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Hadron-Hadron Interactions from N f = 2+1+1
Lattice QCD: π−K scattering length

F. Pittler∗

In this proceeding we perform a separate chiral and continuum extrapolation of the scattering
length for the π −K scattering in the maximal isospin channel I3 = 3

2 . In order to verify our
approach, we extrapolate separately the meson parameters (pion mass and decay constants, eta
mass) to the physical point. Our approach uses a minimal set of input parameters in the extrapo-
lation and is an alternative to the combined chiral and continuum extrapolation. We compare the
extrapolated scattering lengths with our already published results in [1].
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1. Introduction

The standard model is very successful in describing the ground state properties of light hadrons.
Recent results with physical pion mass [2] and with continuum extrapolation [3, 4] show a very
good agreement with the experiments. For a recent review on the subject see [5]. In this contribu-
tion we extract informations about the interaction in hadronic systems.

In particular we are investigating scatterings for small momenta, below the inelastic threshold.
The quanitites of primary interests are the scattering phase shift and the scattering length, which
can be related to experiments. Most of the lattice results are concerned with meson-meson inter-
action, in particular with pion-pion scattering. Besides lattice calculations, effective field theories,
such as chiral perturbation theory (chPT) provide a good description due to the pseudo Goldstone
boson nature of the pions under chiral symmetry. For example in the s-wave isospin=2 channel
the pion mass dependence of the π−π scattering length was found to be well described by chiral
perturbation theory up to 400MeV pion mass [6].

On the contrary, when one or both particles in the interaction have non-zero strangeness the
convergence of chPT is unclear and there are much less lattice results available. In this contribution
we try to partly fill this gap by presenting our results for the π−K s-wave scattering length in the
I = 3/2 isospin-channel (a3/2

0 ).
On this conference there is another contribution that focuses on the I = 1/2 s− and p−wave

kaon-pion scattering amplitudes [7]. Also the scattering length in the maximal isospin channel was
recently determined at the physical point for the first time with a lattice spacing of a ' 0.114fm
[8]. There are several results employing chiral extrapolations as well [9, 10, 11], however without
taking attempts to continuum extrapolation.

In [1] we published our results with three different lattice spacing using combined chiral and
continuum extrapolations. Using this approach we were not able to identify lattice artefacts, within
our statistical accuracy. In this paper we perform an alternative controlled and separate chiral and
continuum extrapolation of the scattering length, which could shed the light on the possible lattice
spacing dependence of the scattering length. In order to control our extrapolations we use as an
input parameter only the physical value of µπK/ fπ and M2

K−0.5M2
π , where µπK is the reduced mass

of the pion-kaon system, fπ is the pion-decay constant, Mπ the pion mass and MK the kaon mass.
We reproduce all the other physical input parameters used in a combined chiral and continuum
extrapolation: the physical value of the pion mass, the pion decay constant, the kaon mass and
the eta meson mass (Mη ). In particular we explicitly check that our extrapolations reproduce the
physical value of

1. r0 fπ at the physical value of µπK/ fπ ,

2. r0 fπ at the physical value of (r0Mπ)
2,

3. (r0Mπ)
2 at the physical value of µπK/ fπ ,

4. (r0Mη)
2 at the physical value of µπK/ fπ ,

5. (r0Mη)
2 at the physical value of (r0Mπ)

2

in units of the appropriate powers of the Sommer-scale parameter (r0).
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2. Numerical setup

For completeness we summarize here the details of our numerical simulations. For additional
details we refer to [1]. In this contribution we use the ensembles provided by the European Twisted
Mass Collaboration featuring 2+1+1 dynamical quark flavors [12]. In order to avoid the compli-
cated flavor-parity mixing in the unitary non-degenerate strange-charm sector, we adopt a mixed
action ansatz with so-called Osterwalder-Seiler (OS) [13] valence quarks, while keeping order
O (a) improvement intact. In total we use 11 ensembles of gauge configurations with pion masses
ranging from 260MeV to 490MeV distributed over three different lattice spacings. We show the
summary of our simulation ensembles on Fig. 1. Note that we use partial quenching and simulate
using three valence strange quark masses (whose range includes the physical strange quark mass)
for each light quark mass. Referring to Fig 1 this means, that the simulations with the same shape
at a given pion mass differ only by the valence strange quark mass.
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Figure 1: Summary of the simulated pion and kaon masses used in this work.

In order to compute the scattering length we use the Lüscher method which connects the finite
volume interacting energy spectrum with the infinite volume scattering length [14]. In our case the
relevant energy difference is ∆EL = EπK −MK −Mπ , where EπK is the ground state energy of the
interacting system. Using the finite range expansion one arrives at the formula relating the energy
difference to the scattering length (a0)

∆EL =− 2πa0

µπKL3

(
1+ c1

a0

L
+ c2

a2
0

L2

)
+O

(
L−6) , (2.1)

where c1 = 2.837297,c2 = 6.375183. We apply stochastic LapH smearing [15] to determine the
correlators necessary for extracting the interaction energy.

3. Extrapolation methods

We obtain the scattering lengths (a3/2
0 ) in our finite volume lattice simulations using the Lüsch-

ers formula with the computed energy difference ∆EL as an input. In determining ∆EL we have to
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compute the interaction energy of the pion kaon system using the appropriate four point correlation
functions. The way we extract the ground state energy from this correlation function is explained
in [1]. In particular we have to take care of the so-called thermal states, that distort the signal.

Using our results for the scattering length at pion masses larger than the physical one we now
extrapolate to the physical point in the continuum limit. We determined the scattering length for
several points in the three dimensional parameter space of the lattice spacing, light and strange
quark mass. Thus the non-trivial task is to extrapolate along some path to the physical point. At
this point it is important to stress that we are doing the inter-extrapolations not in terms of quark
masses but entirely in terms of meson masses in practice.

We start with fixing the kaon mass relative to the pion mass using a combination of MK and
Mπ , which in leading order(LO) of chPT is proportional to the strange quark mass. Therefore our
fixing condition is

(r0

a

)2 (
(aMK)

2
fix−0.5(aMπ)

2)= ((r0MK)phys)
2−0.5((r0Mπ)phys)

2, (3.1)

where we have used the physical value of the right hand side (r0MK)phys)
2− 0.5((r0Mπ)phys)

2 =

1.33(7). We obtained the lattice spacing from ref. [17]. The other strange quark dependent observ-
ables relevant for the chPT expression of the scattering length (Eq. 3.2) will be interpolated linearly
in terms of the kaon mass squared to (aMK)

2
fix.

In order to extrapolate in the pion mass we use the next-to leading order(NLO) chPT expres-
sion from ref. [18]

µπKa3/2
0 =

µ2
πK

4π f 2
π

{
−1+

32MπMK

f 2
π

LπK(Λχ)−
16M2

π

f 2
π

L5(Λχ)+
1

16π2 f 2
π

χ
3/2
NLO(Λχ ,Mπ ,MK ,Mη)

}
,

(3.2)

where we choose the pion decay constant in lattice units as the renormalization scale aΛχ = a fπ

and L5
(
Λχ

)
, LπK

(
Λχ

)
are the two LEC-s to be determined. At leading order this formula reduces

to a quadratic function in terms of µπK/ fπ . Therefore it is useful to do the extrapolation not in
terms of (r0Mπ)

2 but in terms of µπK/ fπ , because towards the chiral limit the corrections to the
expected behavior becomes smaller and smaller. To do so we have to express Mπ ,Mη and fπ in
terms of µπK/ fπ using the techniques from ref. [17] for each lattice spacing. Our strategy is the
following. We express first a fπ as a function of (aMπ)

2, which enables us to express µπK/ fπ as
a function of (aMπ)

2, whose inverse we are looking for. For small pion masses one can use the
Taylor-expansion of a fπ as a function of (aMπ)

2 around the physical point:

a fπ = c1 (a)+ c2 (a) · (aMπ)
2 + c3 (a) · (aMπ)

4 . (3.3)

We show our results for the pion decay constant in the left panel of Fig. 2. For the intermediate
lattice spacing ensembles we have not included the largest light quark mass data in the fit, which
was seen to be outside the validity of our second order expansion. From the same fits we also
obtain the pion mass in terms of µπK/ fπ , which we show in the right panel of Fig. 2.

The remaining observable to express in terms of µπK fπ is the η mass1. We do the extrapola-
tions based on [19]. In particular we assume

(r0Mη)
2 = b1 (a)+b2 · (r0Mπ)

2 . (3.4)
1The kaon mass is already expressed in terms of the pion mass due to the strange quark mass fixing.
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Note that here we perform a combined fit with parameter b2 independent of the lattice spacing. We
are currently performing simulation at an even smaller pion mass for the smallest lattice spacing
ensemble, which will enable a more stable fit also for this observable. We show our fit results for
the eta meson mass in Fig. 3.
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Figure 2: Left (Right) the pion decay constant (pion mass squared) as a function of the dimensionless
parameter µπK

fπ
.

β = 1.90
β = 1.95
β = 2.10

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

1 1.1 1.2 1.3 1.4 1.5 1.6

(r
0
M

η
)2

µπK/fπ

Figure 3: The eta mass squared as a function of the dimensionless parameter µπK
fπ

.

4. Results

In order to apply the above extrapolations in determining the scattering length at the physical
point, we have to show that the extrapolations correctly reproduce the physical values of the meson
parameters appearing in Eq. 3.2. We performed the continuum extrapolation of the pion mass,
decay constant and eta mass at the fixed physical value of µπK/ fπ and (r0Mπ)

2. We summarize our
results in Table 1. Note that we have one sigma discrepancy only for the eta mass, which can be
attributed to the non-physical value of the strange quark mass [19].

We performed the chiral extrapolation (Eq. 3.2) using the lattice µπKa0 data with LπK as a fit
parameter separately for each lattice spacing. Our fit is not stable enough to determine L5 along
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O Fixed parameter This work Physical value Relative deviation
r0 fπ µπK/ fπ 0.320(15) 0.310(8) 0.013(23)
r0 fπ (r0Mπ)

2 0.318(13) 0.310(8) 0.011(20)
(r0Mπ)

2 µπK/ fπ 0.113(13) 0.103(5) 0.100(134)
(r0Mη)

2 µπK/ fπ 1.3(3) 1.70(8) 0.21(18)
(r0Mη)

2 (r0Mπ)
2 1.3(3) 1.70(8) 0.21(18)

Table 1: Summary of the chiral and continuum extrapolation of the meson parameters appearing in Eq. 3.2

with LπK , therefore we use a prior for that from ref. [20], the same for all lattice spacings. At the
end we extrapolate to the continuum at the physical value of µπK/ fπ . We show our results for the
chiral and continuum extrapolations in Fig. 4.
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Figure 4: Left: The chiral extrapolation in terms of µπK/ fπ towards the physical point for each lattice
spacing. Right: The continuum extrapolation at the physical point

5. Conclusion

In this contribution we have determined the scattering length for the πK system at the maximal
isospin channel in the s-wave. Our final result for the scattering length: µπKa3/2 =−0.049(3). We
compare our results with the recent works on Fig. 5. With the analysis presented in the paper we get
compatible results with our published work [1]. With our approach we are also able to to estimate
the lattice artefacts to the scattering length, which seem to be a few percent effect (see in the left
panel of Fig. 4). In order to further check our extrapolations, we currently perform calculations
on an even smaller pion mass at the finest lattice spacing. Our plan for the future is to complete a
combined chiral analysis of ππ I = 2,πK I = 3/2 and KK I = 1 scattering lengths.
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