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Despite its importance for subjects ranging from cosmology to plasma physics, first principle sim-
ulations of the dynamics associated with a U(1) chiral anomaly have been started only recently.
In this work, we report on the current status of these investigations. We discuss a possible set-up
and highlight some results. We present a determination of the Chern-Simons diffusion rate, which
shows some discrepancy with the usual effective description which is anomalous magnetohydro-
dynamic. We also present some exploratory results on the behaviour of an initial chiral chemical
potential.
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1. Introduction

Within the Standard Model, processes mediated through the chiral anomaly produce a rich
physics, textbooks examples [1] being the explanations of the rate π0→ γγ or the reason why the
η ′ is much more massive than the pions. The dynamics of these processes is also important, with
examples ranging from baryogenesis [2] to chiral magnetic effect [3]. While the dynamics of non-
abelian anomalous processes has been extensively studied, see [4] for an up-to-date computation
of the standard model SU(2) sphaleron rate, a first principles study of the anomaly dynamic in the
abelian sector is still lacking. A first step in this direction was taken in [5, 6]. This work, which
mostly reports on [7], is another one.

The model we investigate is based on scalar electrodynamics coupled to a massless vector-like
fermion field Ψ

L =−1
4

FµνFµν − Ψ̄γ
µDµΨ− (Dµφ)∗(Dµ

φ)−V (φ) (1.1)

with Fµν the field strength tensor of our gauge field Aµ , Dµ = ∂µ− ieAµ and V (φ)=m2|φ |2+λ |φ |4.
Taking the mass to be positive, we can tune it so that this action becomes a toy-model for the
hypercharge sector of the standard model close to the phase transition. The classical invariance
under chiral rotations is anomalous at the quantum level

∂µJµ

5 =
e2

8π2 Fµν F̃µν = N f ∂µKµ (1.2)

with Jµ

5 = Ψ̄γµγ5Ψ, F̃µν = 1
2 εµνρσ Fρσ is the hodge-dual of Fµν , N f = 2 is the number of flavours

and Kµ = e2

8π2 εµνρσ Aν∂ρAσ is the CS-form. In particular, we see that the CS number density
nCS = K0 is nothing else than what is often referred to as the magnetic helicity density

nCS =
e2

8π2
~A ·~B (1.3)

In particular, for a homogeneous chiral current, the anomaly equation (1.2) reduces to

∂0J0
5 = N f ∂µKµ (1.4)

This model provides us with a rich dynamics which we wish to study with the help of real-time
simulations. In section 2, we sum-up the set-up which allows us to do so. In section 3, we discuss
results on the Chern-Simons (CS) diffusion rate and present an initial study of the chiral chemical
potential dynamics. Section 4 allows us to present some outlooks.

2. Theoretical Set-Up and Lattice Implementation

In this section we sumarise and highlight some of the essential parts of [5, 6], where our set-up
is fully explained.

In the case of a homogeneous chiral current, we can write an effective description without
fermions. The anomaly is a non-conservation of chirality and upon integrating out the fermions
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may be represented as a (homogeneous in our case) chemical potential µ5 which sources the CS
number [8]. Then, the anomaly becomes an equation for µ5, which reads

dµ5

dt
=

√
3e2

8T π2
1
V

∫
d3xFµν F̃µν . (2.1)

with T the temperature and V the volume of the system. The equations of motion together with the
anomaly equation can be derived from the following effective action

Se f f =−
∫

d4x
(
−(Dµφ)∗(Dµ

φ)−V (φ)+
1
4

FµνFµν − 1
2
(∂0a)2 −

√
3e2

8π2
a
T

Fµν F̃µν

)
(2.2)

upon identifying ∂0a = µ5
V . Note that this is nothing else that the effective action of a homogeneous

axion field coupled to a U(1) sector.
Having gotten rid of the fermions, putting the theory on the lattice to perform real-time simu-

lations becomes easier. Still, it needs to be done with some care, especially when considering the
CS number [9]. One of the perks of an abelian theory over a non-abelian one is that it admits a
discretisation directly in terms of gauge potentials and not only in terms of parallel transporters (or
links); it admits a non-compact discretisation on top of the usual compact one. This is the key point
which allows us to write down what we will call a simple lattice topological version of the topo-
logical charge density Fµν F̃µν and of the CS number. We call it topological in the sense that we
can construct a discrete topological charge density which can be written as the discrete divergence
of a discrete CS. Details are presented in [6], here we will summarise the basic constituants needed
to formulate our problem, which discrete set of equations we are solving and how we are putting
everything together to solve our real time problem.

To discretise the theory, we fix the temporal gauge A0 = 0. Given a cubic and periodic lattice
of N3 points and lattice spacing dx, we provide a discrete complex scalar field φ(n), a three com-
ponents gauge field Ai(n+ 1

2 î) together with their conjugate momenta π(n) and Ei(n+ 1
2 î). Note

that n denotes a lattice point and î a unit vector in the direction i; the 1
2 shift in the gauge fields is

reminiscent of their nature as gauge connections. Now the game is to devise a correct discretisation
of the topological charge and CS number such that they have the correct lattice continuum limit
and obey the correct lattice relations. Using the notation fa,µ = fa(n+ µ̂) for f a field with some
indices a and denoting ∆±µ f = ± 1

dx( f±µ − f ) our finite difference operators, we may compute a
discrete version of the magnetic field by Bi(n+ 1

2 ĵ + 1
2 k̂) = ∑ j,k εi jk∆

+
j Ak and then construct the

following operators

A(2)
i ≡

1
2
(Ai +Ai,−i) E(2)

i ≡
1
2
(Ei +Ei,−i) (2.3)

E(4)
i ≡

1
4
(Ei +Ei,−i +Ei,−0 +Ei,−i−0) B(4)

i ≡
1
4
(Bi +Bi,− j +Bi,−k +Bi,− j−k) (2.4)

B(8)
i ≡

1
2

(
B(4)

i +B(4)
i,+i

)
(2.5)
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With these objects we may then define, as promised, a discrete topological charge density K L

together with a CS density KL
µ

K L ≡ e2

4π2 ∑
i

1
2

E(2)
i (B(4)

i +B(4)
i,+0) (2.6)

KL
0 ≡−

e2

8π2 ∑
i

A(2)
i B(4)

i (2.7)

KL
i ≡−

e2

16π2 ∑
j,k

εi jk

(
E(2)

j A(2)
k,−i +E(2)

j,−iA
(2)
k

)
(2.8)

Crucially, they satisfy the relation
K L = ∑

µ

∆
+
µ Kµ

L (2.9)

With all of this at hand, we can then write down discrete equations of motions, which are shown
in figure 1 and put them together in a real time simulation, which consists in evolving numerically
the equations of motions of some properly conditioned initial field configurations, as summarised
in figure 1.

π ≡ ∆+
o ϕ

Ei ≡ ∆+
o Ai

µ ≡ T
2
√

3
∆−o a

∆−o π = ∑i D−i D+
i ϕ−V,ϕ∗

∆−o Ei = 2e, Im{ϕ∗D+
i ϕ}

−∑ j,k εi jk∆
−
j Bk− e2

4π2 µB(8)
i

∆+
o µ = 3

π2
1

T 2
e2

N3 ∑~n
1
2 ∑i E(2)

i (B(4)
i +B(4)

i,+0)

∑i ∆
−
i Ei = 2e Im{ϕ∗π} (Gauss Constraint)

Thermalisation: Metropolis

Impose Gauss Constraint: Steepest Descent

Evolve the system: Leap Frog

Figure 1: Lattice problem and equations of motion. D±µ f = ± 1
dx (e

∓iedxµ Aµ (n± 1
2 ) f±µ − f ) are covariant

derivatives.

3. Selected Results

In this section, we discuss some results obtained with these simulations. We focus on the CS
diffusion rate and present some initial results on the chemical potential dynamics. For a detailed
analysis on the CS rate together with a discussion of the electrical susceptibility see [5]. A deeper
analysis of the chemical potential dynamics will be reported elsewhere [7].

3.1 CS Diffusion Rate

Let us start with the diffusion of the CS number. In the absence of external magnetic field, our
Abelian theory has a non-degenerate vacuum; creation of CS number costs energy. In other words,
for asymptotic times, we expect the CS number to oscillate around zero with a constant variance.
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This is what we observe in the left hand side of figure 2, where we display the variance of the CS
number per unit volume. As expected, it asymptotes to a constant value.

When a constant external magnetic field is applied, the situation becomes more interesting [6].
The external magnetic field introduces a vacuum degeneracy with respect to the CS number and
creates a situation very similar to the non-abelian case, where the vacuum degeneracy is intrinsic.
This induced degeneracy can be understood as follow. As ncs ∝ ~A · ~B, while not requiring any
energy, creating a vector potential ~A parallel to ~B changes the CS number; ~B acts as a reservoir of
vacua. Thus, ncs will be described as a random walk between vacua and its variance is expected to
grow linearly with time. More precisely, defining Q(t)≡

∫
dx3 (ncs(x, t)−ncs(x,0))

〈Q(t)2〉
V

= Γt (3.1)

for large t and where Γ is the CS diffusion rate. Generically, this rate is expected to depend on
the charge of the particles and the strength of the magnetic field. As reported in [5], one can try
to model this dependence in the framework of magnetohydrodynamics (MHD). The dependence is
predicted to be of the sort Γ = cMHDe6B2 with some proportionality factor cMHD. In the right hand
side panel of figure 2, we show the evolution of 〈Q(t)2〉

V . The dashed lines are linear fits of [5] which
proves that the late time evolution is indeed linear. This also shows that there is a dependence on
the charge. The full analysis was reported in [5], where the behaviour Γ ∝ e6B2 was confirmed at
the 10% level. On the other hand, the measured proportionality factor cmeasured differs by a factor
of order 60 from the MHD prediction

cmeasured

cMHD
≈ 60 (3.2)

This result is a strong motivation to pursue these lattice investigations further and study other
observables.

10−1 100 101 102 103 104 105

10−6

10−5

10−4
N = 64

t

CS Evolution, Bext = 0

e2 = 1

10−1 100 101 102 103 104 105
10−8

10−5

10−2

Bext ≈ 0.0061T 2

t

CS Evolution, Bext 6= 0

e2 = 0.5
e2 = 1.0

〈Q2〉
V

Figure 2: Left panel: In the absence of an external magnetic field, the CS number variance saturates to a
constant at late time. Right panel: Magnetically induced diffusion of 〈Q2〉. Equation (3.1) allows to fit the
diffusion coefficients. In both cases, the error bars represent statistical errors.

3.2 Chiral Chemical Potential

Another natural question to ask is: what is the fate of an initial chiral chemical potential? The
following simple argument shows that one should expect some instabilities. In the theory without
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fermions, as explained in section 2, one adds an effective term µ5ncs. At non-zero temperature, the
favored state is the one of minimal free energy; there is a competition between the kinetic term and
the new effective term. This is best understood in momentum space, where the former is quadratic
in k whereas the latter is linear in k. More precisely

1
2
(E2 +B2)∼ 1

2
k2A2,

α

2π
µ5~A ·~B∼

α

2π
µ5kA2 (3.3)

In particular, we see there is an instability whenever

1
2

k2A2− α

2π
µ5kA2 < 0 ⇐⇒ k < kcrit =

α

π
µ5 (3.4)

This tells us two things. First, the modes responsible for the instability are in the infrared. The
underlying physical picture is the following. As in this theory long-range gauge fields carry less
energy than matter, the chiral imbalance is converted in such gauge fields. Then, we see that this
phenomenon will be affected by the lattice infrared cutoff kmin =

2π

N . Indeed, equation (3.4) may
be understood as follows: any chemical potential such that

µ5 <
8π3

Ne2 = µc (3.5)

will be stable. In particular, we see that at fixed charge, the smaller the chemical potential we want
to study, the larger the lattices need be.

These predictions are indeed observed on the lattice, as shown in the upper panel of figure
3. Initial chemical potentials decay and reach the critical lattice values predicted in equation (3.5)
(dotted lines). Because of the anomaly equation (1.2), they are transferred into magnetic helicity,
i.e. CS number, see lower panel of figure 3. The behaviour strongly depends on the initial value
of the chemical potential. For large values (left hand side), the decay seems to proceed at least
partly through damped oscillations, even if the full behaviour cannot be extracted from figure 3 as
the difference between the initial chemical potential and the critical one is of the same order than
the amplitude of the oscillations. Going towards smaller chemical potentials (right hand side), we
observe a disappearance of the oscillations; the initial charge simply decays to the critical one. We
also encounter a second phenomenon: the smaller the chemical potential, the longer it takes for
the decay to be triggered. This makes the investigation of the small chemical potential region even
more challenging as it requires large simulations to be run for a long time. As mentioned earlier, a
more complete and quantitative investigation of this dynamic is to be reported elsewhere [7].

4. Outlooks

The results reported here, which shows that while the qualitative feature of the U(1) chiral
charge are reasonably well understood, some quantitative estimates are in tension with first princi-
ples simulations, giving great motivations to continue this work further. Several directions open up.
On one side, we wish to improve our model, which for now does not take into account hard thermal
loops, that turned out to be relevant in the SU(2) case [10]. Another direction is to further study the
behaviour of the chiral chemical potential. The regime of small chemical potential is of particular
interest. Since gauge fields can have non-zero CS number with arbitrarily small energy, one may
hope to uncover processes similar to non-abelian sphalerons i.e. thermal fluctuations between these
quasi-vacua, see section 2.2 in [6].
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Figure 3: Upper panel: Evolution of µ5. As expected, it decays into magnetic helicity, which is shown
in the lower panel. The dotted lines show the predicted value for the lowest chemical potential. Longer
plateaus are observed for smaller chemical potentials and damped oscillations for larger ones.
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