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Recent Progress on the QCD Phase Diagram

1. Introduction

The QCD phase diagram has driven the scientific curiosity of the community for more than

thirty years, from its earliest versions discussed as early as 1980s. Understanding the phase diagram

allows us to explain the origin of mass of 99.9% of the visible matter in the present universe.

It has motivated large scale experiments from the LHC to the RHIC at BNL and is the special

focus of the BES II runs at the RHIC during 2019-20. Several upcoming experiments at FAIR,

NICA and JPARC are being designed to probe the phase diagram at very high baryon densities,

yet to be understood. Experimental challenges aside, it is one of the most challenging problems

in theoretical physics. Lattice studies have produced some of the remarkable results till now; it

has now conclusively demonstrated that the phase transition at vanishingly small baryon densities

is a smooth crossover [1, 2, 3]. Continuum results for bulk thermodynamic quantities like entropy

density, pressure and the Equation of state (EoS) at zero baryon density are now known to very high

precision [4] with new results on continuum estimates for the EoS available at baryon densities as

large as µB/T ∼ 2.5 [5]. Efforts are underway to develop new lattice techniques to extend these

calculations to even larger baryon densities µB/T ∼ 3. Moving ahead with these successes, I will

show some instances of how lattice techniques are becoming mature enough to extend beyond

bulk thermodynamic observables, to understand the more microscopic details of different phases

of QCD, in particular, the microscopic origins of chiral symmetry breaking and deconfinement.

The review is organized as follows: In the first section, recent updates on the thermodynamics

crossover transition at µB = 0 are discussed. The anomalous U(1) part of the softly broken chiral

symmetry in QCD is believed to play an important role in determining the nature of the chiral

phase transition in the limit when up and down quark masses are vanishingly small [6]. I will

discuss the latest lattice results on the fate of UA(1) anomalous symmetry and how its origin can

be traced back to the non-trivial topology of QCD. This leads to the next section, which elaborates

on how the lattice community is trying to learn more about the QCD phase diagram by varying

the masses and number of quark flavors within the so-called Columbia plot. The Columbia plot is

now extensively studied including a new axis to it, by including an imaginary chemical potential

to the QCD action. Finally I discuss how, both imaginary chemical potential techniques as well as

Taylor expansion in µB, is allowing us to sketch the phase diagram in the finite density regime and

possibly constrain a region in T -µB plane which may have the critical end-point. Other interesting

topics discussed in the finite temperature sessions, which is not included in this review are QCD at

finite magnetic fields [7], strong coupling QCD [8] and QCD thermodynamics at large N [9].

2. Symmetries and phase diagram at µB = 0

Since up and down quark masses are much lighter than the intrinsic scale of QCD i.e ml =

mu,d << ΛQCD, the UL(2)×UR(2) symmetry of the action is very mildly broken. UL(2)×UR(2)

is isomorphic to SU(2)V × SU(2)A ×UB(1)×UA(1) and 2+1 flavor QCD, has to a very good ap-

proximation, a SU(2)V × SU(2)A ×UB(1) symmetry which is broken to SU(2)V ×UB(1) leading

to chiral symmetry breaking. The anomalous UA(1) part is always broken due to quantum effects.

Though chiral symmetry is exact in the limit mu,md → 0, however remnants of it exist in chiral

observables. For example, it was discussed in this conference [11] that the temperature at which
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an inflection point exist for the subtracted chiral condensate is consistent with the one at which

the chiral susceptibility or its disconnected part peaks. An unweighted average of these temper-

ature estimates in the continuum limit, allows for a precise determination of the pseudo-critical

temperature Tc = 156.5± 1.5 MeV [10]. In contrast to the earlier reported value of Tc = 154(9)

MeV [2] in the continuum limit, systematic errors have reduced significantly by more than 80%.

For recent updates on the results of chiral observables and measurement of Tc with twisted mass

Wilson fermions, see [12].

The UA(1) part is an anomalous symmetry thus there is no corresponding order parameter.

From renormalization group studies of model quantum field theories with same symmetries as

QCD, it has been observed that the order of phase transition for 2 flavor QCD depends on whether

UA(1) breaking effects survive or gets effectively restored at Tc [6]. Further studies with epsilon

expansion [13] have revealed a possibility of a first order or even a second order phase transition of

UL(2)×UR(2)/UV (2) universality if the UA(1) is effectively restored near Tc in contrast to an O(4)

second order transition, if it remains broken. The magnitude of effective breaking of UA(1) can

only be answered non-perturbatively and lattice techniques have immensely contributed towards a

more systematic understanding of this issue. In order to quantify the effects of UA(1) at Tc, it was

suggested quite sometime back to look at the degeneracy of the integrated two-point correlation

functions of iso-triplet pseudo-scalar and scalar mesons [14]. The integrated correlation functions

can be written in terms of the eigenvalues λ and density ρ(λ ) of the QCD Dirac operator as χπ −

χδ =
∫

dλ
4m2

l ρ(λ)

(λ 2+m2
l )

2 , hence the properties of the eigenvalue spectrum as a function of temperature

tells us about the fate of the UA(1). One way to trivially realize UA(1) restoration along with the

chiral symmetry is to have ρ(λ → 0) = 0. On the other hand if the eigenvalue density has non-

analyticities in its infra-red spectrum like mα
l δ (λ ),α ∈ [0,2) then χπ − χδ is non-zero even in the

chiral limit [15]. Recent theoretical studies suggest it is important to look at higher order correlation

functions in all these mesonic quantum number channels [16]. In the chiral limit, calculations show

that UA(1) breaking effects are invisible in upto 6-point correlation functions in the scalar-pseudo-

scalar channel if the eigenvalue density goes as ρ(λ ) ∼ λ 3 [16]. The main issues on the study of

UA(1) reported in this conference are,

• If one studies the eigenvalue spectrum of QCD at the physical point how does it quantitatively

change as one goes towards the chiral limit. Are these spectra very different?

• Status of the finite volume and finite cut-off effects that crucially affects these studies.

New results on χπ − χδ in 2-flavor QCD were presented in this conference [17], summarized

in right panel of Fig. 1. It is observed that as one approaches the chiral limit, the finite volume

effects could be milder (right panel of Fig. 1). For the physical quark masses the UA(1) breaking is

still finite on lattices of size 483 ×12 which seems to decrease to zero in the limit ml → 0. It would

be interesting to study in detail how this reweighting of domain wall configurations work at large

volumes and towards the chiral limit. The other approach reported was to calculate the eigenvalues

of QCD Dirac operator for 2+1 flavors by fixing the strange quark mass ms to its physical value and

reducing the light quark masses towards the chiral limit. New results on the eigenvalue spectrum

of overlap Dirac operator on gauge ensembles generated using Highly Improved Staggered Quark

(HISQ) discretization reported in Ref. [18], shows that the analytic part of the infrared spectrum
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Figure 1: The UA(1) breaking observable m2
s (χπ − χδ )/T 4 as a function of T for two different light quark

masses from [18] (left panel). The status of the same observable as a function of quark mass and different

volumes studied using reweighted Möbius domain wall fermions from [17] (right panel).

is quite robust. ρ(λ ) ∼ λ at around 1.1 Tc even when the light quark masses are reduced from

ml = ms/20 [19] to ms/40. A small non-analytic peak for λ → 0 observed in the eigenvalue

spectrum has been suspected due to effects of partial quenching [20]. In order of verify that the

HISQ eigenvalue spectrum has been measured with the same valence and sea quark operators on

fine lattices 643 ×16 just above Tc. The small non-analytic peak seems to appear as one approaches

the continuum limit [21]. It will be interesting to check this with other fermion discretizations like

domain wall fermions also in the continuum limit though this study will be computationally much

more intensive. As evident from the left panel of Fig. 1 both analytic and non-analytic parts of

ρ(λ ) contribute to UA(1) breaking (χπ −χδ has been renormalized appropriately to ameliorate the

effects of partial quenching) which seems to survive even for ml = ms/40 at temperatures upto

1.1 Tc. This suggests UA(1) breaking survives towards the chiral limit [18].

Another observable that measures the topological fluctuations of QCD vacuum is the topolog-

ical susceptibility χt . In LATTICE 2017, an extensive discussion of results from different groups

suggest that for T > 3 Tc the temperature dependence of χt is consistent with the expectations from

dilute instanton gas approximation (DIGA) [22, 23, 24] whereas non-trivial temperature depen-

dence is seen for Tc < T < 3 Tc [25, 22]. New results with twisted mass fermions in 2+1+1 QCD

also confirms this overall picture [12]. Though the temperature dependence of χt agrees quite well

with DIGA for T > 3 Tc, its magnitude has to be scaled by a factor of ∼ 9 to match with the leading

order semi-classical result at T ∼ 450 MeV [24]. This is due to the fact that the semi-classical result

includes a color screening function at LO which has a slow convergence with the coupling [22].

It was argued that the semi-classical expansion of instanton action may not be as uncontrolled at

T & 1.5 GeV [26]. It would nevertheless be important to measure χt for T > 1 GeV on the lattice

to observe this convergence. However it is assuring that in the context of axion mass estimation,

the temperature dependence of χt plays the decisive factor [22], changing the scale factor from 15

to unity only changes the axion mass by 20%.

Interesting algorithmic developments have been reported since LATTICE 2017 to measure

χt to very high temperatures [27, 28]. Since topological tunnelings become rarer as one goes to
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higher temperatures, one has to sample a large number of configurations to measure χt making

the problem computationally challenging. It has been shown that sampling the ensembles with

a reweighting factor with coarse-grained definition of topological charge, reduces the probability

to get stuck at one topological sector. New results on continuum extrapolated χt for pure gauge

theory (in left panel of Fig. 2) at ∼ 4 Td was reported [28], which were calculated with very

moderate computational efforts. Reweighting techniques have been applied to QCD with stout

fermion discretization and χt has been calculated [29] after performing very careful finite volume

and continuum extrapolation at T ∼ 450 MeV, see central panel of Fig. 2. The results are consistent

with the earlier results of χt calculated using a different reweighting technique [23] performed

along the temperature axis starting from a low temperature ensemble [24]. Whereas this finite

temperature reweighting is expected to work well for pure gauge theory where the temperature

dependence is along the expectations of DIGA beyond Tc, it is more non-trivial to extend this

technique in full QCD where the T -dependence is more intricate than naive DIGA below 2.5 Tc.

It is assuring that new techniques [29] confirm earlier reported results. Several other algorithms in

the context of quantum mechanics [27] are discussed which have potential to be applied to QCD,

some techniques discussed earlier like metadynamics [30] requires more extensive application. The

endeavor towards measuring rare topological fluctuations at high temperature QCD has motivated

development of new lattice techniques which can be applied to address a more general problem

when one approaches the continuum limit, where at any temperature, the ensembles get stuck in

one topological sector.

Higher moments of the free energy F(θ) are known to be more sensitive to the microscopic

topological objects [31]. It has been reported earlier that the fourth moment of F(θ) has a value that

is different from DIGA in the range Tc < T < 2 Tc [25]. This naturally leads to the question: what

explains such an observation? At finite temperature, the eigenvalues of Polyakov loop at spatial

infinity or the holonomy, characterizes the properties of instantons. For trivial holonomy, the finite

action solution at non-zero temperatures or calorons have been known for quite sometime [32].

Towards the end of 90’s, calorons with non-trivial holonomy were discovered [33]. In fact it was

shown that such calorons in SU(N) gauge theory consists of N dyons, which carry a fraction 1/N

of the net topological charge. Additionally, dyons carry both color electric and magnetic charges

and combine in a way that calorons are charge neutral objects. Calorons with trivial holonomy

cannot explain confinement in gauge theories; mean-field studies of dyon gas hints to the fact that

they may be a key towards understanding confinement [34]. It is therefore important not only to

establish the existence of such objects in QCD but also to understand their interactions. A new study

has been reported in this conference [35], improving the earlier studies on dyons [36, 37]. QCD

ensembles are generated during a Monte-Carlo evolution with (anti)-periodic boundary conditions

along the temporal direction for (fermion) gauge fields hence an isolated dyon cannot exist on

the lattice. However zero-modes of the valence Dirac operator with a general boundary condition

ψ(τ + β ) = eiφ ψ(τ), such that the twist angle φ lies between the eigenvalues of Polyakov loop,

will detect the dyon which is characterized by the difference between these eigenvalues. This

technique has been used to detect and characterize the zero modes of the overlap operator with

different boundary conditions, on Möbius domain wall fermion sea ensembles at temperatures

between Tc < T < 1.1 Tc [35]. In fact, density profiles of the zero mode wavefunctions show

good agreement with analytic profiles of dyons and their characteristic fall-off at large distances

4
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Figure 2: Continuum extrapolated χt for SU(3) gauge theory at T ∼ 4 Td (left panel) from [28]. The central

panel contains continuum extrapolated value of χt in QCD with stout fermions by two independent analysis

from [29]. The right panel shows the QCD EoS upto 2 GeV for 2+ 1 flavor QCD from lattice with HISQ

fermions from [52], compared to EoS for 2+ 1+ 1 QCD from [24] and HTL perturbative estimates.

have been suggested as one of the signatures to identify dyons on the lattice. From a detailed

study of near-zero modes, the interactions between dyons have been inferred qualitatively [35].

These insights will eventually lead us to an understanding of the mechanism of deconfinement

and the yet un-explained temperature variation of χt just above Tc. At higher temperatures, T >

2 Tc, the holonomy is trivial but there may be localized fluctuations of the Polyakov loop value,

which is conjectured to provide the ’disordered’ landscape to localize bulk eigenfunctions of the

QCD Dirac operator [38]. A new study of the localization properties of overlap Dirac operator on

2+ 1+ 1 twisted mass sea ensembles (with pion mass of ∼ 370 MeV) has been reported in this

conference [39]. It further provides support for the conjecture that local negative fluctuations of the

Polyakov loop provides the disorder required for localization of bulk eigenmodes and also reports

that a dilute instanton gas cannot support such a localization [39].

Updates on the quark mass and volume dependence of χt in 2 flavor QCD with overlap

fermions have been reported in this conference [40]. This study seems to suggest that the χt does

not vanish linearly as mq but may either go as m2
q or rather abruptly vanishes for quark masses

smaller than a critical mass . 10 MeV on a lattice of volume (2.4 f m)3. When the volume is

increased to ∼ (3.6 f m)3, the value of χt at mq ∼ 10 MeV increases to a non-zero value, whereas

for even smaller masses it seems to be consistent with zero with larger errors. The gluonic defini-

tion of χt , however gives a non-zero value even for masses mq < 5 MeV. It would be interesting to

check if this difference in values of χt measured using gluonic and fermion methods as a function

of quark mass is resolved as one goes to the infinite volume and continuum limits.

Calculating bulk thermodynamic quantities of QCD on the lattice has interesting developments

in past couple of years, both in terms of new techniques and results. There are updates on the EoS

using shifted boundary conditions [41] and with the use of gradient flow to fix the renormalization

of energy momentum tensor [42] on the lattice [43]. Since the continuum limit is not yet achieved,

the idea is to look for a plateau of relevant quantities as a function of a2/t, where a is the lattice

spacing and t being the gradient flow time [43]. The systematics of taking t → 0 before continuum

limit is studied in numerically inexpensive SU(2) and SU(3) gauge theories [44] and reported in

this conference [45]. At present, results for entropy density and subtracted chiral condensates with

O(a) improved Wilson fermions on lattices of size a ∼ 0.09 fm, are consistent with improved ver-
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sions of staggered fermions whereas the interaction measure still has large errors. Update on the

measurement of chiral susceptibility has also been reported [46]. New applications of gradient flow

to fix the renormalization of energy momentum tensor correlators in full QCD with mπ/mρ ∼ 0.6

has been discussed [47]. The correlators of T12 show a plateau-like behavior near large Euclidean

times τ ∼ Nτ/2 for different flow times at T = 232 MeV whereas for diagonal Tii correlators the

plateau is quite noisy. Using model ansatz for spectral functions, the shear and bulk viscosities have

been measured, the latter with larger errors. At present the results using the HTL ansatz cannot be

differentiated from the Breit-Wigner ansatz for T > 200 MeV and further spectral reconstructions

are being studied [47]. A new calculation of the jet quenching parameter for SU(3) gauge the-

ory was reported [48]. Precise measurements of these real-time coefficients [49] will ultimately

tell us how perturbative is the QCD medium beyond Tc. This is an evolving area, where lattice

techniques need further development and has a promising potential. For recent updates on mea-

surements of other real-time quantities like photon and di-lepton rates see Ref. [50] and a talk in

this conference [51].

The EoS of QCD has now been measured with HISQ fermions for temperatures upto 2 GeV by

carefully performing continuum extrapolation [52], results of which were discussed in this confer-

ence (right panel of Fig. 2). The results are consistent with expectations from 3-loop HTL pertur-

bation theory (without the static magnetic contribution). In fact measurements of the screening cor-

relators at finite temperature for mesonic excitations in QCD [53] reveal that though in vector and

axial-vector channels, the convergence to their perturbative estimates is quick, the scalar-pseudo-

scalar excitations have a very slow convergence towards the perturbative value. Larger symmetries

SU(2N f ) of fermion charge seem to be visible through the degeneracy of screening correlators of

vector Vx and tensor Tt excitations as reported in [54] for T > 2 Tc, when UA(1) is approximately re-

stored. Near the perturbative regime at T ∼ 5 Tc, these symmetries are again observed to be broken

explicitly. All these studies hint to the fact that QCD medium is still non-perturbative beyond Tc

and the elementary excitations of the plasma have far more intricate structures than just free quark

and gluon-like quasi-particles. The production of strange degrees of freedom is one of the other

proposed signatures of a non-perturbative quark-gluon plasma. The FASTSUM collaboration have

reported [55] on the parity restoration in different strange baryon channels near Tc. Though the

S = 1 baryon parity partners becomes degenerate like the non-strange baryons immediately near

Tc, for higher strangeness sectors the parity restoration seem to occur much slowly, at T > Tc.

3. Towards Understanding the Columbia plot

A deeper understanding of the phase diagram of QCD is obtained when one looks at a more

fundamental problem: what is the fate of ’chiral’ phase transition when the masses of quark flavors

are varied. In left panel of Fig. 3 the current status of the famous Columbia plot is summarized.

QCD with physical quark masses lie in the crossover region extended for a range of mu,ms. The

upper right corner of the plot is much better understood since for quark masses infinitely large, it

corresponds to SU(3) gauge theory which has a first order transition. This first order region is sepa-

rated from the crossover region by a Z(2) second order line. The lower left corner is comparatively

much less understood. From model QFTs with same symmetries as N f = 3 QCD, it is expected

that a first order region exist which should again be separated from the crossover region by a sec-

6
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Figure 3: The current status of Columbia plot from lattice studies (left panel). Right panel shows the

tricritical scaling fit of quark mass as a function of N f from Ref. [62].

ond order Z(2) line. In fact Z(2) scaling studies of chiral susceptibilities along the diagonal with

ms = mu,d on Nτ = 6 lattices with HISQ fermions constrain the Z(2) line to exist for pion masses

mπ < 50 MeV [56]. With clover improved Wilson fermions the corresponding critical pion mass is

mπ < 170 MeV but for rather coarse lattices at present [57]. However for both staggered as well as

Wilson fermions, the first order region tends to shrink when the lattice spacings are made finer. In

a very insightful report [58] it has been motivated that as one approaches the continuum limit, the

first order region for N f = 3 or even N f = 4 will shrink even further. For more updates on the status

of critical mπ for N f = 4 QCD with Wilson fermions, see [59]. The other question that naturally

arises in this context, is whether this first order region end at a tricritical point for mu,d = 0 and

a finite ms or continues all the way to the ms → ∞ axis. Which of these two scenarios survive in

the continuum limit may ultimately be related to the fate of UA(1), which is not yet conclusively

known. Already with coarser lattices, the first order region seems to be quite tiny in the lower left

corner of the plot. If indeed this first order region survive as a tiny strip parallel to the ms axis and

continue to ms → ∞ i.e. N f = 2 axis, then it is expected that the corresponding mu,d is much smaller

than physical quark masses. The arrows on the plot in Fig. 3 indicate the directions of some of the

current lattice studies in this regard. Summarizing them,

• The green arrow shows the JLQCD approach for N f = 2 QCD, explained in the previous

section [17]. With the current lattice volume (2.4 f m)3 and spacing a−1 = 2.6 GeV, the

results seem to suggest that UA(1) is restored for mu,d . 5 MeV and could well be in the

first order region. However the expectations from N f = 3 QCD seems to suggest that in the

continuum, the first order region, if it survives and continues from the lower left corner all

the way to the N f = 2 axis will very narrow characterized by mu,d << 5 MeV. It will be

important to reconcile both these results in the continuum limit. A related work discussed in

this conference was to extract Tc from a reweighted spectral density of QCD and thus obtain

the order of transition in mu,d → 0 limit [60].

• The blue line on the Columbia plot shows the other approach by the HotQCD collabora-

tion [61], where ms is fixed to its physical value and mu,d successively reduced to check

whether one approaches the Z(2) line to the left or goes over to a O(4) second order line.

7
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New results on chiral susceptibility χM for Nτ = 8,12 lattices with HISQ fermions discussed

in the conference, suggest that the peak of χM decreases with volume ruling out first order

phase transition for Mπ > 80 MeV. Scaling studies of the chiral condensate normalized by

χM seems to rule out Z(2) scaling for Mπ > 55 MeV, see right panel of Fig. 4.

• New studies on the eigenvalue distribution of 2+ 1 flavor QCD with HISQ fermions dis-

cussed earlier [18] also follows along this blue arrow. It has a different motivation, to find

out if UA(1) remains broken as light quark mass is successively reduced from its physical

value. If indeed UA(1) is broken, the Z(2) line will not exist and one will directly hit the

O(4) line when moving towards mu,d → 0. The eigenvalue densities as observed for 3 pion

masses Mπ ∼ 160,140,110 MeV seem to support this latter scenario.

A more general approach has been discussed in this conference: to vary the N f as a continuous

parameter and study the fate of the chiral phase transition [62]. The idea is to start with N f = 3

QCD with finite quark masses in the first order region and zoom in to the tricritical scaling regime

to extract Ntric
f such that mq ∼ (N f −Ntric

f )5/2. For Nτ = 4 lattices the Ntric
f < 2, which seems to

suggest a first order transition for N f = 2 (see right panel of Fig. 3). These results are being further

verified in the continuum limit.
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Figure 4: Current status of the Columbia plot with an additional imaginary µB axis added (left panel). Right

panel shows the scaling of the chiral condensate at µ = 0 as a function of light quark mass from Ref. [61].

3.1 Adding a new axis to the Columbia plot

It was suggested in Ref. [63] that adding a third axis in form of an imaginary quark chemical

potential iµq can further impose constraints on the 2D conventional Columbia plot. The QCD par-

tition function in presence of iµq is free from ’sign-problem’ and has symmetries Z(
µq

T
) = Z(−

µq

T
)

and Z(
µq

T
) = Z(

µq

T
+ 2ni

3
π) for n ∈ Z . The center symmetry is thus again a good symmetry even

in presence of finite quark masses. The phase of the Polyakov loop is an observable in this case,

which will identify the different Z(3) sectors as iµq is varied. For the Roberge-Weiss (RW) points

characterized by µq = (2n+1) iπT
3

[64], there is a transition between adjacent center sectors, which

is first order for high temperatures and a smooth crossover for lower temperatures. From continu-

ity, the first order lines should end in a second order RW end-point. The interesting question is

how the deconfinement and chiral transitions at µq = 0 connect to the RW point. For heavy quark
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masses the first-order deconfinement lines, from reflection symmetry of the partition function, is

expected to meet at the RW point, which will be a triple point. For intermediate values of mq, the

crossover curve at µq = 0 may meet at the RW end-point, expected to be in Z(2) universality class.

The chiral limit is however more interesting. Numerical simulations, initially on Nτ = 4 lattices

with staggered fermions have shown a first order RW transition for both N f = 2,3 [65, 63], likely to

survive in the chiral limit [67], confirmed later in studies with Wilson fermions [66]. This scenario

is summarized in the modified Columbia plot at µq = µB/3 = iπT/3, shown in left panel of Fig. 4.

It is expected that the Z(2) second order transition at intermediate masses is separated from the first

order regions for both N f = 2 and N f = 3 by tricritical points. Now, what are its consequences for

the N f = 2 chiral transition at µq = 0? If the N f = 2 chiral transition at iµq = 0 is,

a) second order, then the first order RW transition will end in a tricritical point for µ2
q < 0.

b) first order, then the first order RW transition would end in a tricritical point at µ2
q > 0.

The first lattice study along this line [67] was performed with staggered fermions on Nτ = 4 for

different lattice volumes with Ns = 8,12,16. The Z(2) second order line was estimated for finite

quark masses and for different values of iµq from Binder cumulants. Subsequently the µ tric
q was

estimated by looking at the tricritical scaling for mu,d in the chiral limit. The tricritical point was

found at µ2
q = 0.85(5)T 2 which seemed to suggest that N f = 2 chiral transition at µq = 0 is first or-

der atleast on coarser lattices [67]. Subsequently improved versions of staggered fermions are been

used to reduce lattice cut-off effects, which play a decisive role in this study. The most recent high

statistics studies are being performed for 2+1 flavor QCD by keeping the ms fixed to its physical

value and reducing the mu,d at µq = iπT/3 along the blue line shown on the lower RW plane of

Fig. 4. To summarize these results:

• Studies with stout-smeared staggered fermions have been performed for several lattice spac-

ings Nτ = 4−10 with current state of the art being a = 0.1 fm [68]. The light quark masses

have been varied such that the lowest pseudo-Goldstone pion mass achieved in the numerical

studies is 50 MeV. The largest volume is Nσ = 32 such that MπL > 1. From scaling studies

of the Polyakov loop susceptibility, a first order RW transition is not observed for Mπ ≥ 50

MeV, which in the continuum limit would imply that the first order region, if it continues to

the µq = 0 plane would be a very narrow strip parallel to the ms axis. The other question

addressed in this study is how close are the RW and the chiral transitions. As evident from

right panel of Fig. 5, the chiral and RW transition seem to follow each other as one reduces

the mu,d . The scaling studies of the subtracted chiral condensate near the RW point at present

cannot distinguish between O(2) universality scenario for N f = 2 and the Z(2) universality

expected at the RW transition [68].

• The RW transition is related to the restoration of Z(2) symmetry. Under Z(2) transformation,

the real part of Polyakov loop does not change sign whereas its imaginary part changes sign.

Hence the expectation value 〈|ImL|〉 is a good order parameter and will show Z(2) scaling.

Scaling studies performed with HISQ fermion discretization for Nτ = 4 and Nσ = 8− 24

around the chiral crossover transition temperature Tc ∼ 200 MeV for Mπ = 135− 90 MeV

has been reported in this conference [69]. As evident from left and central panels of Fig. 5 a

beautiful agreement with second order Z(2) scaling is observed both for the order parameter

and its susceptibility again independently confirming the previous finding [68].
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Figure 5: The left and the central panel shows the scaling of the imaginary part of Polyakov loop and

its susceptibility respectively from [69]. The right panel shows the agreement between TRW and the chiral

transition temperature from [68].

The results using different improved versions of staggered fermions are converging to an

agreement with no indication for a first order transition in the vicinity of RW fixed points for

Mπ & 50 MeV. However as argued in [68], the other pion states in these studies are still quite heavy

so it is important to revisit these studies on more finer lattices or with other fermion discretizations.

4. Status of QCD Phase diagram at finite density

Simulating QCD at finite density on the lattice is one of the most challenging problems in

theoretical physics. New computational techniques and algorithms have been discussed in this

conference in order to ultimately simulate dense and (cold) quark matter and understand the yet

unexplored regions of the phase diagram. For relevant references and phenomenological applica-

tions for QCD at finite density, see the plenary talk by C. Ratti in this conference [70].

If indeed a first order transition occur in cold and dense QCD following clues from Nambu-

Jona-Lasinio model, it should end in a critical end-point since we now know for sure that there is

a crossover transition at µB = 0. Lattice is essential to establish if a critical end-point exist and to

draw lines separating the phases of dense QCD matter. In this section, I will rather discuss how

existing lattice techniques are allowing us to draw the chiral crossover line at small µB and what

promise it holds to reach all the way to the critical end-point. Out of the many methods developed

over the years to circumvent the sign problem, two of them have now been adapted for simulations

at large volumes and towards the continuum. One of them is to simulate QCD at imaginary µB <

µRW
B , calculate thermodynamic quantities like baryon number density and extrapolate to the real

µB plane [71, 72]. The other method is to calculate the partition function at µB = 0 and expand it as

a Taylor series in µB [73]. If indeed singularities like a critical end-point exist in the T −µB plane,

then its location will determine the radius of convergence of the series [74].

Both methods have been used to calculate the curvature κ2 and higher derivatives κ4 of the

chiral crossover line at small µB, defined through
Tc(µB)
Tc(0)

= 1−κ2
µ2

B

Tc(0)2 −κ4
µ4

B

Tc(0)4 . The results using

Taylor expansion of chiral condensate with HISQ fermions for different µX where X represents

quantum numbers like baryon no., strangeness etc. were discussed in this conference [11] and

summarized in the left panel of Fig. 6. The status of all recent lattice studies is summarized

succinctly in the right panel of Fig. 6 from Quark Matter 18 review by M. D’Elia [75]. For

quite a few years, there was an apparent disagreement between the values of κB
2 obtained using
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Figure 6: The curvature for the pseudo-critical line calculated using HISQ fermions from Ref. [11] (left

panel). The right panel shows the curvature estimates from different lattice groups from Ref. [75].

Taylor expansion and imaginary µ methods. A careful continuum extrapolation was the key to this

resolution [76]; the new continuum results with HISQ fermions uses Nτ = 6,8,12,16 [10] data and

with stout-smeared staggered fermions [76] uses Nτ = 6,8,10 results. The values of κB
2 ∼ 0.01

and κB
4 ∼ 0 suggest that the pseudo-critical line is almost flat for small µB and bends inwards very

gradually towards larger µB. Observables like the chiral disconnected susceptibility shown in left

panel of Fig. 7 from Ref. [11, 10] also show a very mild dependence on µB for µB < 250 MeV.

New results for higher order fluctuations of conserved quantum numbers: baryon, charge,

strangeness (B,Q,S) calculated using both these methods are available. For the imaginary µ method

the latest high-statistics results are available from two different groups, both in 2+ 1 QCD with

stout-smeared staggered quarks. In one of these studies [77], all possible diagonal and off-diagonal

second order susceptibilities in the (iµB, iµQ, iµS) plane were calculated on 323 × 8 lattice for

temperatures between 135-350 MeV. Approximating these second order correlations and fluctu-

ations by a polynomial of O(µ i
Bµ

j
S µk

Q) , i + j + k ≤ 8 and extrapolating to the real plane, all

higher order susceptibilities upto 8th order have been calculated. The other group uses a finer

483 × 12 lattice to calculate all possible correlation and fluctuations of B, Q, S for temperatures

between 135-220 MeV at 8 different imaginary µ values [78]. These were fitted to a polynomial

of O(µ i
Bµ

j
S µk

Q) , i+ j+ k ≤ 10, where the eighth and tenth order data were put in as priors. Us-

ing this fitting procedure, higher order susceptibilities upto 8th order were reported. Since there

is a discontinuity of the imaginary baryon number density at the first RW point for T ≥ TRW , this

naturally limits the number of imaginary µ’s where the simulations can be performed and hence

the extrapolation to real µ . Given that range of simulations are limited to µB/T ∈ [0, iπ), this

method works better for T < Tc but the systematic errors start dominating for T > Tc. In the Taylor

expansion method, the pressure is expanded as a series in µB/T where the expansion coefficients

are µB-derivatives of pressure i.e. the higher order susceptibilities, calculated at µB = 0. These

quantities involve derivatives of Dirac operator and each derivative is associated with an inverse

of the Dirac matrix. The higher order fluctuations thus contains many such terms with alternat-

ing signs for subtle cancellations of the divergences to give a finite result. For χB
6 or higher, the

divergences may not exist which allows using a different technique [79] to compute them, which

is computationally much cheaper compared to the conventional method [80]. A new numerical

implementation of this technique which may allow to calculate even higher order fluctuations was

discussed [81]. The current state-of-the-art results using Taylor expansion are correlations and fluc-
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tuations upto sixth order using Highly Improved Staggered quarks [5] and upto eighth order using

unimproved staggered fermions [82]. Even with susceptibilities upto O(µ6
B), the QCD EoS show

very good convergence for µB/T . 2.5, the continuum estimates of which can be found in [5].

For locating the critical end-point, the radius of convergence (RC) of the Taylor series of

pressure or the baryon number fluctuation, χB
2 has to be estimated. From the definition of RC

r2n ≡

√

2n(2n−1)
∣

∣

∣

χB
2n

χB
2n+2

∣

∣

∣
it is not known a-priori how large the order n should be chosen in order

to reliably extract this quantity on the lattice. The current estimates of the radius of convergence

is summarized in right panel of Fig. 7. Most of them except the reweighting data are from Nτ = 8

lattices. The r4 already deviates from the Hadron Resonance gas model (HRG) estimates by ∼ 30%

for T ∼ 145 MeV [5]. There is a substantial difference between the r2 and r4 estimates so one

needs atleast r6 to get a reliable prediction for the RC. The yellow ’exclusion’ region comes from

the upper error bar of the χB
6 measured using the HISQ fermions whose central values are given

by the blue points [5, 83]. Results using stout-smeared staggered quarks [77] also favor a larger

µCEP
B /T than using the standard staggered quarks [82] shown by the black solid point. All these

results should ultimately agree in the continuum limit. The µCEP
B /T using reweighting techniques

from Ref. [84] favors a lower value; it will be interesting to confirm this in the thermodynamic

limit. To summarize, the present lattice data for χB
n already deviates from naive expectations from

HRG model at T > 145 MeV; the higher the order n, the more visible is the deviation. Moreover

the present lattice data favor a small curvature of the chiral crossover line [76, 11]. Furthermore the

fact that κB
4 ∼ 0 suggest if a CEP exist in the phase diagram then TCEP . Tc(µB = 0). For the case

TCEP/Tc(0) ∼ 0.95, lattice data already suggests stronger departure from HRG results and can at

present provide a suggestive lower bound, µCEP
B > 4T [83]; the convergence to the actual value will

depend on a more precise calculation of χB
8 . On the other hand if κB

6 or κB
8 have strong contribution

to the curvature of the pseudo-critical line and TCEP/Tc(0)≤ 0.9, the RC estimates would be more

closer to HRG values, hence will show extremely slow convergence as a function of the order n.
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Figure 7: Disconnected part of chiral susceptibility in QCD calculated upto O(µ6
B) using HISQ fermions on

323 × 8 lattice from [10, 11] (left panel). A summary of the radius of convergence estimates from different

lattice groups is shown in right panel from [83, 5].

5. Outlook

In this review, I hopefully could convince that the quest to understand the phase diagram of
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QCD has led to the many interesting theoretical and algorithmic developments in lattice gauge the-

ory. Efforts to understand the chiral transition better, has led to a rich theoretical knowledge of

QCD in the mu,d-ms plane, additionally along the imaginary chemical potential as a new axis and

now even as a function of N f as a continuous parameter. The role of UA(1) anomaly on the chiral

phase transition is not yet fully understood but has led to many new insights on the microscopics

of the QCD Dirac operator and its intimate connections to topology. The topological structures in

QCD and their interactions is long suspected to drive chiral symmetry breaking and confinement at

finite temperature and/or densities; new insights on which are coming from lattice studies. More-

over a strong motivation to quantify topological fluctuations at high temperatures have led to recent

development of interesting new algorithms that have even more wider applicability i.e., for lattice

simulations near the continuum limit. The quest to go deeper along the µB axis of the phase dia-

gram has triggered developments of algorithms and new techniques to circumvent the sign problem,

with initial bounds available from lattice towards constraining the location of the critical end-point.

The EoS characterizing different phases of QCD upto µB/T . 2.5 is now available; an increasing

sophistication of lattice techniques is leading towards quantifying its dynamical properties.

Acknowledgements I thank the organizers for the kind invitation. Also I express my gratitude

to Swagato Mukherjee who kindly agreed to fill in for my absence at the conference due to unavoid-

able circumstances, at a short notice and share his perspectives. I thank all the researchers working

in finite temperature and density lattice QCD who have generously shared their inputs and results,

specially to Massimo D’Elia, and also for the exciting talks in LATTICE 18; it indeed shows how

vibrant this field of research is. Last but not the least, I am grateful to the members of HotQCD

collaboration for a very enjoyable collaboration over these years and their helpful feedback.

References

[1] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz and K. K. Szabo, Nature 443, 675 (2006).

[2] A. Bazavov et al., Phys. Rev. D 85, 054503 (2012).

[3] T. Bhattacharya et al., Phys. Rev. Lett. 113, 8, 082001 (2014).

[4] S. Borsanyi, et. al., Phys. Lett. B 730, 99 (2014); A. Bazavov et al. [HotQCD Collaboration], Phys.

Rev. D 90, 094503 (2014).

[5] A. Bazavov et al., Phys. Rev. D 95, 5, 054504 (2017).

[6] R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).

[7] A. Tomiya et. al., PoS(LATTICE2018) 163.

[8] W. Unger, PoS(LATTICE2018) 181; M. Klegrewe, PoS(LATTICE2018) 182.

[9] D. Heckett et. al., PoS(LATTICE2018) 175; arXiv:1809.00073 [hep-lat].

[10] P. Steinbrecher [HotQCD Collaboration], arXiv:1807.05607 [hep-lat]; arXiv:1812.08235 [hep-lat].

[11] P. Steinbrecher et. al. [HotQCD Collaboration], PoS(LATTICE2018) 160.

[12] F. Burger, E. M. Ilgenfritz, M. P. Lombardo and A. Trunin, arXiv:1805.06001 [hep-lat].

[13] A. Pelissetto and E. Vicari, Phys. Rev. D 88, 10, 105018 (2013).

[14] E. V. Shuryak, Comments Nucl. Part. Phys. 21, 4, 235 (1994).

13



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
0
9

Recent Progress on the QCD Phase Diagram

[15] A. Bazavov et al. [HotQCD Collaboration], Phys. Rev. D 86, 094503 (2012).

[16] S. Aoki, H. Fukaya and Y. Taniguchi, Phys. Rev. D 86, 114512 (2012).

[17] K. Suzuki et. al., PoS(LATTICE2018) 152; arXiv:1812.06621 [hep-lat].

[18] L. Mazur et. al., PoS(LATTICE2018) 153; arXiv:1811.08222 [hep-lat].

[19] V. Dick, F. Karsch, E. Laermann, S. Mukherjee and S. Sharma, Phys. Rev. D 91, 9, 094504 (2015).

[20] A. Tomiya, et. al., Phys. Rev. D 96, 3, 034509 (2017).

[21] S. Sharma [HotQCD Collaboration], arXiv:1801.08500 [hep-lat].

[22] P. Petreczky, H. P. Schadler and S. Sharma, Phys. Lett. B 762, 498 (2016).

[23] J. Frison, R. Kitano, H. Matsufuru, S. Mori and N. Yamada, JHEP 1609, 021 (2016).

[24] S. Borsanyi et al., Nature 539, 7627, 69 (2016).

[25] C. Bonati, et. al., JHEP 1603, 155 (2016).

[26] M. Dine, P. Draper, L. Stephenson-Haskins and D. Xu, Phys. Rev. D 96, 9, 095001 (2017).

[27] C. Bonati and M. D’Elia, Phys. Rev. E 98, 1, 013308 (2018).

[28] P. T. Jahn, G. D. Moore and D. Robaina, Phys. Rev. D 98, 5, 054512 (2018); PoS(LATTICE2018) 155.

[29] C. Bonati, et. al., arXiv:1807.07954 [hep-lat].

[30] A. Laio, G. Martinelli and F. Sanfilippo, JHEP 1607, 089 (2016).

[31] C. Bonati, M. D’Elia, H. Panagopoulos and E. Vicari, Phys. Rev. Lett. 110, 25, 252003 (2013).

[32] B. J. Harrington and H. K. Shepard, Phys. Rev. D 17, 2122 (1978).

[33] T. C. Kraan and P. van Baal, Phys. Lett. B 435, 389 (1998); K. M. Lee and C. h. Lu, Phys. Rev. D 58,

025011 (1998).

[34] D. Diakonov, Nucl. Phys. Proc. Suppl. 195, 5 (2009).

[35] R. Larsen, S. Sharma, E. Shuryak, PoS(LATTICE2018) 156; arXiv:1811.07914 [hep-lat].

[36] C. Gattringer, Phys. Rev. D 67, 034507 (2003).

[37] V. G. Bornyakov, et. al., Phys. Rev. D 93, 7, 074508 (2016).

[38] F. Bruckmann, T. G. Kovacs and S. Schierenberg, Phys. Rev. D 84, 034505 (2011).

[39] L. Holicki, E. M. Ilgenfritz and L. von Smekal, arXiv:1810.01130 [hep-lat]; PoS(LATTICE2018) 180.

[40] Y. Aoki et. al., PoS(LATTICE2018) 154.

[41] M. Dalla Brida, L. Giusti and M. Pepe, EPJ Web Conf. 175, 14012 (2018) [arXiv:1710.09219].

[42] H. Suzuki, PTEP 2013, 083B03 (2013) Erratum: [PTEP 2015, 079201 (2015)].

[43] Y. Taniguchi, et. al., Phys. Rev. D 96, 1, 014509 (2017).

[44] M. Kitazawa, T. Iritani, M. Asakawa and T. Hatsuda, Phys. Rev. D 96, 11, 111502 (2017).

[45] M. Shirogane et. al., arXiv:1811.04220 [hep-lat]; T. Hirakida et. al., arXiv:1811.02800 [hep-lat].

[46] A. Baba et. al., PoS(LATTICE2018) 173; arXiv:1901.02294 [hep-lat].

[47] Y. Taniguchi et. al., PoS(LATTICE2018) 166; arXiv:1901.01666 [hep-lat].

14



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
0
9

Recent Progress on the QCD Phase Diagram

[48] A. Kumar et. al., PoS(LATTICE2018) 169; arXiv:1811.01329 [nucl-th].

[49] S. Borsanyi et al., Phys. Rev. D 98, 1, 014512 (2018).

[50] O. Kaczmarek, Nucl. Phys. A 967, 137 (2017); H. B. Meyer, arXiv:1807.00781 [hep-lat].

[51] H-T Ding et. al., PoS(LATTICE2018) 184.

[52] A. Bazavov, et. al., Phys. Rev. D 97, 1, 014510 (2018); J. Weber et. al., PoS(LATTICE2018) 165.

[53] H. Sandmeyer et. al. [HotQCD Collaboration], in preparation.

[54] C. Rohrhofer, et. al., Phys. Rev. D 96, 9, 094501 (2017) and PoS(LATTICE2018) 185.

[55] J. Glesaaen et. al., PoS(LATTICE2018) 183.

[56] A. Bazavov, et. al., Phys. Rev. D 95, 7, 074505 (2017).

[57] X. Y. Jin, et. al., Phys. Rev. D 96, 3, 034523 (2017).

[58] P. de Forcrand and M. D’Elia, PoS LATTICE 2016, 081 (2017); arXiv:1702.00330 [hep-lat].

[59] H. Ohno et. al., PoS(LATTICE2018) 174; arXiv:1812.01318 [hep-lat].

[60] G. Endrodi and L. Gonglach, arXiv:1810.09173 [hep-lat]; PoS(LATTICE2018) 172.

[61] H. T. Ding, et. al., arXiv:1807.05727 [hep-lat]; S-Tai Li, PoS(LATTICE2018) 171.

[62] F. Cuteri, O. Philipsen and A. Sciarra, Phys. Rev. D 97, 11, 114511 (2018); PoS(LATTICE2018) 170.

[63] P. de Forcrand and O. Philipsen, Phys. Rev. Lett. 105, 152001 (2010).

[64] A. Roberge and N. Weiss, Nucl. Phys. B 275, 734 (1986).

[65] M. D’Elia and F. Sanfilippo, Phys. Rev. D 80, 111501 (2009).

[66] C. Czaban, F. Cuteri, O. Philipsen, C. Pinke and A. Sciarra, Phys. Rev. D 93, 5, 054507 (2016).

[67] C. Bonati, P. Forcrand, M. D’Elia, O. Philipsen, F. Sanfilippo, Phys. Rev. D 90, 7, 074030 (2014).

[68] C. Bonati et al., arXiv:1807.02106 [hep-lat].

[69] J. Goswami et. al., PoS(LATTICE2018) 162; arXiv:1811.02494 [hep-lat].

[70] C. Ratti, PoS(LATTICE2018) 004.

[71] P. de Forcrand and O. Philipsen, Nucl. Phys. B 642, 290 (2002).

[72] M. D’Elia and M. P. Lombardo, Phys. Rev. D 67, 014505 (2003).

[73] C. R. Allton, et. al., Phys. Rev. D 66, 074507 (2002).

[74] R. V. Gavai and S. Gupta, Phys. Rev. D 71, 114014 (2005).

[75] M. D’Elia, arXiv:1809.10660 [hep-lat].

[76] C. Bonati, M. D’Elia, F. Negro, F. Sanfilippo and K. Zambello, Phys. Rev. D 98, 5, 054510 (2018).

[77] M. D’Elia, G. Gagliardi and F. Sanfilippo, Phys. Rev. D 95, 9, 094503 (2017).

[78] S. Borsanyi et. al., arXiv:1805.04445 [hep-lat].

[79] R. V. Gavai and S. Sharma, Phys. Lett. B 749, 8 (2015).

[80] P. Hasenfratz and F. Karsch, Phys. Lett. 125B, 308 (1983).

[81] P. de Forcrand and B. Jaeger, PoS(LATTICE2018) 178; arXiv:1812.00869 [hep-lat].

[82] S. Datta, R. V. Gavai and S. Gupta, Phys. Rev. D 95, 5, 054512 (2017).

[83] HotQCD collaboration, in preparation.

[84] Z. Fodor and S. D. Katz, JHEP 0404, 050 (2004).

15


