion below in Sec. 7 for additional physics context. This first calculation computed the
partial width including the impact of this summation; we expect that the reader who has made it this
far will now have the tools to read this paper. Later it was understood how to compute the spectrum
of the outgoing photon [163, 164]. This relies on the inclusion of a “measurement function,” where
the unitarity cuts (see the discussion around Eq. (4.25)) are augmented by an additional constraint

on the states crossing the cut. For the B — X,y example, one would interpret the symbol “
crossing a photon line as the replacement

pz_nlﬂﬂ,o —  —2in8(p*—m*) 0(p°) 8 (Ey— Ey=d) (6.98)
where Ey is the dynamical energy of the photon that flows through the diagram, and E{,“easured is
the energy of the photon fixed by the observable. This yields a computation of the observable
dI'g/dEmeasured- This technique is useful since it keeps careful track of various factors that appear
when cutting all the possible channels of the relevant diagrams. Furthermore, this measurement
function can be given an operator definition, which allows one to apply power counting rules to
the measurement function, thereby ensuring that the EFT models the impact of the measurement
consistently. Note that the region of validity where SCET is appropriate is in the limit Eeasured —
my /2, known as the “endpoint.” When one is interested in an inclusive observable, then the operator
product expansion likely provides a better approximation.

When one is computing a complicated observable, especially if it is differential in some vari-
able as in the situation we were just discussing, one often finds that the resulting spectrum is a
generalized function or distribution [165], see [166] for a book on generalized functions. For ex-
ample, the resulting endpoint differential spectrum for the B meson decay [163, 164] contains on a
factor of 0 (mb /2 — E?easured), and also depends on “plus functions.” A plus function arises from
the expansion of the dimensionally regulated factor

1 Ry [ log(1—7z)
e~ 86(1 x)+[1—x]+ S[ - }++ , (6.99)

where the plus function is defined as

f(1)
/dxl_ /dx 1_ , (6.100)

which implies that 1 /[1 —x]; # 1/(1—x). For example, this factor appears in the DGLAP evolution
equations that govern the RG scaling of the parton distribution functions see e.g. the relevant
discussion in [3] and [50]. One way to think about why these objects appear is that the RG sums
logs but does not change the power law structure of the observable. Therefore, if the calculation
of an observable includes a factor like 1/(1 —x) to some power, then then one encounters plus
functions when applying dim reg and Taylor expanding about x = 1.
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Note that integrated distributions are normal functions, and so it is often more straightforward
to work with an integrated distribution, and then differentiate it to yield the spectrum. For example,
we could define a cumulant for the B partial width as

my /2 dl'p

cumulant ( ;rmeasured) __ b
FB (Ey ) B /Ejr/neasured dE dE ’ (6.101)

which is simply a function of the photon energy.
Another complication that can arise is that factorization theorems may require non-perturbative
input. The most famous example is the factorization of parton distribution functions, which schemat-

ically takes the form'!?

1 1
o= [n [ dasin) flw) < 6(nPxr-), (6.102)

where the x; are momentum fractions, f;/,(x;) is a parton distribution function, and 6 is a partonic
cross section. Although one can derive operator definitions and RG evolution equations for the
parton distribution functions (the DGLAP equations mentioned previously), they must ultimately
be determined by comparing to data. Note that when performing an inclusive measurement, this
factorization holds. However, in more complicated cases with measurements, this simple factoriza-
tion is modified and additional tools like SCET become relevant. Schematically, this picture looks
something like

H H

Glauber .

LB
L&)
\$L/

T 1 1 1 1§ | -
N
Beam "
credit: Tan Moult

where we have labeled a variety of effects (including the non-perturbative physics of parton distri-

butions and hadronization) that must be taken into account if one wishes to compute a complicated
realistic observable.

1120ne might complain that this formula is not simply a product of functions, and so it is not technically “factorized.”
However, this is simply an artifact of the space one is choosing to work in, e.g. this formula becomes a simple product of
functions when Fourier transformed to position space. Then it can be convenient to perform scale setting in the factorized
space, and then transform back.
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Finally, we note that the process dependence of SCET implies that one must be careful when
expanding out the FULL THEORY into EFT modes. In particular, recent developments in additional
factorizations, which can be relevant to multi-scale problems such as jet substructure [167, 168,
169, 170, 171], and progress understanding the nature of factorization violation in SCET due to
so-called Glauber modes [153], makes it clear that there are a variety of modes that can in principle
contribute (we have dropped an overall factor of M for brevity):

hard: py, 1,1,1)

A% 1,1)

2

~
collinear: p, (
(L,
(
(

anti-collinear: p; ~ (1,A%,A )
soft:  ps ~ (A,A 7L)
ultra-soft:  pys ~ (A2, )

soft-collinear: p,

2

(1— x)(l A% A)
(1—x) (A% 1,1)

2

anti-soft-collinear:  pg,
non-relativistic: ~ ( 1,1, ),)

Glauber: pg N( ) (6.103)

where for the collinear-soft, we are assuming an additional scale (such as an endpoint measurement
where the parameter x — 1) implies the presence of an additional small parameter (1 — x), and the
Glauber scaling can be generalized as discussed in [123]. This makes it clear that the IR of gauge
theory can be quite complicated, and one must take care when matching a FULL THEORY onto
SCET.

This concludes our discussion of the technical aspects of SCET. The final section closes these
lectures by provides some much needed connections to physical examples, first for EFTs of Gold-
stone bosons, and then for SCET.

7. A Bit More Physics

If I have come close to accomplishing the goals I set for myself when concocting the topics
covered in these lectures, you should now have a non-trivial level of comfort with the approach to
separating scales where one matches a FULL THEORY onto an EFT in the UV, and subsequently
sums logs by running the EFT Wilson coefficients to the IR. The application of EFTs within particle
physics is so ubiquitous, I made the hopeful assumption that the reader would find the motivation to
read these lectures self evident. However, it should also be obvious that some very important topics
have been neglected. Although you were forewarned, you might still be appalled at the lack of
physics contained here. To that end, I will take some time in this concluding section to emphasize
some of the most important concepts that any reasonable Effective Field Theorist should have in her
toolkit. This discussion is additionally supplemented by a short EFT bestiary in Appendix A. Due
to the enormity of what can be done with SCET, I also decided it would be useful to include some
closing comments on the physics that has been explored with this framework as well. I also will
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take this opportunity to remind you of the presence the annotated bibliography given in Appendix
B, which I hope will provide some guidance for your future EFT endeavors.

(Goldstone) EFTs and Physics

One intuitive jumping off point for a set of lectures on EFTs would be a discussion of Fermi
theory and the weak interactions, and in fact many of the excellent lectures on EFTs that already
exist do exactly that (see Appendix B). This would be nicely followed by a discussion of applica-
tions to low energy QCD, since all on its own, the fact that the interactions of light mesons can
be modeled in detail as a theory of Goldstone bosons, even though the FULL THEORY description
is strongly coupled, makes a deeply compelling case for the study of EFTs. My early outlines of
these lectures had prominently featured the EFT of Goldstones, and so as an attempt to assuage my
guilt over the lack of physics contained in what you have in front of you, I will briefly describe the
physics I would have reviewed if I had followed that approach.

A Goldstone boson is the massless (a condensed matter physicist might call this gapless) ex-
citation associated with the spontaneous breaking of a global symmetry.!!® Since it is massless,
it persists to the IR and should be included as a degree of freedom in a low energy EFT. If the
global symmetry is exact, then the EFT Lagrangian for the Goldstones is entirely determined by its
particular symmetry breaking pattern, which can be derived by relying on the constraints imposed
by the coset structure G/H, where G is the full global symmetry group and H is the subgroup of
G that remains unbroken when the spontaneous symmetry breaking is active [174, 175]. Addition-
ally, introducing explicit violations of the global symmetry in a controlled way yields masses for
the now pseudo-Goldstone bosons, along with new interactions.

When applied to the Standard Model, this framework is known as the “chiral Lagrangian”
or “chiral perturbation theory” since it is the manifestation of chiral symmetry breaking in the
quark sector, see e.g. [176, 177, 178, 179] for some reviews. The quark sector has an approximate
U(3), x U(3)g global symmetry since the up, down, and strange quark masses are small compared
to the confinement scale of QCD. Then the input assumption for chiral perturbation theory is that
strong dynamics at the QCD scale break this symmetry down to the diagonal U(3)y, and the light
quark masses play the role of the small global symmetry breaking. Identifying the pions and Kaons
with the resulting pseudo-Goldstone bosons, yields a phenomenal phenomenological model of low
energy QCD. One can derive the couplings of these Goldstones to nucleons, which yields a rich
set of observables and gives a reasonable first approximation for nuclear binding effects. It is
additionally possible to gauge an unbroken global U(1) symmetry, which induces couplings to the
photon. Furthermore, the anomalous nature of the global symmetry structure yields a calculable
Wess-Zumino-Witten term, which leads to a variety of effects, e.g. it explains how the neutral pion
can decay to a pair of photons. There are a number of additional topics that could have been
covered, e.g. naive dimensional analysis as an approach for estimating the size of operators, chiral
perturbation theory at loop level, and the connection between extending the global symmetry to
include a “hidden local symmetry” as a model for the p-meson. The physics of light mesons also
provides a nice segue to exploring the related meson phenomenology described by Heavy Quark

13 This assumes the breaking preserves Lorentz invariance. For a treatment of Goldstone bosons in non-relativistic
systems, see e.g. [172, 173].
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Effective Theory [180, 181, 182, 183, 184, 185]. This framework allows one to treat the physics
of heavy mesons in a controlled way by isolating the strongly coupled effects of QCD utilizing a
factorization theorem.

There are a number of subjects that have compelling relations to the chiral Lagrangian. One
of my favorite examples is Seiberg duality [186], which serves as an incredibly rich playground
for a calculable theory of mesons akin to the chiral Lagrangian. Seiberg’s brilliant insight was that
supersymmetric QCD-like theories (labeled by a number of colors N, and a number of flavors Ny)
can expose the physics of (supersymmetric) mesons in a completely controlled way, see e.g. [187]
for early lectures and [80] for a comprehensive modern treatment.''# The duality is a mapping from
a quark description that is strongly coupled in the IR to a theory of mesons that is weakly coupled in
the IR. This is a rich subject that works as a beautiful example of EFT reasoning. It takes advantage
of the powerful constraints imposed by supersymmetry (in particular that the superpotential is not
renormalized), along with a concept for matching two theories that was not covered in these lectures
known as “anomaly matching” [78]. This is the idea that if two theories have a chance of describing
the same physics in the IR, they must manifest the same global symmetries. Then one can perform
current correlator calculations to check if any of these global symmetries are anomalous. The
presence of an anomaly is an all-orders statement, it cannot be altered by an RG flow. Therefore,
if any of the global symmetries are anomalous in one theory, the anomaly must also be present
in the dual theory, which constrains the allowed particles and charges. This provides a necessary
condition that the two theories describe the same IR physics. In this sense, one derives a non-

perturbative matching between a quark and meson description of the same IR dynamics.!!>

There is another incredible application of Goldstone EFTs that would have been exciting to
highlight: the Effective Theory of Inflation [194], and see [195, 196] for reviews. This EFT is based
on the realization that the physics of slow-roll inflation has a description in terms of a spontaneous
breaking of the global Lorentz spacetime symmetry. Specifically, the inflaton is identified as the
Goldstone boson of spontaneously broken time-translation invariance, since the slowly evolving
background can be interpreted as setting a clock. It is possible to derive a universal Lagrangian
for slow roll inflation as an EFT expansion, which allows one to infer the number of independent

1140ne might argue that talking about Seiberg duality as an EFT is misleading since it neglects the fact there is no
controlled expansion beyond leading order. Specifically, the heavy mass limit for a quark only works in infinite or zero
mass limit, i.e., Seiberg duality is a statement about the deep IR. The two dual descriptions really are different theories
that happen to flow in to the same IR description, see [188] for an explicit demonstration of the consequences of this
fact.

15For the interested reader, I will highlight a few more features of Seiberg duality. One of the key aspects of the
construction relies on a non-perturbative instanton calculation for the case when Ny = N, — I that determines the precise
form of the so-called ADS superpotential that is a consequence of strong dynamics [189, 190]. Then by relying on the
physics of decoupling, one can introduce masses for the quarks, take them to be large and match this theory with a heavy
quark onto an EFT that has one fewer flavor. Various dynamical phases of supersymmetric gauge theories can be in-
ferred, including an example theory that confines without breaking chiral symmetry, manifesting “s-confinement” [191].
Additionally, one can argue for the existence of the “conformal window” for theories that satisfy 3/2 < Ny/N. < 3 [186].
The claim is that supersymmetric QCD models that satisfy this relation between Ny and N, are conformal: the theories
at the high edge of this window have an incalculable strongly coupled fixed point, while those at the bottom edge are an
example of a weakly coupled “Banks-Zaks” [192] fixed point. Finally, there are compelling connections to be made to
a version of the chiral Lagrangian that incorporates the p meson using the hidden local symmetry technique mentioned
above [193].
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observables at a given order in power counting. One can compute deviations from the Gaussian
predictions within the EFT, which can be mapped onto interactions in the FULL THEORY. This
EFT sharpens the question of what aspects of UV models for inflation can be probed using obser-
vations. There is another EFT relevant for cosmology, which is the EFT for large scale structure
which allows one to connect Wilson coefficients directly to the results of N-body cosmological sim-
ulations [197, 198]. This is an EFT to describe deviations from the perfect fluid which is a good
approximation of the dark matter distribution until non-linear structure formation takes over. Taken
together, these formalisms demonstrate the relevance of EFT techniques to precision cosmology.

In an alternate timeline, the lectures you have before you would have introduced you to these
topics. For additional examples of EFT applications (including some overlap with what was just
said here), see Appendix A.

SCET and Physics

Most of what you need to know to work with SCET was introduced in the main body of these
lectures. However, given the minimal connections to physics, it is worthwhile to briefly describe
how this framework has been applied to real world processes. I should emphasize that working
with SCET has become a subfield all of its own, and a much more comprehensive discussion of
applications is provided in [122, 144].

The framework of SCET was discovered as a way to sum logarithms that appear heavy meson
decays, e.g. the B-meson decay channel B — X, v, where X is a “jet” that includes a strange quark,
B — X;eT e, and B — X,/ V, where X, is a “jet” that contains an up quark. These partial widths
can be computed using Heavy Quark Effective Theory, where the decay can be modeled using the
operator product expansion, see e.g. [199, 200] for a calculation of B — X, y. These calculations
manifest a kinematic Sudakov double log when one restricts the phase space of the final state,
e.g. when the photon energy is near half the B mass. This motivated the invention of SCET [145],
which was used to sum the large logs and provide an RG improved prediction for the B partial
decay widths. This was then followed up by refinements of the calculation and calculations of the
spectrum near the endpoint 2 Ey /my, [201, 145, 163, 202, 203], and sub-leading power contributions
to B decays were also computed [138]. Around the same time, the SCET approach to deep inelastic
scattering was pioneered in [204].

There have also been many applications to collider physics. For example, SCET was used to
sum QCD corrections to the thrust observable at an et e~ collider, which allowed for a precision ot
extraction from LEP data [205]. The thrust calculation has also recently been computed including
sub-leading power corrections [132], providing the first concrete calculation of a collider observ-
able beyond leading order in SCET power counting. SCET techniques have also been applied at
hadron colliders. The factorization of initial state jets from the parton distribution functions was
explored in [206]. The hadron collider production of the Higgs boson in the gluon fusion channel
including summation for jet vetos was done in [207, 208]. There has also been recent progress in
taking a SCET description and factorizing it into a sub-SCET, which allows logarithms associated
with jet substructure (e.g. logs of the jet radius parameter) to be summed [167, 168, 169, 170, 171].
Finally, some interesting studies that turned SCET ideas on their head to make rigorous statements
about perturbative QCD amplitudes was performed in [209, 210, 211, 212].
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Given the extent to which SCET (and for that matter so much of collider physics in general)
depends on the factorization of observables, it is interesting to study the systematics of factor-
ization violating effects. One source of these effects are due to Glauber modes. The proof that
Glauber modes only contribute an overall phase to the matrix elements for the Drell-Yan process
was a critical component of the original demonstration of the factorization for the parton distribu-
tion functions [213]. Not only are the presence of Glauber modes a potential harbinger of factor-
ization violation, they are also a critical to include if one is modeling the forward scattering (or
Regge) limit of a cross section when |¢t| < s. SCET in the presence of Glauber modes has now
been studied extensively [153], including recent results computing the Glauber contribution from
t-channel quark exchange [214], and for electroweak factorization violating effects [215]. There is
another potential source of factorization violation, known as non-global logarithms [216]. These
can occur in the presence of a hierarchy of scales when radiation from one side of an event can
non-trivially impact the kinematics of the other side. The summation of this class of logarithms
can be performed in the limit of a large number of colors using the so-called BMS equation [217].
Non-global logarithms have additionally been cast in the language of SCET [170, 218]. Using a
conformal transformation, non-global logarithms can be related to the BFKL equation that governs
the evolution of logarithms that appear in the Regge limit [219].

I am compelled to close this discussion with examples of SCET applied to physics beyond the
Standard Model, both because this is in close alignment with the topics covered at TASI 2018, and
especially because this gives me the opportunity to unabashedly highlight some of my own work.
My personal entry into the world of SCET started with the realization that heavy wino annihilation
to photons suffers from a large Sudakov log that has an &'(1) impact on the NLO prediction [220].
This large log is not due to kinematics, but instead emerges because the final state is restricted
to contain a photon, which one is an allowed final state since electroweak symmetry is broken.
This causes an imprecise cancelation between the virtual and real emission diagrams, yielding a
Sudakov double log. This motivated myself and collaborators, along with two other groups, to
apply SCET to sum the total annihilation rate [221, 222, 223, 224, 225, 226]. We then followed
this up to compute the spectrum [227, 228], which involves introducing a measurement function as
discussed above, and relied on multi-stage factorization techniques to separate the multiple scales
in the problem. There have also been applications of SCET to general relativity in [229, 230],
where the soft sector can be shown to eikonalize and factorizes in QCD, but the collinear sector
does not manifest any divergences. On another front, there have been recent studies applying SCET
to a hypothetical post-discovery scenario where a new heavy beyond the Standard Model particle
has been observed at the LHC or a future collider [231, 232]. Finally, I have recently been involved
in understanding the interplay of SCET and supersymmetry. We now have understood how to
formulate superspace in the collinear limit. In [233, 234], we constructed theories in collinear
superspace from the top down by “integrating out half of superspace.” Now, we have understood
the bottom-up EFT rules for working with superfields in collinear superspace, with a particular
emphasis on the action of RPI, and have uncovered some novel superfield objects that do not exist
in the Lorentzian version of .4~ = 1 supersymmetry [110].

This discussion should make it pretty obvious that SCET has tremendous relevance for physics
of the Standard Model and beyond. There is no question that the framework of SCET will continue
to be explored and applied to more phenomena.
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e Exercise: What did these lectures inspire you to go calculate?
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Appendix A. The Effective Theory Zoo

There are far too many EFTs to list comprehensively.!'® However, in the interest of making
the point that these techniques apply to many situations, I was compelled to provide this appendix.
I will briefly discuss some important EFTs, highlighting a few of their most salient features.

e Fermi’s Theory of the Weak Interactions [236]: Perhaps the first EFT that a student of
particle physics learns is Fermi theory, which describes the low energy limit of the weak
interactions as invented by Fermi to model 8 decay. This EFT can be derived from the Stan-
dard Model by integrating out the W boson, yielding a description of the weak interactions as
contact operators between Standard Model fermions, e.g. G (12 Py s) (d_k YuPL u), where u
is the up quark, d is the down quark, s is the strange quark, y* are the Dirac matrices, Py, is
the left-projection operator, and Gg ~ g% / m%v is the Fermi constant (g, is the weak coupling
constant, and myy is the W-boson mass), which can be determined through a matching calcu-
lation. This is effectively just a fancy real world version of the example we discussed above
in Sec. 3.1.

e The Euler-Heisenberg Lagrangian [237] (see e.g. [238] for a review and the discussion
in [3], and a recent experimental proposal that has a shot at measuring it for the first time [239]):
This is the EFT of electromagnetic field interactions, where the electron has been integrated
out. It describes photon-photon scattering when expanded in the weak field limit, with a
coefficient ~ a?/m?, where « is the electromagnetic fine-structure constant, and m, is the
electron mass. It is particularly interesting because this calculation holds to all orders in the
electro-magnetic field, such that it can be extended to the strong field regime. This allows
one to describe effects like Schwinger pair production [240], when interpreting the term as
arising from an instanton-like effect. One recent extension has been to write down an EFT
description for the propagation of charged particles in a magnetar magnetosphere, where
both strong electric fields and a dilute plasma exist [241].

e Chiral Perturbation Theory (see e.g. [176, 177, 178, 179] for some reviews): This is the
EFT of the light mesons in QCD, which relies on identifying the pions and Kaons as Gold-
stone bosons of a flavor symmetry that is spontaneously broken by the confinement of QCD.
This is an example where matching is not useful, since the scale where one would attempt
to perform a matching calculation would be it ~ Aqcp, where we do not have perturbative
control of the theory. However, this does not stand in the way of being able to use this EFT
to extract a tremendous amount of physics by enforcing the symmetry structure, providing
insight into the nature of low energy QCD and nuclear physics. A discussion of this EFT
was provided in Sec. 7 above.

e Heavy particle EFTs [180, 181, 182, 183] (also see the review [184] and book [185]):
An EFT for heavy particles can be written down by modeling these states as classical static
sources with small residual quantum fluctuations. This implies a preferred frame, namely the
rest frame of the heavy particle where v* = (1,0,0,0). One can then write down a systematic

116To my knowledge, the best attempt can be found via the online course [235].
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operator expansion by expanding the momentum of the heavy state as p* = M v* + k", where
the small momentum k* provides a power counting parameter. This approach has yielded
many important quantitative successes when applied to heavy meson decays.

o EFTs for Non-relativistic Processes [242, 243], (also see [244] for a review): This can be
seen as an extension of the heavy particle EFT, where a further matching is performed onto
non-relativistic quantum mechanics so that perturbative bound state effects can be system-
atically treated. This leads to a multi-scale problem since now p ~ Mv and E ~ mv? are
both necessary power counting parameters. This EFT has applications to quarkonia, can be
used to calculate the Lamb shift in QED, and leads to the intriguing notion of a velocity RG.
A related approach has recently been applied for understanding black hole inspirals [245].
Another aspect of these EFTs is their application to scattering calculations. This has been

explored in the context of nucleon scattering in e.g. [246, 73].

e Soft Collinear Effective Theory [145, 140, 149, 141, 137, 138] (also see [135] for an early
attempt known as Large Energy Effective Theory): Given that essentially half of these lecture
notes are devoted to SCET, it had to be put in this list. The basic idea is to develop an EFT
for summing large Sudakov double logarithms. This EFT is incredibly rich, and there are a
tremendous number of applications, so if you are curious about it we encourage you to read
the body of these lectures.

e The EFT of Inflation [194] (also see [195, 196] for reviews): There is an EFT description of
inflation, where the inflaton is treated as a Goldstone boson that results from the spontaneous
breaking of time-translation invariance due to the slowly varying vacuum energy that was
present during inflation. This EFT demonstrates the universal nature of inflation (in that the
leading order Lagrangian only depends on the scale of inflation and the speed of sound), and
allows a systematic organization of the observables that result from quantum fluctuations of
the inflaton.

o The EFT of Gravitational Inspirals [247] (also see [248, 249] for a review): This EFT
is obviously relevant now that we live in a world where the observation of gravitational
waves from binary inspirals has become routine. This EFT organizes the post-Newtonian
expansion of general relativity, where there are three relevant scales to keep track of: the size
of the inspiraling object, the orbital radius, and the wavelength of the gravitational radiation.

o The EFT of the Fermi Surface [250, 251, 252, 253]: A demonstration of the fact that EFTs
are a useful formalism to describe pseudo-particles in non-relativistic systems is the EFT that
describes excitations of the Fermi surface. This allows one to explore phases of the Fermi
liquid using EFT techniques.

Since I have to stop somewhere, I might as well leave it at this, apologize to the reader who’s
favorite EFT did not make this list, and move on to my annotated bibliography.
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Appendix B. A Brief Annotated Bibliography

In this appendix, I will feature many of the resources that are available for learning about
EFTs and advanced field theory techniques. Furthermore, this will provide me with an opportunity
to acknowledge many of the resources that were used heavily when constructing these lectures. I
have organized the references into three categories. The first set are broadly EFT centric, and in
particular provide many real world physical applications which are notably absent from what is
presented in these lectures. The second set are specific to SCET, and provide many details and
applications that go beyond our goal of simply setting up the framework. Finally, I highlight a
few technical resources that one might find to be very useful when attempting to perform tricky
integrals or deal with subtle aspects of dim reg and the RG.

A VARIETY OF PERSPECTIVES ON EFTS

e Anecesh Manohar’s 2017 Les Houches lectures [64] and 1995 Lake Louise Winter Institute
lectures [63]: The 2018 lectures provide details for many physical examples, both for de-
termining the degrees of freedom and power counting schemes. This is followed by a com-
prehensive introduction to matching and running. In particular, the inspiration to study the
heavy-light integral in Sec. 3.5 came from these notes. The 1995 lectures include an exten-
sive discussion of the EFT for the weak interactions at low energies at tree and loop level, a
discussion of loop-level heavy particle decoupling, and an introduction to chiral perturbation
theory, including coupling of heavy quarks to the Goldstone degrees of freedom.

e Matthias Neubert’s 2017 Les Houches lectures [254]: These lectures cover renormalization
theory for QED and QCD. Multiple renormalization schemes are emphasized. Then appli-
cations to EFTs and the notion of renormalizing a composite operator is discussed. One of
the goals of these notes is to serve as an introduction to the three 2017 Les Houches lectures
highlighted here [64, 179, 144].

e Antonio Pich’s 2017 Les Houches lectures [179]: These lectures provide a systematic in-
troduction to EFTs of Goldstone bosons. First the general formalism is reviewed. This is
followed by applications to chiral Perturbation theory, including a discussion of symmetry
breaking effects, quantum anomalies, the large N, limit, and some phenomenological appli-
cations. Then the Standard Model EFT is treated with an emphasis on the Goldstone nature
of the Higgs boson.

e David B. Kaplan’s 2005 National Nuclear Physics Summer School lectures [255] and Insti-
tute for Nuclear Theory 1995 Summer School lectures [256]: The 2005 lectures cover many
applications and techniques of EFTs, including a beautiful EFT driven discussion for why
the sky is blue, chiral perturbation theory, nucleon EFTs, and color superconductivity. The
shorter 1995 lectures also provide many insights into the philosophy and framework of EFTs,
along with a few examples.

o Ira Rothstein’s 2002 TASI lectures [244]: These notes provide a detailed introduction to the
matching and running technology, followed by an introduction to EFTs for non-relativistic
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bound states (NRQCD), and an EFT approach to theories of large extra dimensions. Strong
emphasis is place on the details of the RG for these models.

e Alexey Petrov and Andrew Blechman’s book [53]: This is a comprehensive introduction
to EFTs. After a discussion of techniques, many examples are presented including chiral
perturbation theory, Heavy Quark Effective Theory, NRQCD, SCET, higher dimensional
operators for the Standard Model, and EFTs of gravity. They provide a nice organization of
types of EFTs: those where it is possible to match onto a UV theory, and those where this is
not possible but the symmetries of the EFT are enough to extract useful physics.

o lain Stewart’s 2013 edX course [235]: This is a full course on EFTs. It is freely available
online, and provides access to a remarkable set of resources including video lectures, home-
work assignments, and lecture notes.

e Howard Georgi’s 1993 review [54]: This review emphasizes the philosophy of EFT tech-
niques. There are a purposefully minimal number of expressions, allowing plenty of space
to emphasize the conceptual underpinnings of the EFT approach.

e Aneesh Manohar and Mark Wise’s book [185]: This monograph provides a comprehensive
introduction to Heavy Quark Effective Theory. Many techniques and applications are pre-
sented, with an emphasis on the physics of heavy mesons in the Standard Model.

e Matthew Schwartz’s book [3]: This book is referenced here for two reasons. First, I have
largely followed its conventions, so this is a useful resource if one is interested in double
checking factors of 2 or i. Furthermore, it includes introductions to the Euler-Heisenberg
Lagrangian, Heavy Quark Effective Theory, SCET, and (of course) the Standard Model.

e Witold Skiba’s 2009 TASI lectures [70]: These lectures begin with an explanation of EFT
techniques, including a comprehensive discussion of the hierarchy problem. This is followed
by applications to the EFT approach to precision electroweak calculations.

o Markus Luty’s 2004 TASI lectures [69]: Although these are lectures on supersymmetry
breaking, the first section provides an introduction to EFTs, with an emphasis on the hi-
erarchy problem.

e Joseph Polchinski’s 1992 TASI lectures [97]: These lectures provide a condensed matter
focused point of view on EFTs. The EFT of the low energy modes for a conductor are
presented, with applications to Fermi liquids and high-7; superconductors.

e Walter Goldberger’s 2006 Les Houches lectures [248]: Following a discussion of EFT tech-
niques, these lectures provide an introduction to the EFT for the gravitational wave spectrum
resulting from binary inspirals.

e Kenneth Wilson and John Kogut’s 1974 Physics Reports review [56]: This reference is in-
cluded here because it is a candidate for the first review of EFTs, co-authored by one of the
inventors of the approach. The emphasis here is on critical phenomena in statistical mechan-
ics.
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SOFT COLLINEAR EFFECTIVE THEORY REVIEWS

e Thomas Becher, Alessandro Broggio, and Andrea Ferroglia’s book [122] and Thomas Becher’s
2017 Les Houches lectures [144]: The impact of this SCET book and lectures on the devel-
opment of these notes cannot be overstated. In particular, the notion of a scalar version of
SCET was (to our knowledge) first introduced here, which is one of the main examples stud-
ied in what follows. While they did explain and set up all of the general framework, these
authors then chose to work out the details of a 6-dimensional version of the scalar SCET the-
ory, which has some important differences with our 4-dimensional example. Many explicit
integrals have been taken from these resources. Furthermore, the details of the QCD example
presented below rely heavily on [144]. These resources additionally provide many detailed
applications to QCD processes.

e lain Stewart and Christian Bauer’s lectures [142]: These lecture notes provide one of the
most comprehensive introductions to SCET on the market (even though they are currently
unfinished), and the notes you have before you have been heavily influenced by them. The
first half is devoted to a detailed introduction setting up the EFT degrees of freedom, La-
grangian, and operator structure. Then applications to QCD are emphasized, including B
meson decays, e” e~ — 2-jets, and more.

TECHNIQUES AND INTEGRALS

e Vladimir Smirnov’s books [103] and [104]: These two books are very comprehensive re-
sources for evaluating integrals that appear for the Feynman diagram expansions in EFTs.
They also provide an introduction to the method of regions approach to evaluating inte-
grals that we will use below. Specifically, “Applied Asymptotic Expansions in Momenta
and Masses” [103] is entirely devoted to the systematics of regions analysis, while “Analytic
tools for Feynman integrals” [104] provides insights into evaluating multi-loop integrals us-
ing modern techniques.

e John Collins’s books [52] and [114]: These are two monographs on advanced topics in field
theory. The book “Renormalization” [52] provides a very comprehensive approach to the
RG, including many of the technical details that underlie the formalism introduced above.
Highlights include a rigorous definition of dimensional regularization, a discussion of how
to treat multi-loop integrals (including nested divergences), and a proof of the RG invariance
of bare parameters. The book “Foundations of Perturbative QCD” provides an extremely
detailed introduction to factorization in QCD.

e George Sterman’s book [120]: This introductory QFT text book has a comprehensive discus-
sion of IR divergences and factorization in QCD.
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