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1. Introduction

A theory of two real scalar fields, φ and ρ , described by the Lagrangian,

L =−1
2

φ(∂ 2 +M2
φ )φ − 1

2
ρ(∂ 2 +M2

ρ)ρ −
λφ

4!
φ

4 −
λρ

4!
ρ

4 − 1
2

gφ
2
ρ, (1.1)

is studied here. Parameters in the above Lagrangian are chosen such that the ρ particle may decay
into two φ particles in infinite volume. We also ensure that spontaneous symmetry breaking does
not occur. We formulate this theory on a space-time lattice and study φ -φ scattering to extract
resonance parameters of the theory using the box matrix formalism developed in Ref. [1], which
is an implementation of the so-called Lüscher method[2, 3]. This model was previously studied
in 1995 by Rummukainen and Gottlieb [4] in the Ising limit. Here, we do not take the large limit
in the quartic self-couplings, and we avoid using unphysical lattice dispersion relations by making
use of a tree-level Symanzik-improved action.

2. Choice of model parameters

We require the physical ρ mass to be greater than twice the physical φ mass, so that the
decay is kinematically allowed, and less than three times the φ mass, as required for the Lüscher
analysis. Quartic interactions in Eq. (1.1) are included so that our action is bounded from below
in Euclidean space-time, but we wish to keep these couplings as small as possible to reduce mass
renormalizations. We also require that our theory features no spontaneous symmetry breaking, so
we design the action to have a unique minimum at φ = ρ = 0. To reduce finite-volume effects, we
impose the condition mφ L > 4, where mφ is the measured φ mass and L is the spatial extent of the
lattice. Then we choose atMφ according to this constraint and our choice of lattice size, where at

is the temporal lattice spacing. Finally, we need to pick a value for the 1-to-2 coupling, g, large
enough to produce significant interaction energies. Table 1 gives the run parameters we chose to
satisfy the above conditions.

atMφ atMρ
g

Mφ
λφ λρ

0.1 0.31 1 g2

4M2
φ

g2

M2
φ

Table 1: Model parameters

3. The need for an improved action

If we use a naive discretization scheme involving only finite differences in the derivative terms
of the action, then the portion of the action including only the φ field can be written as,

Sφ = aD−1
s at ∑

x
∑
µ

(
(φ(x+aµ µ̂)−φ(x))2

2aµ

+
1
2

M2
φ φ(x)2 +

λφ

4!
φ(x)4

)
, (3.1)

where as denotes the spatial lattice spacing. In our work, we use an isotropic lattice. We find
that using this scheme produces overly-large discretization errors when performing boosts with the
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continuum dispersion relation, as shown in Fig. 1. Let EP
φ

denote the energy of the φ particle having
momentum P = 2πd

L , where d is a vector of integers and L = asns is the length of the isotropic L3

lattice. We determine EP
φ

from the exponential fall-off of appropriate temporal correlation functions
estimated by the Monte Carlo method in the standard way. The difference between the φ mass
measured in the moving frame and its mass in the rest frame is ∆mφ = [(EP

φ
)2 −P2]1/2 −E0

φ
. In the

continuum limit, this quantity should vanish. Any deviation from zero is a measure of discretization
errors. One sees sizeable discretization errors in Fig. 1.

Ref. [4] handled this problem by making use of “lattice” dispersion relations. We, instead,
decided to employ a tree-level Symanzik-improved action and found that with such an action,
continuum energy-momentum dispersion relations worked well. For a lattice spacing as, the dis-
cretization error in the finite-difference approximation of the action is O(a2

µ). We can reduce this
error down to O(a4

µ) by employing a tree-level Symanzik improvement, which is given below for
the portion of the action containing only the φ terms (the ρ terms are similar):

SI
φ = aD−1

s at ∑
x

{
1

2a2
µ

∑
µ

(
−4

3
φ(x+aµ)φ(x)−

4
3

φ(x−aµ)φ(x)

+
1

12
φ(x+2aµ)φ(x)+

1
12

φ(x−2aµ)φ(x)+
5
2

φ(x)2
)

+
1
2

M2
φ φ(x)2 +

λφ

4!
φ(x)4

}
.

(3.2)

Fig. 2 shows ∆mφ using the Symanzik improved action, and demonstrates the ameliorative effect
that the improved action has on the discretization errors in the boosts.
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Figure 1: Differences between moving-frame and rest-frame measurements of the φ mass, using
the unimproved action.

4. Phase shift determination and resonance parameter extraction

A large portion of the finite-volume spectrum was determined, but for the purpose of the
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Figure 2: Differences between moving-frame and rest-frame measurements of the φ mass, using
the Symanzik improved action.

Lüscher analysis, we are only interested in energies which differ significantly from their noninter-
acting values and are below the 3mφ threshold. These energies manifest as avoided level crossings,
and Figs. 3-5 show examples of these avoided level crossings in the center-of-momentum frame.
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Figure 3: Center-of-momentum energies near avoided level crossings in the (left) d2 = 0 channel
and the (right) d2 = 2 channel.

Using the box matrix formalism developed in Ref. [1] and applied in works such as [5, 6, 7],
we write the quantization condition which relates our finite-volume spectrum to the infinite-volume
K-matrix as,

det
[
K̃−1(ECM)−BΛ,d(ECM)

]
= 0, (4.1)

where ECM refers to a particular lab-frame energy boosted to the center-of-momentum frame. K̃ is
related to the standard K-matrix as described below. The so-called box matrix B is Hermitian and
block-diagonal in the octahedral irrep, Λ, and in total momentum class, d. For spinless scattering,
K̃ may be indexed by only angular momentum l, but must be truncated by some maximum lmax. In
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Figure 4: Avoided level crossings in the d2 = 1 channel, boosted to the center-of-momentum frame.
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Figure 5: Avoided level crossings in the d2 = 3 channel, boosted to the center-of-momentum frame.

this work, we consider lmax = 0 and investigate the systematic errors introduced by this truncation
by also considering lmax = 2. Note that l = 1 is excluded by parity. It should be noted that in
Eq. (4.1), each energy determination provides a single relation between that energy and the entire
K̃-matrix. When truncating K̃ down to a single angular momentum, calculating B(ECM) (using
freely developed software made available in Ref. [1]) tells us K̃−1 directly. For higher-l truncations,
however, we must parametrize K̃ and use many calculations of the energies and B(ECM) to fit to
the entire K̃-matrix.

Define the following center-of-mass frame kinematic variables:

ECM =

√
E2 −Ptot

2, qCM =

√(
ECM

2

)2

−m2
φ
, (4.2)

where E is an energy measured in the lab-frame, Ptot =
2πd

L is the total lab-frame momentum
associated with that energy, and mφ is the φ mass measured in the Ptot = 0 channel. With these
definitions, we can now define K̃−1 in terms of the usual K-matrix and scattering phase-shift δl ,

K̃−1
l =

(
qCM

mφ

)2l+1

K−1
l =

(
qCM

mφ

)2l+1

cotδl(ECM). (4.3)
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We choose to parametrize K̃−1
l=0 by a Breit-Wigner,

K̃−1
0 =

1
2

√
E2

CM

m2
φ

−4

(
m2

ρ −E2
CM

mρΓρ

)
, (4.4)

where the resonance mass mρ and its decay width Γρ are parameters we fit to. Γρ is related to the

tri-field coupling as Γρ = g2

32πm2
ρ

√
m2

ρ −4m2
φ

. When we include l = 2 in our truncation, we choose
to parametrize it by the first term in an effective range expansion,

K̃−1
2 =− 1

m5
φ

a2
. (4.5)

Fig. 6 shows calculations of qCM
mφ

cotδ0 along with a curve based on a fit to an lmax = 0 K̃-
matrix. Fig. 7 shows a similar fit, but this time including the l = 2 partial wave in our fit. We find
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Figure 6: Fit to K̃−1-matrix, truncated to lmax = 0.

that not only is the l = 2 scattering length within error of zero, but also that including the l = 2
partial wave in our fit does not significantly change the determination of the resonance parameters
mρ and Γρ . We therefore determine that it is justified to truncate our K̃-matrix to lmax = 0. Our
determination of the fit parameters is still ongoing and will be published in the near future.
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