PROCEEDINGS

OF SCIENCE

Challenges Implementing non-Abelian SU(2)
Quantum Chromodynamics Gauge Links On a
Universal Quantum Computer

Patrick Dreher*North Carolina State University

E-mail: padr eher @csu. edu

The traditional approach for studying the physics of thersirinteractions employs a basic com-
putational construct originally proposed by Wilson in tH¥7@s. Over the years additional en-
hancements have been added to this formulation to impravguatational performance and ac-
curacy. This formulation has been successfully impleneoie high performance computing
systems and has yielded accurate calculations for marig gtaiperties of the strong interac-
tions (such as the hadron mass spectrum). With the receahads in quantum computing, the
question that is now being asked is whether an equivalertdygauge invariant formulation of
a field theory can be constructed on a quantum computer talatdcdynamical processes that
cannot be simulated on a traditional supercomputer. Usiag@uantum Link Model (QLM) plus
the concept of rishons, this paper will specifically focustlom challenges implementing a basic
gauge link lattice construct usir§U(2) non-Abelian links for illustration. The paper will also
discuss the physics that may potentially be simulated oraatgm computer with this construct
and speculate on the prospects for having quantum compngeosne a part of the set of hardware
platforms for lattice gauge theory simulations in the fetur
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1. Introduction

The development of supercomputers has allowed physicistsrherically study several char-
acteristics of the strong interactions (such as the hadassmepectrum). However, computational
studies of many strong interaction dynamical processdsasithe real-time evolution of heavy-ion
collisions or the phase structure of dense QCD matter cammsimulated with digital supercom-
puters because of the inherent sign problem in the equati@isnanifests itself in simulations.
Similar types of sign problem challenges are also presemtany problems in condensed matter
physics. Recent advances in the development of new congmabarchitectures based on the prin-
ciples of quantum mechanics rather the present base-2ldiginputer architectures have opened
the possibility that these new systems may be able to makgge® in areas that cannot be handled
with conventional computers.

Within the fields of nuclear and high energy physics, no orelieen able to provide ana-
Iytical solutions to the physics equations of the strongrmttions because of their complexity.
Consequently, physicists must rely on lattice Quantum @ladynamics (LQCD) computational
simulations to make progress in these areas. A viable goeodmputer would provide a welcome
additional computational hardware tool.

At the present time the Standard Model is the best theoryadlaithat describes the physics
of the strong interactions. To simulate these QCD equatt@ms\Wilson proposed a computational
procedure [4] that placed the strongly interacting pagtidlquarks) on a lattice of points represent-
ing a four-dimensional space-time. These points are cdeddyy link matricesJ,y, representing
the gluon fields which are the carriers of the strong forcehinformulation the links act as gauge
invariant parallel transporters connecting the strongddiretween the quarks on these lattice points
with the Uyy link variables represented by continuous gauge groupslevttis type of Quantum
Chromodynamics formulation can be implemented on conwraticomputers, such mathematical
constructs are not compatible with quantum computing gchires.

This paper will focus on the specific challenges of re-fomtinty the traditional digital com-
putational version LQCD so that it can be implemented on atyuma computing system. Although
there are several distinct quantum computing computdtigff@ats underway (ex. optical lattices,
etc. [1, 2]) this paper will focus on applying QCD constructpublicly accessible superconducting
transmon devices such as the IBM Q quantum computing sysggm [

The paper is organized as follows. Section 2 summarizessenéal properties of the Quan-
tum Link Model (QLM) and outlines a gauge invariant repreéagan that factorizes the QLM
operators into rishon components on the ends of the quarniiks ISection 3 discusses the chal-
lenges of applyingSU(2) gauge group matrices onto the gauge links between theelgibints
in a way that they can be implemented on a universal quantumpater and finally Section 4
summarizes next steps.

2. The Quantum Link Model

Beginning in the 1980s various researchers began expeiilgewith developing alternate
Quantum Chromodynamics formulations from the traditicmgbroach to try improving the per-
formance and accuracy of numerical lattice based simulatibhese alternatives proposed modify-
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ing the real and imaginary parts of the traditional represén of the link variablesl{,y matrices)
connecting the lattice sitesandy. The proposed change modified the link variables from the
traditional complex valued matrices to ones where the lankables are now intrinsically quantum
mechanical objects. This idea is similar to the generalgueahtum spins that are represented by
non-commuting Hermitian operators. This overall approaels named the Quantum Link Model

(QLM).
2.1 Early Development of Alternativesto Traditional QCD Implementations

In 1981 Horn [5] published such a model for the gauge gradfl andSU(2). In the early
1990s Orland and Rohrlich [6, 7] used these basic ideas widesgauge magnets. In the late
1990s Chandrasekharan and Wiese, [8] along with SchlitigehWiese [9] drew on the analogy
that ordinary spin systems can be related to quantum spieisiadd connected the ordinary lattice
gauge theories to these non-commuting operators to deeel@lternative regularization of non-
Abelian gauge theories.

For problems in particle physics, these gauge fields on ks have dynamical quantum de-
grees of freedom and are not just classical background fi@gsrepresenting the link matrices
as non-commuting operators acting in a Hilbert space appliee QLM formulation, Brower, et.
al. [10] used these QLM ideas to develop3ld(3) lattice formulation of QCD. This formulation
had continuous gluon fields emerging via dimensional rédadtom the collective dynamics of
the (44 1)-dimension discrete quantum link variables with the quadesitified as domain wall
fermions at the edge of the extra dimension. This demoestréitat when these models are ex-
trapolated to the continuum limit f@U(3) using dimensional reduction techniques, the standard
strong interaction theory of QCD is recovered with chiraduks as domain wall fermions. In 2004
the work was extended to include other non-Abelian gaugepgeuch aSU(N), U(N), SQN),
andSp(N), and the exceptional group(2) [11].

2.2 TheQuantum Link Model and Quantum Computing

The starting point for formulating QCD on a quantum computsguires that the physics
should be expressed in a Hamiltonian formulation. Kogut &ngskind [12] constructed a gener-
alized lattice QCD Hamiltonian that can be written as

H— _t % (SoyUsUsyy +h.c.) + mz M

X!
g
T 2 Z (Lyby+ RyRy) 72

1
s Z (TrUwyUsyUy 7+ h.c.)

(wxy2
- VZ (det)yy+h.c.). (2.1)
xy)

In this equation théJy, terms areN x N matrices (with matrix eIementS”) associated with the
oriented link connecting the neighboring poixtandy. Eyy, LY, andRS, are Abelian and non-
Abelian electric field operators associated with the iR, andg’ andg are the corresponding
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Abelian and non-Abelian gauge couplings. The magnetic Belergy is connected with the ele-
mentary plaquettéwxy2. The term proportional ty explicitly breaks &J (N) gauge symmetry
down to SU(N). (For completeness, the other terms suchydsand !, wherei € {1,2,... N}
are the fermion creation and annihilation operators thayabandard anti-commutation relations.
The s’ terms are sign factors associated with the detailed coctitn of staggered fermions on
this d-dimensional spatial lattice coupled tdJgN) gauge fields represented by ttié!, matrix
elements.)

It can be shown that thi,y, L3,
relations

2y andRS, operators in the Hamiltonian obey the commutation

(L3 LP] = 2ifapd ©, [RR R0 = 2ifabCRC,
(L3R = [E, La] E,RY =
L3 U] =-A%U, [R3,U] :U)\a, [E,U]=U. (2.2)

From these commutation relations (Eq. 2.2) it follows thagmators associated with different links
commute with each other. Theterms in Eq. 2.2 are connected to the Hermitian generators of
SU(N)

A3 AP = 2ifapA S, TrABAP = 2530, (2.3)

where fapc are the structure constants of tBg(N) algebra (Eg. 2.3).
A key observation to note is that in the traditional Kogusskind lattice QCD Hamiltonian
the link matricedJy, can assume continuous values in the gauge deoiyp) or SU(N) and thekyy,

L3y, andR%, produce the corresponding canonically conjugate momemjpenators that are the
derivatives W|th respect to the matrix elementsJgf. The commutation relations that result from
this type of construct yield an infinite-dimensional Hilbgpace per link. Quantum computers need
a finite-dimensional Hilbert space representation to metitehg interaction physics problems. As
a result, the traditional QCD formulation is inadequateifigplementation on quantum computers.
Progress with QLM research [13, 14, 15] shows promise astamative QCD formulation for
implementing strongly interacting physics problems on amum computer.

2.3 Rishons

It has been recognized from the outset that the propertigseofink matrices are a critical
factor in determining the types of modifications that will ieeded to transform the gauge links
from an infinite to finite dimensional Hilbert space repreagan. Calculating and analyzing the
generators of the algebra provides a critical piece of métdion toward that goal.

For a link variable represented by a matrix reflecting thejgrproperties of the strong interac-
tions the real and imaginary parts of tNé matrix elementsJy, yields 2N2 Hermitian generators.
The operatord.? and R? represent th&U(N). x SU(N)g gauge transformations on the left and
right ends of the gauge link and contribute anothid? 2 1 generators. The operatBrprovides
one more generator. The aggregated totalf 4 1 generators forms a®U(2N) algebra. This is
the smallest algebra under which the commutation relaiiois). 2.2 close.

The Quantum Link Model allows these quantum operators toxpeessed as bilinears of
fermionic creation and annihilation operators and have lggeen the name rishons. These rishon
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creation and annihilation operators can be defineu:ﬂmdc‘i,. The<+ indicate the left and right
ends of the link and thee {1,2,...,N} is the color index. These creation annihilation operators
obey standard anti-commutation relations

{Ci(,ika Cf,tH } = OyOik 416,
{CL,ik’C;J/,il} = {C!(Tikacilza} =0. (2.4)

TheSU(2N) generators obey the commutation constraint of Eq. 2.2 apdijge a finite num-
ber of independent gauge transformations on the left afd eigds of the link. Th&d, RS, and
Exy terms can be expressed in terms of rishon creation and &tiwhioperators in the form

L>a<1y = Ci(T+)‘i?C>J.<,+7 R?y = Cin—)‘i?Cg/,_y
1 . . L
Exy = E(C;/chly,— - CI><T+C;<7+) (2.5)

An additional important result from this representatiothit the link matricehli{, are now directly
connected to the rishon operators at the ends of each link(E}

U>i<jy - C;<+C>J/Tf (2.6)

All operators that have been introduced as part of thesefioatibns (including the Hamiltonian)
commute with the rishon number operatdfy = c,]_c,_ +c,, ¢, , on each individual link. This

only then requires one to consider a fixed rishon number foin #ak. Essentially this is equivalent
to working in an given irreducible representationStJ(2N).

3. SU(2) non-Abelian Gauge Links on a Quantum Computer

The analysis from Section 2 can now be applied to the spediistration for SU(2) non-
Abelian gauge links. Following the analysis of [9] and theadission regarding the rishon repre-
sentation of theSU(2) Quantum Link Model in [17], it can be shown that the electrixfbpera-
tors on the xy link at the left and right ends of a gauge linkspree the commutation relations of
Eq.(2.2) and can be written as

1 .+ :
Lgy: Eclxy,f O]?Ciyﬁ,
R2 it
Xy — Ecxy,+aijcxy,+a (3.1)

In this case the terms in Eq. 2.5 are replaced by tB&)(2) Pauli matricess. The SU(2) matrix
elementsUJ({, in Eg. 2.6 can now be expanded into components

11 at 2t
ny =cC xy,+ny— +C xy7—C§y7+>

12_ 2t 1 2T 1
ny =cC xy,+ny,f —C xy,foy,+>

21 af 1t
Uy = Cruy+ Gy — Crxy— Gyt »
22 of 1t
Uy = €+ Cxy— T Cxy— Gyt - (3.2)
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wherei and j areSU(2) color indices, and- and+ refer to thex andy ends of the link(xy). From
the equations it is noted that the quantum link operbigrshuffles a rishon from one end of the
link to the other. The number operatofy, = ciiy7+(:§(y7+ +ciIM_c‘)(M_ keeps the total number of
rishons per link fixed.

In the QLM vector representation f@U(2) there are 45, = 2 rishons per link. These are
color-doublet fermions residing at the ends of a link andyatendard anti-commutation relations.
There are 4 possible combinations where one rishon carerasigach end of the link. There are
also 2 possible combinations where a pair of rishons cadeaegithe same end of the link and form
a color-singlet. Due to the rishon’s fermionic nature, whea of them sit on the same end of the
link they necessarily form a color-singlet. In this cases possibility is a symmetric superposition
of a two-rishon singlet sitting on the left and on the rightieri the link. The other possibility is
an anti-symmetric superposition (which does not conteliatthe QLM dynamics).

Each gauge link matrikl,y connects two nearest neighbor lattice sitesdy. EverySU(2)
link matrix on each gauge link has a 2 rishon configurationria of these 6 states. (Models with
a larger number of dimensions and/or higher order gaugepgr¢uch assU(3) for modelling
standard QCD) require 20 qubits per gauge Bi(3).) The left and right rishon components of
the gauge linkJyy attach to the lattice site corresponding to the Igftand right §) sides of the
gauge link. There are additional adjacent gauge links teatatach to the two lattice sitesandy.
Connecting these adjacent links at each lattice and psopedounting for their fermionic nature
requires that the rishons sharing the common lattice gftéwithout external charges) must form
an overall configuration that obeys Gauss’s Law.

In this rishon formulation, the minimum number of qubitsu&gd to program aBU(2) gauge
link onto a quantum computer requires 3 qubjsy >). Qubita assigns a "0” if it is a rishon
creation operator or a "1” for a rishon annihilation operatQubit 8 assigns states to theandy
ends of the link(xy). A ”0” is assigned to qubit 2 if the operator is on the left safethe link (x
side represented by-a) or a "1” if the operator is on the right side of the link fepresented by a
+) . Qubity is assigned a "0” for the first color indéxand a "1” for the second color indejxof
the SU(2) matrix. Using this configuration, a first calculation®if)(2) using QLM and rishons on
a quantum computer might consider a 12 qubit plagqueteU,, U, U, Uuy at different couplings
on a 2-d lattice wittSU(2) gauge links.

4. Summary and Next Steps

Quantum computers such as the superconducting transmamesleve at the beginning stages
of development. At the present time the largest IBM Q avégldias 20 qubits. A 50 qubit IBM Q
machine my become available sometime in 2019. QLM calanativithSU(2) are possible today
but SU(3) simulations are beyond the capacity of an IBM Q type quantamputer at this time.

Although the universal quantum computer approach for stah@CD may not be fully imple-
mentable on quantum computing hardware at the present tiimaee are discussions in the quan-
tum computing community that the first practical quantum potars may be hybrids of both a
conventional and quantum machine. Certainly the lessa@iade from these early investigations
of re-formulating the physics of the strong interactions iway that is compatible with a quantum
computer are valuable and can contribute to the designshwfchgrchitectures where a portion of
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the physics problem is simulated on a conventional machidespecific sections of the code that
are amenable to quantum computing speedup are allocatkd tuantum computer.
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