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1. Introduction, motivation, and previous work

If we are to understand strong-interaction resonances from first principles, then it is essential
to develop methods that can extract their properties from the quantities that lattice QCD can cal-
culate, namely the spectrum of states with given quantum numbers confined to a (usually cubic)
box. While methods for describing resonances having only two-particle decay channels are well
developed, and have been extensively applied in numerical lattice calculations, the formalism for
scattering and decays to three or more particles lags behind. The issue is urgent both because most
resonances do have such decay channels, and because numerical simulations are already exploring
this regime and need such formalism to interpret the results.

Examples of resonances for which a three-particle formalism is needed are ω→ 3π , a2(1320)→
ρπ→ 3π , the Roper resonance N(1440)→ ∆π→ Nππ and X(3872)→ J/Ψππ . As illustrated by
these examples, for most resonances one or more of the two-particle subchannels is also resonant
in the kinematical range of interest. It is this situation which is addressed in the first of the new
results described below.

We also note that a three-particle quantization condition is a step on the way to using lattice
QCD to predict electroweak decay amplitudes in which the final states either have three or more
particles, e.g. K→ 3π , or contain two particles that can mix by the strong interactions with states
of three or more particles, e.g. D→ 2π and D→ K̄K.

Here we discuss the status of our model-independent relativistic approach. This began in
Refs. [1, 2] with the derivation of the three-particle quantization condition for identical scalar par-
ticles of mass m, with no resonances in two-particle subchannels, and satisfying a G-parity-like Z2

symmetry that conserves particle number modulo 2. The procedure to go from the spectrum of two
and three particles in a box to infinite-volume scattering amplitudes involves two steps:

(i) Use the two-particle spectrum in the energy range E2;CM < 4m and the three-particle spec-
trum for E3;CM < 5m to determine the two-particle K matrix, K2, and the three-particle
scattering quantity, Kdf,3, using the quantization conditions1

det
[
F−1

2 +K2
]
= 0 , det

[
F−1

3 +Kdf,3
]
= 0 . (1.1)

The first of these is the Lüscher quantization condition [3, 4], or a generalization thereof,
in which F2 is a known volume-dependent matrix. The second quantization condition is the
result of Ref. [1], with F3 a known volume-dependent matrix that depends on K2. Kdf,3 is an
intermediate, regularization-scheme-dependent, infinite-volume quantity that can be roughly
thought of as a quasilocal three-particle interaction.

(ii) Determine the three-particle scattering amplitude M3 from Kdf,3 and K2 by solving infinite-
volume integral equations [2].

The need for two steps, as opposed to the single-step determination of K2 in the two-particle case,
appears to be general. It holds also for the NREFT approach of Refs. [5, 6], and the “finite volume
unitarity" approach of Refs. [7], although the details of the second steps differ.

1The subscript df stands for “divergence free". See Ref. [1] for further explanation.
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The first major generalization within our approach was to remove the Z2-symmetry constraint,
thus allowing 2↔ 3 transitions. The quantization condition then becomes [8]

det

(F2 0
0 F3

)−1

+

(
K22 K23

K32 Kdf,33

)= 0 . (1.2)

The finite-volume functions are essentially unchanged, and correspond to on-shell two- and three-
particle intermediate states. The number of infinite-volume intermediate scattering quantities has
enlarged to correspond to the allowed physical scattering processes. The four K -matrices are
again related to the corresponding four physical amplitudes (M22, M23, M32 and M33) by integral
equations. Despite its apparent simplicity, Eq. (1.2) was challenging to derive due to the need for a
careful investigation of 1→ 2 subprocesses.

2. Including resonant subchannels

We have recently taken the final major step in the development of our formalism, namely the
inclusion of resonant subchannels. The results described above assumed that K2 had no poles
on the real axis, as would be the case, for example, if there were a nearby complex pole in M2

corresponding to a resonance. We have now removed this restriction, albeit within the context of a
Z2-symmetric theory, and find that the quantization condition becomes [9]

det

(F2̃2̃ F2̃3
F32̃ F33

)−1

+

(
Kdf,2̃2̃ Kdf,2̃3
Kdf,32̃ Kdf,33

)= 0 . (2.1)

This is the result for a single K-matrix pole within the relevant kinematic range, i.e. E2,CM < 4m.
The second channel in this case, labeled 2̃, is an unphysical resonance + particle channel. It is
required in our analysis because the poles in K2 lead to power-law finite-volume dependence at
intermediate stages, although they cancel in the final result. All four entries in the F matrix are
known in terms of K2 and the box size. There is again a second step in which the four intermediate
quantities (the entries of the Kdf matrix) are related to the single physical scattering amplitude,
M3, by integral equations.

There is not space here for further explication of the result (2.1), or of its derivation. For these,
see Ref. [9]. We found this to be the most challenging of the three results to derive. We stress,
however, that, as in the previous work, we do not make assumptions about the form of the effective
field theory that we consider, aside from its Z2 symmetry.

Looking forward, there are several further generalizations on our to-do list: multiple K-matrix
poles, K-matrix poles in a theory without the Z2 symmetry, and allowing for nondegenerate par-
ticles and multiple three-particle channels. In all these cases we are confident, based on past ex-
perience, that we know the form of the resulting quantization conditions and that their derivation
will be relatively straightforward generalizations of previous work. Other formal work we are con-
sidering is better understanding the relation of our quantization condition to those of the other two
approaches, and understanding how the results in Eqs. (1.2) and (2.1) connect when a resonance
changes into a stable state, an example being the ρ meson as the light quark masses increase.
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3. Numerical implementation in the isotropic approximation

Since the formalism is in a relatively advanced state, the time has come to learn how to imple-
ment it. Each of the quantities appearing in the quantization conditions is an infinite-dimensional
matrix, and must be truncated for practical applications. In the two-particle case, this is accom-
plished by assuming that K2 vanishes for partial waves above a chosen cutoff `max (usually 0, 1
or 2). This is appropriate close to threshold, since partial wave amplitudes scale as q2`, with q the
relative CM momentum. In addition, the nonvanshing components of K2 must be parametrized
in a physically-motivated way, and the parameters then determined from fitting the energy levels
obtained from simulations. This setup has, by now, been widely and successfully implemented for
two particles, including multiple two-particle channels.

We have begun the implementation of a similar truncation scheme for Kdf,3, applying this first
to our original formalism, Eq. (1.1).2 The situation is more complicated than for K2 because Kdf,3

has additional matrix indices: a spectator momentum index (a finite-box momentum) together with
the angular momentum indices of the nonspectator pair. Nevertheless, a systematic expansion about
the three-particle threshold is possible, as discussed in Sec. 4 below.

In Ref. [12], we have implemented the leading term in this expansion, first introduced in
Ref. [1], and denoted the isotropic approximation. Both K2 and Kdf,3 are truncated at `max = 0,
and Kdf,3 is taken to be a point-like vertex, independent of the spectator momentum. Furthermore,
only the leading term in an effective range expansion for K2(` = 0) is kept, namely the s-wave
scattering length, a0. Thus scattering is described by two parameters, a0 and Kdf,3. Our aim is not
to suggest that this approximation will be sufficient to describe most resonances (although it may
be adequate for the I = 3 three pion state close to threshold), but rather to show how the two steps
connecting the spectrum to scattering amplitudes can be implemented from beginning to end. We
note that this truncation is the analog in our formalism of the approximations used in the other two
approaches [5–7, 10, 13].

In the isotropic approximation, the quantization condition of Eq. (1.1) collapses to a one-
dimensional algebraic equation, although it depends on all components of F3 up to a cutoff k∼m. It
turns out to be straightforward to implement numerically for a wide range of box sizes 4.mL. 70.
The motivation for considering extremely large volumes is twofold: first, it allows us to provide
robust checks of asymptotic predictions; and, second, it provides a tool for solving the integral
equations relating Kdf,3 to M3, although so far only below or at the three-particle threshold.

We have space here only to mention a few of the many results presented in Ref. [12]. Our
most straightforward investigation is to determine how the three-particle spectrum depends on a0

and Kdf,3. The noninteracting energy levels are shifted in the expected way: attractive two- and
three-particle interactions lower the energies, while repulsive interactions raise them. For small
enough |a0m| and (mL)−1, we can check our methods by comparing to the threshold expansion
derived analytically in Ref. [14]. In this regime the contribution of Kdf,3 is suppressed by (mL)−3

compared to the leading term. Our approach works, however, for arbitrarily large negative a0m,
i.e. with a strongly attractive interaction that does not quite lead to a two-particle bound state.

2We note that this formalism—identical particles with a Z2 symmetry and no subchannel resonances—applies to
the case of three pions in an I = 3 state (assuming exact isospin symmetry). This three-pion system has recently been
analyzed in great detail using the finite-volume unitarity approach [10]. See also Ref. [11].
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In this regime we find that the shift from noninteracting energy levels is comparable to the level
spacing. Furthermore, we find that if mL ∼ 5, which is the regime accessed by present numerical
simulations, the energy levels depend significantly on Kdf,3. This suggests that it will be possible
to extract information on the three-particle interaction, despite its suppression for large volumes.

A nice example of the full two-step application of our formalism concerns the properties of
an Efimov-like three-particle bound state. We expect such bound states near the unitary limit
a0m→ −∞, and find that for each choice of |a0m| � 1, there is a corresponding value of Kdf,3

for which there is a bound state. We choose a0m = −104 for detailed investigation, finding the
bound-state energy EB = 2.98858m. For this system, Ref. [15] has derived the asymptotic volume
dependence analytically, and we find that our results match this prediction, although the asymptotic
regime begins only at mL∼ 40, well beyond the reach of simulations. For acheivable values of mL,
the quantization condition predicts very large energy shifts, e.g. E ≈ 2.65m at mL = 5. This is thus
an example of the utility of the quantization condition—one can use it to extract the underlying
scattering parameters in a regime where analytic results are not available.

Implementing the second step in our approach allows us to study M3 close to the bound state,
where it has a pole, and to determine the dependence of the residue on the spectator momentum k.
This is related to the momentum-space wavefunction of the state. In Ref. [16] we have extended the
work of Ref. [15] to determine the analytic form for this quantity using NRQM. Given the fit to the
asymptotic behavior of EB(L), we then have a theoretical parameter-free prediction for the residue
function. As shown in Fig. 1, our numerical results for this quantity agree with the prediction over
many orders of magnitude. This demonstrates that our formalism can reproduce known, nontrivial
physics, and also shows how, in principle, one can go from simulations to physical predictions.
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Figure 1: Momentum dependence of the magnitude squared of the bound-state residue function. The curve
shows the theoretical prediction, while the points are the results from solving the integral equations. Here
1/(mL) is proportional to the grid spacing used in the discretization of the integral equation, and the agree-
ment between the results for mL = 60− 70 shows that the dependence on this spacing has been removed.
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4. Beyond the isotropic approximation

We close by describing briefly work in progress that develops a systematic expansion for Kdf,3

about threshold, and shows how this can be implemented in practice [17]. We continue to work in
the Z2 symmetric theory without K-matrix poles. What we aim for is an expansion for Kdf,3 that
is the analog of the threshold (or effective range) expansion for K2. The strategy was described in
Ref. [12]. The key inputs are that Kdf,3 is a relativistically invariant function of the three incoming
and three outgoing momenta (pi and p′i, respectively, with i = 1,3),3 and is symmetric separately
under interchange of the initial the final momenta.

Using these results we can expand Kdf,3 about threshold. The relevant variables are

∆ = s−9m2 , ∆i = (p j + pk)
2−4m2 , ∆

′
i = (p′j + p′k)

2−4m2 , and ti j = (pi− p′j)
2 , (4.1)

where s = (p1 + p2 + p3)
2, and, in the second and third equations, i, j,k are one of the three cyclic

permutations of 1,2,3. All 16 quantities in Eq. (4.1) vanish at threshold and we treat them as being
of the same order in the expansion. Only eight of them are independent, corresponding to the
overall energy and the seven angular variables that describe 3→ 3 scattering. Implementing the
symmetries, we find that the expansion to quadratic order in small quantities is [17]

Kdf,3 = c0 + c1∆+ c2∆
2 + cAK2A + cBK2B , (4.2)

K2A =
3

∑
i=1

(
∆

2
i +∆

′
i
2
)
, K2B =

3

∑
i, j=1

t2
i j . (4.3)

At leading order, there is a single constant, c0—this we called Kdf,3 in the previous section. At
linear order there is also a single constant, c1, which leads to linear dependence on s, but no angular
dependence. What is new and striking is that, at quadratic order, there are, in addition to the s2

term, only two terms that depend on angles, K2A and K2B. There are thus five relations between
the angles at this order, a simplification that makes implementation significantly more tractable.

We have converted the expressions K2A and K2B into the variables used in the quantization
condition: the spectator momentum k and angular momentum for the remaining pair, `,m. We find
contributions involving both `= 0 and 2. For consistency, this means that we must include d-wave
two-particle K-matrices in addition to s-wave.4 At quadratic order, these take the form

1
K s

2
=

1
16πE2

[
1
a0

+ r0
q2

2
+P0r3

0q4
]
, K d

2 = 16πE2q4a5
2 , (4.4)

where E2 is the two-particle CM energy and r0 is the effective range. We have parametrized K d
2

so that a2 has dimensions of length. Thus, altogether there are nine parameters at quadratic order.5

We have numerically implemented the extended quantization condition, including projection
onto irreps of the cubic group. Here all irreps appear, whereas in the isotropic approximation only

3In the formalism described in Refs. [1, 2], Kdf,3 was not relativistically invariant. However, as was noted in
Ref. [8], by a small change in the definition of F3, it can be made so.

4Odd angular momenta vanish for identical particles.
5In Ref. [1] we defined the isotropic approximation to mean that Kdf,3 can have arbitrary dependence on s, but no

dependence on angles. We now see that, beyond linear order in s, one should introduce angular dependence as well in
order to be part of a systematic threshold expansion.
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the trivial irrep, A+
1 , contributes. We are presently investigating its properties in detail, and hope to

report results soon.
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