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We investigate the sign problem in field theories by using the path optimization method with use of
the neural network. For theories with the sign problem, integral in the complexified variable space
is a promising approach to obtain a finite (non-zero) average phase factor. In the path optimization
method, the imaginary part of variables are given as functions of the real part, yi = yi({x}),
and are optimized to enhance the average phase factor. The feedforward neural network can
be used to give and to optimize functions with many variables. The combined framework, the
path optimization with use of the neural network, is applied to the complex φ 4 theory at finite
density, the 0+1 dimensional QCD at finite density, and the Polyakov loop extended Nambu-
Jona-Lasinio (PNJL) model, all of which have the sign problem. In these cases, the average phase
factor is found to be enhanced significantly. In the complex φ 4 theory, it is demonstrated that the
number density is calculated at a high precision. On the optimized path, the imaginary part is
found to have strong correlation with the real part on the temporal nearest neighbor site. In the
0+1 dimensional QCD, we compare the results in two different treatments of the link variable:
optimization after the diagonal gauge fixing and optimization without the diagonal gauge fixing.
These two methods show consistent eigenvalue distribution of the link variables. In the PNJL
model with homogeneous field ansatz, finite volume results approach the mean field results as
expected, and the phase transition behavior can be described.
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1. Introduction

When the action is complex, strong cancellation occurs in integrating the Boltzmann weight at
large volume. This is referred to as the sign problem, and appears in various problems in physics.
For example, let us consider the Fermion action at finite chemical potential. The (relativistic)
Fermion matrix D has the γ5 hermiticity, (γ5D(µ)γ5)

† = D(−µ∗), then the Fermion determinant
satisfies (detD(µ))∗ = detD(−µ∗). The Fermion determinant is real at zero chemical potential or
pure imaginary chemical potential, but is complex at real finite chemical potential. The Fermion
determinant appears in the partition function, and the effective action containing the Fermion de-
terminant effects is represented as Seff = SB− logdetD(µ) ∈ C, where SB is the bosonic action.
Thus the integrand in the partition function with Fermions is generally complex at finite density
and becomes real only at zero density.

Finite density lattice QCD contains Fermions and the sign problem naturally appears [1]. Then
it is difficult to obtain precise predictions on dense matter in atomic nuclei, neutron stars, their
mergers and supernovae. In heavy-ion collisions, baryon chemical potential is small at LHC and the
top energy of RHIC, then the finite chemical potential effects may be treated perturbatively as given
by the Taylor expansion from zero density. By comparison, lower energy heavy-ion collisions are
considered to produce dense matter at finite baryon density. In order to provide reliable information
on dense matter by the first principles method of QCD, the Monte-Carlo simulation of lattice QCD,
perturbative treatment of chemical potential is not enough, and we have to evade the sign problem.

There are many approaches to the sign problem as discussed in the present lattice meeting:
Taylor expansion in µ/T [2, 3, 4], the imaginary chemical potential with analytical continuation or
for the canonical ensemble [5, 6], and the strong coupling approach [7, 8] are the mature and useful
methods to investigate finite density QCD, but it seems that we cannot reach cold dense matter in the
continuum limit. Recently, integral methods in the complexified variable space have been attracting
attention: the Lefschetz thimble method [9], the Complex Langevin method [10, 11, 12, 13, 14, 15],
and the path optimization method [16, 17, 18] are categorized to the complexified variable method.
These methods are still premature, but are developing rapidly. It should be noted that other new
approaches are also proposed to tackle the sign problem [19, 20, 21].

In the present proceedings, we concentrate on the integration methods in the complexified
variable space. Let us consider the complex Boltzmann weight exp(−S(x)), which is a holomor-
phic (complex analytic) function of the complexified variable x→ z. Then the Cauchy(-Poincare)
theorem tells us that the partition function is independent of the integral path as long as the path is
modified continuously without going through the singular point. One of the typical examples is the
Gaussian integral, which appears, for example, when we bosonize repulsive four-Fermi interaction
in the NJL model [22],∫

R
dωe−ω2/2+iρqω =

∫
R+iρq

dωe−(ω−iρq)
2/2−ρ2

q =
√

2π exp(−ρ
2
q ) . (1.1)

By shifting the integral path of the vector field (ω) in the imaginary direction, a rapidly oscillating
function at large density (ρq) becomes a real function.

As in the above case, if we can choose the integral path going through the saddle point dom-
inantly contributing to the integral, we can avoid the integral of rapidly oscillating function and
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Lefshetz thimble Complex Langevin Path Optimization

Figure 1: Schematic picture of integration path and sampled configurations in the Lefschetz thimble method
(left), the complex Langevin method (middle), and the path optimization method (right).

we can avoid the sign problem. This is a basic idea used in the method using the integral over
complexified variables. In the Lefschetz thimble method (LTM) [23, 24, 25, 26], the integral path
(manifold) Jσ , referred to as the thimble(s), is obtained by solving the flow equation, żi = ∂S/∂ zi,
from the fixed point σ (∂S/∂ zi|σ = 0), as shown in the left panel of Fig. 1. On the thimble, the
imaginary part of the action is constant, and the sign problem is weakened. But we still have sev-
eral problems in applying LTM to field theories. For example, the integral measure dNz contains
the complex phase which is generally not constant (residual sign problem), and when two or more
thimbles contribute to the partition function, the integrals on different thimbles can have differ-
ent complex phases and would cancel each other (global sign problem). In addition, finding fixed
points and constructing relevant thimbles are not easy. For the last point, a more practical method,
referred to as the generalized Lefschetz thimble method (GLTM), to obtain relevant thimbles is
proposed [26]. By evolving the integral path by using the flow equation from the real axis (original
integration path), the path becomes closer to relevant thimbles. Even if we do not reach the thimble,
the phase fluctuation is generally suppressed on the evolved path.

The complex Langevin method (CLM) [27, 28, 29, 30, 31, 32, 10, 11, 12, 13, 14] is another
promising approach. By solving the complex Langevin equation, żi =−∂S/∂ zi +ηi(t) with ηi be-
ing the white noise, we can generate configurations around the fixed point as shown in the middle
panel of Fig. 1, and we can calculate observables as an ensemble average, 〈O〉 = 〈O〉CLM. Since
no phase reweighting is necessary, there is no sign problem, in principle. Thanks to recent devel-
opments of the gauge cooling technique [31] and the deformation technique to avoid the singular
point of the action [32], one can perform stable simulations even at high density region. One of the
problems in the complex Langevin method is the occasional convergence to wrong results. When
the magnitude distribution of the drift term has a long tail than the exponential decay, the results are
not reliable even if they converge [30]. Unfortunately, the current CLM simulations are not reliable
in the phase transition region at low temperatures [13]. We need further analyses to understanding
the origin of the long tail.

In the last lattice meeting [33] and in Ref. [34], we have proposed another method, the path
optimization method (POM), in which the integration path is optimized to evade the sign problem,
i.e. to enhance the average phase factor. Since there is no singular point of the Boltzmann weight at
finite z in most of physical systems, the integral of the Boltzmann weight is independent of the path.
(The exception is the lattice simulations with the Fermion determinant rooting,

√
detD exp(−SG),
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which gives rise to the cut in the Boltzmann weight.) It should be noted that the zero point of the
Fermion determinant is the singular point of Seff, but just a zero point of the Boltzmann weight
exp(−Seff). Then the optimization can be done in various ways. For example, using the flow
equation is one of the ways to optimize the path as in GLTM. In one dimensional integral, we can
parameterize the imaginary part by a trial function of the real part, and optimize the trial function by
the standard gradient descent method [34]. It is also possible to utilize the neural network [35, 36].
Because of this flexibility, similar ideas have been applied to several problems recently: 1+1 di-
mensional φ 4 theory [35], 0+1 dimensional φ 4 theory [37], 2+1 dimensional finite density Thirring
model (their method is referred to as the sign-optimized manifold method (SOMMe)) [16, 17], 1+1
dimensional QED [18], and the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model [36].

When we have many variables as in the field theories, the neural network is a useful tool: It
can describe any functions of many variables, then it is equivalent to prepare the complete set of
trial functions. In this proceedings, we apply the path optimization method with use of the neural
network to field theories with the sign problem. After a brief review of the path optimization
method, the neural network, and the stochastic gradient method, we discuss 1+1 dimensional φ 4

theory at finite µ [35], 0+1 dimensional QCD at finite µ [38], and the Polyakov-loop extended
Nambu-Jona-Lasinio (PNJL) [36].

2. Path optimization with use of neural network

We consider the case where the Boltzmann weight exp(−S) is a complex and analytic function
of the field variables x = {xi; i = 1,2, . . .N},xi ∈R with N being the number of variables. By com-
plexifying the field variables zi = xi + iyi, the Boltzmann weight becomes a holomorphic (complex
analytic) function of the complexified field variables z. The partition function can be written as

Z =
∫

CR
dNx exp(−S(x)) =

∫
CC

dNz exp(−S(z)) =
∫

CR
dNxJ(z)exp(−S(z)) , (2.1)

where J(z) = det(∂ zi/∂x j) = det(δi j + i∂yi/∂x j) is a Jacobian. We here assume that the imaginary
part of the complexified variables are given as functions of the real part, yi = yi(x), which specify
the integration path. If we can optimize the functions yi(x) to enhance the average phase factor to
be clearly above zero, precise calculation of observables becomes possible.

In the path optimization method, we optimize the integration path specified by y(x)= {yi(x); i=
1,2, . . .N} to minimize the cost function, which represents the seriousness of the sign problem. We
adopt the following cost function,

F [y] = Zpq−|Z |= |Z |
(
|〈eiθ 〉|−1−1

)
, (2.2)

where θ is the complex phase of the statistical weight, W = J(z)exp(−S(z)), and Zpq is the phase
quenched partition function. Since the partition function is independent of the path, the above cost
function is a monotonically decreasing function of the average phase factor.

Optimization of the path can be performed via the gradient descent method or by using the
neural network which is used in machine learning. In the one-dimensional integral case, we can
expand the imaginary part by a complete set of functions, y(x) = ∑n cnHn(x) with {Hn} being a
complete set, and tune the coefficients cn to minimize the cost function using the gradient descent
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method. In Ref. [34], we have found that the optimized path is close to the thimble around the
fixed points. Thus the path optimization may be also regarded as a practical method to search for
the thimble. On the optimized path, the rapid oscillation of the integrand is suppressed, while the
absolute values becomes smaller. The hybrid Monte Carlo sampling works well on the optimized
path, and it is possible to calculate the observables precisely.

When we have many integral variables as in the field theories, it is tedious and practically
impossible to prepare the complete set of functions and to optimize the path. The number of
expansion parameters is MN , where M is the number of functions for each degrees of freedom
needed for conversion. We need to avoid the exponential growth of the number of parameters.

Inputs Outputs
Hidden Layers

Figure 2: Schematic picture of the neural network.

One of the ways to avoid the above exponential growth is to utilize the feedforward neural
network. The neural network is a mathematical model of the human brain. It contains the input,
hidden, and output layers, and each layer consists of units which mimic neurons as schematically
shown in Fig. 2. Units in one layer is connected with those in the previous and next layers, and
the variables are modified by combining the linear and non-linear transformations. In the single
hidden layer case, these transformations are given as

ai = g(W (1)
i j x j +b(1)i ) , yi = αi(g(W

(2)
i j a j +b(2)i ))+βi , (2.3)

where g(x) is called the activation function and we adopt g(x) = tanhx in order to keep the differ-
entiability. We input {xi} and obtain {yi} as the outputs. W (1,2)

i j , b(1,2)i , αi and βi are the parameters
in the neural network. The number of parameters is O(N2) where N is the number of variables,
provided that the number of units in the hidden layer is proportional to N and the number of layers
is O(1). The universal approximation theorem [39] tells us that any functions can be described in
the large number limit of the units in the hidden layers, even in the case of a single hidden layer.

In updating the parameters in the neural network, we apply the stochastic gradient method.
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We adopt the ADADELTA algorithm [40],

F( j)
i = ∂F/∂c( j)

i , (2.4)

r( j+1)
i = γr( j)

i +(1− γ)(F( j)
i )2 , (2.5)

v( j+1)
i =

√
s( j)

i + ε√
r( j+1)

i + ε

F( j)
i , (2.6)

c( j+1)
i = c( j)

i −ηv( j+1)
i , (2.7)

s( j+1)
i = γs( j)

i +(1− γ)(v( j+1)
i )2 , (2.8)

where c( j)
i represents the i-th parameter in the j-th step of updates, and F is the cost function.

Gradients F( j)
i are evaluated as the average in a small number (Nbatch) of configurations (mini-

batch training), and their squared average is stored in r( j)
i . The parameters are updated by using

the "velocity" v( j)
i , gradients normalized by the root mean square in the history of updates. The

squared averages of v( j)
i are stored in s( j)

i . The learning rate η plays the role of the time step,
and γ is referred to as the decay rate in machine learning but is the survival rate in the actual
meaning. When the derivative and velocity become smaller than the cutoff parameter ε during
many updates, the ADADELTA algorithm becomes equivalent to the standard gradient descent
method, ċi =−∂F/∂ci.

Usually, the neural network is trained by using the teacher data, where the answers are prepared
(supervised learning). By comparison, we do not know the optimized path in advance, then the
parameters in the neural network are updated only by the gradient of the cost function. This update
corresponds to the so-called unsupervised learning.

We generate the Monte Carlo configurations by the hybrid Monte Carlo (HMC). We regard
the real part of variables as the dynamical variable, where the molecular dynamics Hamiltonian
is H(x, p) = p2/2+ReS(z(x)). The derivative of the Jacobian requires numerical cost and is ig-
nored in the molecular dynamics evolution. We solve the canonical equation of motion, ẋ = p and
ṗ = −∂H/∂x, and make Metropolis judgement with the Jacobian effects included. We prepare
Nconfig configurations, update parameters using Nbatch configurations in each mini-batch training.
After updating parameters Nconfig/Nbatch times, we generate Nconfig configurations using the up-
dated neural network parameters. We repeat this update process Nepoch times. One epoch means
the number of updates where the Nconfig configurations are used in the mini-batch training.

The path optimization with use of the neural network has been applied to the one-dimensional
integral [33]. The obtained optimized path is close to the thimble and the path optimized by using
the standard gradient descent method around the fixed points. These paths do not agree off the
fixed points. The statistical weights are small far off the fixed points, and do not contribute to the
observable calculation much.

3. Application to field theory: complex φ 4 theory

Now let us apply the path optimization method with use of the neural network to the 1+1
dimensional complex φ 4 theory at finite µ . The Lagrangian of the complex φ 4 theory is given as

5
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L = ∂µφ ∗∂ µφ −m2φ ∗φ −λ (φ ∗φ)2, and the action at finite µ on the Euclidean lattice is given as

S = ∑
x

[
(4+m2)

2
φa,xφa,x +

λ

4
(φa,xφa,x)

2−φa,xφa,x+1̂− cosh µ φa,xφa,x+0̂ + iεab sinh µ φa,xφb,x+0̂

]
,

(3.1)

where φ = (φ1 + iφ2)/
√

2 with φa(a = 1,2) being the real scalar field. The last term of the action
gives rise to the imaginary part, and we have the sign problem. We complexify the real and imag-
inary parts, φ1,x = ϕ1,x + iξ1,x and φ2,x = ϕ2,x + iξ2,x, respectively, and apply the path optimization
method.
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Figure 3: Average phase factor (left) and number density (right) in the complex φ 4 theory at finite µ .

We have performed the optimization of the integration path on 42,62 and 82 lattices with
m = λ = 1 by using the neural network with a single hidden layer. In the left panel of Fig. 3, we
show the average phase factor as a function of µ . Without the optimization, the average phase factor
quickly decreases towards zero. By comparison, the HMC simulation on the optimized path shows
that the average phase factor is enhanced and kept to be greater than 0.4. Then the statistical error
of the expectation value for a given number of configurations is much smaller on the optimized
path (lines) than that on the original path (gray area) as shown in the right panel of Fig. 3. The
calculated number density, n =−∂ (S/V )/∂ µ , starts to grow at around µ = 1, as expected from the
mean field results, µc(MF) = arccosh(1+m2/2) ' 0.96, while the growth is delayed compared
with the mean field results especially on the larger lattices.

These features qualitatively agree with the results in previous works [25, 41], where 3+1 di-
mensional complex φ 4 theory is discussed using CLM [41] and LTM [25]. It is found that the
rapid decay of the average phase factor on the original path or in the phase quenched simulations,
enhanced average phase factor on the thimble [25], and delay of the density growth due to the
interaction.

The average phase factor may not be large enough compared with the LTM results [25]. This
should be due to incomplete optimization. Good ansatz helps us to enhance the average phase
factor. For example, Bursa and Kroyter have proposed several ansatz in the 0+1 dimensional com-
plex φ 4 theory using the translational invariance and the U(1) symmetry [37]. By using their
ansatz, the average phase factor is well above 0.9 at L = 8 with L being the temporal lattice size.
The ansatz in Ref. [37] assumes that the imaginary part of the variable on a site is a function of

6
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Figure 4: Correlation between the imaginary and real parts, Cxy(a,b), on a 62 lattice.

the real part on the same and the nearest neighbor sites. Also in our calculation, the correlation
Cxy(a,b) = (∂ξa,x/∂ϕb,y)

2 +(∂ξb,y/∂ϕa,x)
2 is found to be strong for the nearest neighbor sites in

the temporal direction, x and x+ 0̂, as shown in Fig. 4, and other correlations are smaller by about 2
orders of magnitude. Thus assuming the dependence ξa,x = fa(ϕx,ϕx±0̂) would be a good starting
point of unsupervised learning.

4. Application to gauge theory: 0+1 dimensional QCD

As the first step of application to gauge theory, we discuss 0+1 dimensional QCD with one
species of staggered Fermion at finite µ on a 1×Nτ lattice [42, 43, 44, 45, 46, 47]. The lattice
action is given as

S =
1
2∑

τ

(
χ̄τeµUτ χ

τ+0̂−χ̄
τ+0̂e−µU−1

τ χτ

)
+m∑

τ

χ̄τ χτ =
1
2

χ̄Dχ . (4.1)

The partition function is obtained as

Z =
∫

DU detD[U ] =
∫

dU det
[
XNτ

+(−1)Nτ eµ/TU +e−µ/TU−1
]

=
sinh[(Nc +1)E/T ]

sinh[E/T ]
+2cosh(Ncµ/T ) , (4.2)

XNτ
=2cosh(E/T ) , E = arcsinhm , U =U1U2 · · ·UNτ

, T = 1/Nτ . (4.3)

It should be noted that only the product of link variables, U =U1U2 · · ·UNτ
, remains in the partition

function, then 0+1 dimensional QCD reduces to a one link problem.
The 0+1 dimensional QCD is a toy model, but it contains the temporal hopping term which

is the actual source of the sign problem in 3+1 dimensional QCD. The properties of the above
partition function is also studied well in the context of the strong coupling lattice QCD [48, 49].

By using the residual gauge degrees of freedom, it is also possible to take the diagonal gauge.
The link variable for color SU(3) in the diagonal gauge is given as U = diag(eix1 ,eix2 ,eix3) with

7
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x1 + x2 + x3 = 0. After complexification of gauge variables, the partition function is now given as

Z =
∫

dUe−S =
∫

dx1dx2JHe−S

=
∫

dx1dx2

[
det
(

∂ za

∂xb

)][
8

3π2 ∏
a<b

sin2
(

za− zb

2

)][
∏

a
(XNτ

+2cos(za− iµ))
]
, (4.4)

where the color index (a,b) runs from 1 to Nc(= 3), and z1 = x1 + iy1,z2 = x2 + iy2 and z3 =

−(z1 + z2). The part in the first square bracket represents the Jacobian J, the second is the Haar
measure H, and the third is the Boltzmann weight exp(−S) = detD. We have assumed that Nτ is
an even number.

We have only two variables in the diagonal gauge, then it is possible to work on the two
dimensional mesh points of (x1,x2). We first discuss the results where the imaginary parts (y1,y2)

themselves are treated as the parameters. The gradient descent equation is then given as

dyi(x1,x2)

dt
=− ∂F

∂yi(x1,x2)
, (4.5)

where t is the fictitious time.
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Figure 5: Average phase factor in 0+1 dimensional QCD.

We have performed path optimization for 0+1 dimensional QCD with T = 1/2 and m = 0.05.
By optimizing the path, the average phase factor goes above 0.99 easily as shown in Fig. 5. It is
partly because the average phase factor on the original path is above 0.95. Nevertheless we would
like to emphasize that the reduction of (1−APF) is significant. In the 3+1 dimensional calculation,
the 0+1 dimensional QCD action appears in each spatial point on the lattice, then the average phase
factor in 3+1 dimensions on a L3×Nτ lattice would be around the L3-th power of that in the 0+1
dimensions, APF3+1 ' (APF0+1)

L3
, provided that other action terms do not make it worse. Then

APF0+1 = 0.95 leads to APF3+1 ' 4× 10−12 on a 83×Nτ lattice, while APF0+1 = 0.995 gives
APF3+1 ' 0.08. This average phase factor is not large but it would be enough to obtain some
meaningful results.

The results of path optimization for µ/T = 1 is shown in the right-bottom panel of Fig. 6. The
imaginary part y1 is modified from zero (original path) to be in the range of −0.2 < y1 < 0.2 after
optimization. (y2 is obtained by exchanging x1 and x2 axes.) The amount of the shift is roughly
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Figure 6: Action S (from the minimum, left top), Haar measure H (left bottom), the statistical weight He−S,
and the imaginary part of variable y1 in 0+1 dimensional QCD.

proportional to −∂F/∂yi, as expected from perturbation. The action shows a deep minimum at
(x1,x2) = (0,0), and there are two local minima at (x1,x2) = ±(2π/3,2π/3). By comparison,
the Haar measure divides the plain into the six separated regions. As a result, the probability
distribution, the real part of W = H exp(−S(z)) (except for the Jacobian), also has six regions.

The diagonal gauge is useful as shown above, but there are two problems. One is that it is
not always possible to take this gauge for all links. When we have spatial dimensions, we can
take the diagonal gauge for temporal links but not for spatial links. The other is the separated
probability distribution. The separated distribution does not cause trouble in mesh point integral,
but is problematic in HMC simulations. Since it is difficult to overcome the statistical barrier from
the Haar measure, we need to invoke the exchange Monte Carlo or different tempering [50, 51] in
order to sample configurations in the above six regions equally well.

Now we proceed to link variable sampling without diagonal gauge fixing. The SU(3) link
variable U is complexified to a SL(3) variable U . We here adopt the following complexification,

U ∈ SU(3)→U (U) =U
N2

c−1

∏
a=1

eyaλa/2 ∈ SL(3) . (4.6)

This form of the link variable is convenient to calculate the derivative of the matrix element with
respect to the real part of variables as well as the imaginary part. Since we have eight variables,
mesh point integral is not possible. We adopt HMC for sampling, and the neural network for
optimization. In HMC, we regard the SU(3) part is regarded as the dynamical variable of the
molecular dynamics, and the Hamiltonian is taken to be H = P2/2+ReS(U (U)), where P is the
conjugate momentum matrix of U .

9



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
2
3

Path optimization in field theories Akira Ohnishi

µ/T=1

-1 -0.5  0  0.5  1

x
1
/π

-1

-0.5

 0

 0.5

 1

x
2
/π

Figure 7: Distribution of (xa,xb) (a 6= b) in HMC simulations in 0+1 dimensional QCD.

We have performed the path optimization using a neural network for the link variable without
gauge fixing [38]. After optimization, we generate configurations in HMC using the optimized
neural network. The SL(3) link variables can be diagonalized by the similarity transformation,
U →P−1U P. The diagonalized link variables are given as diag(eiz1 ,eiz2 ,eiz3) with z1+z2+z3 = 0.
In Fig. 7, we show the distribution of (xa,xb) (a 6= b) with xa = Reza(a = 1,2,3). We show the
distribution with (a,b) = (1,2) with blue dots and other combinations of (a,b) with red dots. This
distribution (blue+red) is consistent with that in the probability distribution in the diagonalized
gauge. While the order of the eigenvalues may be easily exchanged in the diagonalization, we can
deduce that the six separated regions are visited in the HMC sampling. This is natural because the
six regions are related with each other by the exchange za↔ zb(a,b = 1,2,3) and by the symmetry
S(−z) = (S(z∗))∗ which corresponds to the transformation of xa→−xa, and the the eight variable
link variable contains these transformations.

We have also confirmed that we can reproduce the exact results of the chiral condensate,
quark number density, and the Polyakov loop in both of the treatment of link variables within the
statistical errors. These results will be reported in the forthcoming paper [38].

5. Application to QCD effective model with phase transition: PNJL model with
homogeneous ansatz

One important task in tackling the sign problem is how to handle the multi thimble contribu-
tions. When we have two or more fixed points contributing to the partition function significantly,
jumping from the one to other in HMC simulations requires more elaborate procedures. The sep-
arated regions of probability in the 0+1 dimensional QCD are apparent ones and are connected in
the SL(3) link variables. By comparison, one expects the phase transition in dense QCD, where
two different configurations of the chiral condensate and the Polyakov loop, hadronic and quark
matter, compete at around the phase transition boundary. This would correspond to the two fixed
point problem. In other words, two thimbles starting from these two fixed points would contribute
significantly to the partition function.

10
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As an example to discuss the phase transition, the Polyakov loop extended Nambu-Jona-
Lasinio (PNJL) model [52] seems to be nice. In the mean field approximation, we find the first
order phase transition boundary in low T and finite µ region. When we take account of fluctuations
of fields, the PNJL model has the sign problem. We have applied the path optimization method
to the PNJL [36]. The Fourier transformed field variables are truncated at zero momentum, i.e.
homogeneous field ansatz is used, while the volume is assumed to be finite. In this setup, the finite
volume results should converge to the mean field results in the large volume limit.
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Figure 8: The average phase factor (left) and the Polyakov loop and its conjugate (right) in the PNJL model.

In Fig. 8, we show the results of path optimization of the PNJL model at T = 100MeV and
volume k = 64 [36]. We take the the diagonal gauge, and A3 and A8 are complexified, while σ

and ~π are kept to be real. This choice corresponds to the complexification in the diagonalized
gauge in the 0+1 dimensional QCD, discussed in the previous section. At around the transition
chemical potential, µ ' 330MeV, the average phase factor is suppressed without optimization,
while it becomes almost unity after optimization. The finite volume results converge to the mean
field results with increasing volume. The phase transition signal, the rapid increase of the Polyakov
loop (Φ) and its conjugate (Φ), is described well on the optimized path as found in the right panel
of Fig. 8.

6. Summary

The sign problem is a grand challenge in theoretical physics, and we encounter it in many
subjects in physics. Recent development of complexified variable methods such as the Lefschetz
thimble method, complex Langevin method, and the path optimization method encourages us to
tackle the sign problem, while these methods may be still premature.

In this proceedings, we have discussed the sign problem in field theories by using the path op-
timization method with use of the neural network. In the path optimization method, we complexify
integration variables as xi → zi = xi + iyi. The integral path (manifold) is specified by the imagi-
nary part as a function of the real parts yi(x), and is optimized to evade the sign problem. We can

11
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explicitly parameterize the imaginary part of variables, yi = yi({x}), when the number of degrees
of freedom is small. By comparison, it is not practical to prepare and optimize explicit functions
by hand in the case with many variables such as in field theories. In such cases, the neural network
used in machine learning is useful. We have adopted a neural network with a single hidden layer. It
should be noted that even with a single hidden layer, the neural network can describe any functions
in the large unit number limit. We have demonstrated the usefulness of the path optimization with
use of the neural network in the complex φ 4 theory at finite µ the 0+1 dimensional QCD at finite
µ , and the Polyakov loop extended Nambu-Jona-Lasinio model with homogeneous field ansatz. In
all of these cases, the average phase factor is enhanced and the observables are obtained precisely.

One of the problems in the path optimization is the numerical cost. Since we aim to reduce
the sum of complex phases from the Boltzmann weight exp(−S) and the measure or Jacobian J(z)
simultaneously, we need to calculate the Jacobian, where the numerical cost is O(N3) with N being
the number of variables. In order to reduce the cost, it is helpful to assume the function form of the
imaginary part. For example, the imaginary part is assumed to be a function of the real part on the
same lattice site in the Thirring model in Ref. [16], and it is assumed to be a function of the real
part in the same and the nearest neighbor sites in 0+1 dimensional φ 4 theory in Ref. [37]. These
assumptions have been demonstrated to work well in enhancing the average phase factor. When
the Jacobian matrix becomes sparse, we can save the numerical cost.

It is also interesting to apply the deep learning, where the number of hidden layers is larger
than three. If the integration path is very complex as human brain with around 7 layers [53] cannot
imagine, we may have to invoke deep learning to find the path.

This work is supported in part by the Grants-in-Aid for Scientific Research from JSPS (Nos.
15H03663, 16K05350, 18K03618), and by the Yukawa International Program for Quark-hadron
Sciences (YIPQS).
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