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1. Introduction

In recent years, large advances have been made in computing multi-baryon observables using
lattice QCD. Many studies have been published on two nucleon (2N) spectroscopy, an overview of
which can be found in [1]. Additionally, calculations of s-wave three nucleon (3N) systems, such as
3H and 3He, have been performed in the past [2, 3]. Three neutron (3n) interactions, however, have
not been addressed by lattice QCD to date because their correlators require non-trivial momentum
projections due to the Pauli-exclusion principle. Further, the number of Wick contractions are
substantially larger than their s-wave 3N counterparts.

An analysis of the full 3N spectrum (s-wave and beyond) is important however. Unknown
3N forces are responsible for the largest uncertainties in calculations of neutron rich isotopes, such
as the determination of the neutron dripline or equation of state of neutron stars. Experiments
are currently not able to measure 3n interaction energies directly as such systems are very hard to
create.

Lattice calculations can perform spectrometry on 3n systems but suffers its own problems.
Apart form the aforementioned issues of computing 3n correlators, measurements are expected to
suffer from a worse signal-to-noise problem than the smaller 2N systems. In this work we develop
the formalism and computational tools to evaluate 3n correlators on the lattice.

2. Formalism

We express the 3n correlator as a contraction CSS3
3n (p) = 〈OSS3

3n OSS3
3n 〉. For simplicity, we restrict

the discussion to vanishing total momentum and a single relative momentum p. S and S3 denote
magnitude and third component of the total spin. The interpolating operator O3n can be composed
out of the individual neutron operators n as shown for the sink side operator (primed arguments
indicate the sink):

OSS3
3n (x′1,x

′
2,x
′
3) =

(
nα ′(x′1)Γ

α ′β ′
ss3

nβ ′(x′2)
)

Γ
ss3γ ′

SS3
nγ ′(x′3) . (2.1)

Here Γss3 denotes a Clebsch-Gordan coefficient projecting onto the cubic irreducible representa-
tion1 s,s3, see [4]. Expressed in terms of quark operators, the neutron operators are

nα ′(x′) = εa′b′c′dα ′

a′ (x)
(

uβ ′

b′ Γ
β ′γ ′

1
2

1
2

dγ ′

c′

)
. (2.2)

At most two neutrons can be at the same site due to the Pauli exclusion principle. However, in
order to be able to access S3 = ±3/2, we need to place all three neutrons at three distinct sources.
The sinks, too, need to be different from each other. This implies that we can not simply project to
an s-wave as that would put all three neutrons at the same site in momentum-space.

We therefore need to control all three baryon momenta individually. To this end we employ the
formalism described in [5, 6] which combines quarks into baryon blocks B that have the quantum
numbers of a single baryon at the sink. Here, baryon blocks are defined as

Bα ′αβγ

abc (x′| f1,x1; f2,x2; f3,x3) = εa′b′c′Sα ′α
a′a ( f1,x′← x1)

×
[

Sβ ′β
b′b ( f2,x′← x2)Γ

β ′γ ′

1
2

1
2

Sγ ′γ
c′c ( f3,x′← x3)

]
.

(2.3)

1For zero total momentum and s ∈ {0, 1/2, 1}, we can use spin and cubic labels interchangeably.
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S( f ,x′ ← x) denotes a single quark propagator of flavour f from source x to sink x′. B has only
one spin (α ′) and one site (x′) label at the sink but is completely ‘open’ at the source. In the
interest of readability, we shorten the notation using superindices I and X defined via BI(x′|X) ≡
Bα ′αβγ

abc (x′| f1,x1; f2,x2; f3,x3).
Expressed in terms of baryon blocks, the correlators take the form

CSS3
3n (n2) = Fn2

(
∑
IJK

X1X2X3

T SS3
IJK (X1,X2,X3) BI(x′1|X1)BJ(x′2|X2)BK(x′3|X3)

)
. (2.4)

The tensor T encodes the combination of Γ’s and ε’s from (2.1) and (2.2) and projects onto total
spin S,S3. Note that all three baryon blocks have distinct parameters, mirrored by T . We note that
it is not possible to separate the dependencies on flavours and sites X from spins and colours I,J,K.

In equation (2.4) n2 denotes a momentum shell on a cubic lattice rather than the continuum
momentum p from before. Setting the centre-of-mass momentum to zero and picking a relative
momentum is not sufficient to specify the full momentum projection F for a three particle system.
There is some freedom in choosing F but not every projection has good overlap with the physical
3n system. A choice that is easy to implement and fast to compute is

F : (x′1,x
′
2,x
′
3) 7→ (+p,−p,0), (2.5)

i.e. the di-neutron in eq. (2.1) is projected to zero momentum with its constituents having back to
back momenta and the singled out neutron has zero momentum on its own. The full calculation2

of the projection onto the cubic n2 shows that this form removes some contributions from the
correlator; more specifically, the di-neutron spin in (2.1) is restricted to s = s3 = 1.

3. Implementation / Code Generation

Naively, a correlator of the form (2.4) has Nu!Nd! = 3!6! = 4320 different combinations of
flavours and sites. In practice, some terms cancel and this number is slightly lower but still too large
to handle by hand. We therefore developed a software suite that generates high performance C++

code on top of Chroma [7] from expressions of the form given in eqns. (2.1) and (2.2). It consists
of a chain of code written in FORM [8], Python, and C++.

The FORM script starts with high level, human readable expressions like (2.1) and generates
all possible quark contractions. The quark propagators are then collected into baryon blocks and
split such that each sub-expression has a unique triple of blocks B(x′1|X1)B(x′2|X2)B(x′3|X3) (not
counting spin and colour indices). All remaining terms are combined into T .

4. Ensemble

We only present results for a single ensemble because computing three neutron correlators is
computationally expensive despite the optimizations to the contraction code. We generated Clover-
Wilson fermions in 2+1 flavours with parameters modelled after the 96×323 CLS ensemble H107

2Unfortunately, as with most calculations of this type, it is too long to present here. See in particular Section 3.
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presented in [9], but with a larger spatial extent of 96×483. The strange quark has physical mass
ms = mphys

s and the lattice spacing is a = 0.085fm. The pion mass as measured by RQCD on
H107 is mπ = 368MeV which gives mπL = 7.7 on our lattices. The analysis presented here uses
Ncfg = 175 configurations and production is ongoing. It is important to note that the preliminary
analysis presented here uses point-to-point quark propagators, thus we expect cleaner signals in the
final analysis.

5. Results

5.1 Single Pion and Nucleon

The code generator described above can handle smaller systems as well. We used it to generate
contraction codes for single pion and nucleon propagators as well as 2N correlators. All results
shown here have been computed for zero total momentum and total isospin I and total spin S as
indicated in the figure titles.

Figure 1 shows effective masses for the s-wave propagators of pions and nucleons. The ef-
fective mass of the pion is shown in symmetric form. The black dashed lines in those figures are
not fitted to the data. In case of the pion, it shows the mass measured by the RQCD collaboration
in [9]. Our data seems to agree with this value but shows large fluctuations which should disappear
once more statistics become available. The 1.1GeV line in the single nucleon plot has been placed
manually to roughly match data and agrees with the usually observed mN ≈ mπ +800GeV [10].
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Figure 1: Effective masses of single pion and nucleon s-wave propagators. The black lines are not fit results
but rather indicate where the particle masses should be according to the measurements performed by [9].

5.2 Two Nucleons

Correlators for 2Ns can be cast into a form similar to (2.4) containing only two Bs. These
expressions are much shorter than for three nucleons and it is feasible to treat all three relevant
isospin channels. Ultimately, this amounts to extending the tensor T with isospin indices. This
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formalism has been applied to the 2N system before. Some 2N calculations can be found in [1, 11,
12, 13].

Here, we follow the approach of [13] which places the quark propagators at spacially sepa-
rated sources. For the preliminary study presented here, we used only a single displacement with
maximally separated sources ∆sources = (L/2, L/2, L/2).
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Figure 2: Energy shifts of some s-wave two nucleon systems. The black lines are not fitted to the data. The
I = I3 = 0, S = 1, S3 = 0 channel is similar to the shown S = S3 = 1 and has been omitted for clarity.

Some results for s-wave two nucleon systems are shown in Figure 2. Results in the I = I3 = 0,
S = 1, S3 = 0 channel are essentially the same as the S = S3 = 1 channel due to isospin symmetry.
The S = S3 = 0 channel should be different however, which is reflected in the figure. The combi-
nations not shown here (I = S = 1 and I = S = 0) vanish for zero centre-of-mass momentum; we
have confirmed this.

Again, the black lines are not fits to the data but have been placed to guide the eye. Within the
current statistics, the energy shifts are consistent with zero but do not show clear plateaus.

5.3 Three Neutrons

In the 3N systems, we focus on the novel three neutron correlators, i.e. maximal isospin. The
code generator is general enough to handle the other isospin channels as well however. The other
systems have already been discussed in [2] and hence, for simplicity, we do not discuss them here.

All three quark sources have been placed at different lattice sites to avoid the Pauli principle.
In particular, the sources are at (omitting the time coordinate)

x1 =
(

0, 0, 0
)
, x2 =

(L
2
,

L
2
,

L
2

)
, x3 =

(L
4
,

L
4
,

L
4

)
.

The sinks are transformed into momentum space according to (2.5) which produces relative p-
waves with zero centre-of-mass momentum.

Figure 3 shows the resulting effective masses for S = S3 = 1/2 and S = S3 = 3/2. The re-
maining channel, S = 3/2,S3 = 1/2, has been omitted because the data is qualitatively the same;
as expected. The statistical uncertainties are more than an order of magnitude larger than for two
nucleons. Contrary to the usual strong increase of noise for medium times, they are approximately
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constant across the whole range of t. The plots show clear plateaus over long times which are con-
sistent with the estimate of 3mN in Figure 1. This might be an artefact of the low statistical quality
however.

The energy shifts with respect to mN are shown in Figure 4. They exhibit an increase in
statistical errors for larger times due to the single nucleon correlators. For small times, there are
semblances of plateaus consistent with zero.
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Figure 3: Effective masses of three nucleon p-wave correlators. The black dashed lines are not fitted to the
data but placed at 3mN as estimated in Figure 1.
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Figure 4: Energy shifts of the three nucleon correlators. The raw effective masses are shown in Figure 3.
The black dashed line is a guide to indicate zero and not a fit to data.

6. Conclusion and Outlook

We have generalised the formalism of baryon blocks to three neutron interactions with fully
displaced sources. Based on this, we developed a source code generator to automatically produce
and optimise contraction codes. As a first application of this generator, we have looked at three
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neutron interactions on a newly produced gauge ensemble. The preliminary results are promising
and show the expected patterns. Statistical uncertainties are too large however to perform a proper
analysis for now.

Generation of configurations is ongoing which will allow us to gather more statistics. In
addition, we will perform more measurements on each configuration with smeared propagators and
different source displacements to reduce both statistical noise and excited state contaminations.

Acknowledgments

The authors gratefully acknowledge the computing time granted by the JARA-HPC Vergabegremium
and provided on the JARA-HPC supercomputers JURECA and JUQUEEN at Forschungszentrum
Jülich.

References

[1] E. Berkowitz, Progress in Two-Nucleon Spectroscopy, in PoS [14], 003.

[2] HAL QCD collaboration, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii et al., Lattice QCD
approach to Nuclear Physics, PTEP 2012 (2012) 01A105 [1206.5088].

[3] T. Doi et al., Baryon interactions at physical quark masses in Lattice QCD, in PoS [14], 091.

[4] LATTICE HADRON PHYSICS (LHPC) collaboration, S. Basak, R. Edwards, G. T. Fleming, U. M.
Heller, C. Morningstar, D. Richards et al., Clebsch-Gordan construction of lattice interpolating fields
for excited baryons, Phys. Rev. D72 (2005) 074501 [hep-lat/0508018].

[5] T. Doi and M. G. Endres, Unified contraction algorithm for multi-baryon correlators on the lattice,
Comput. Phys. Commun. 184 (2013) 117 [1205.0585].

[6] W. Detmold and K. Orginos, Nuclear correlation functions in lattice QCD, Phys. Rev. D87 (2013)
114512 [1207.1452].

[7] SCIDAC, LHPC, UKQCD collaboration, R. G. Edwards and B. Joo, The Chroma software system
for lattice QCD, Nucl. Phys. Proc. Suppl. 140 (2005) 832 [hep-lat/0409003].

[8] J. A. M. Vermaseren, New features of FORM, math-ph/0010025.

[9] RQCD collaboration, G. S. Bali, E. E. Scholz, J. Simeth and W. Söldner, Lattice simulations with
N f = 2+1 improved Wilson fermions at a fixed strange quark mass, Phys. Rev. D94 (2016) 074501
[1606.09039].

[10] A. Walker-Loud, Nuclear Physics Review, PoS LATTICE2013 (2014) 013 [1401.8259].

[11] K. Orginos, A. Parreno, M. J. Savage, S. R. Beane, E. Chang and W. Detmold, Two nucleon systems
at mπ ∼ 450 MeV from lattice QCD, Phys. Rev. D92 (2015) 114512 [1508.07583].

[12] T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi and A. Ukawa, Study of quark mass dependence of binding
energy for light nuclei in 2+1 flavor lattice QCD, Phys. Rev. D92 (2015) 014501 [1502.04182].

[13] E. Berkowitz, T. Kurth, A. Nicholson, B. Joo, E. Rinaldi, M. Strother et al., Two-Nucleon Higher
Partial-Wave Scattering from Lattice QCD, Phys. Lett. B765 (2017) 285 [1508.00886].

[14] vol. LATTICE2018, 2018.

6

https://doi.org/10.1093/ptep/pts010
https://arxiv.org/abs/1206.5088
https://doi.org/10.1103/PhysRevD.72.074501
https://arxiv.org/abs/hep-lat/0508018
https://doi.org/10.1016/j.cpc.2012.09.004
https://arxiv.org/abs/1205.0585
https://doi.org/10.1103/PhysRevD.87.114512
https://doi.org/10.1103/PhysRevD.87.114512
https://arxiv.org/abs/1207.1452
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://arxiv.org/abs/hep-lat/0409003
https://arxiv.org/abs/math-ph/0010025
https://doi.org/10.1103/PhysRevD.94.074501
https://arxiv.org/abs/1606.09039
https://doi.org/10.22323/1.187.0013
https://arxiv.org/abs/1401.8259
https://doi.org/10.1103/PhysRevD.92.114512
https://arxiv.org/abs/1508.07583
https://doi.org/10.1103/PhysRevD.92.014501
https://arxiv.org/abs/1502.04182
https://doi.org/10.1016/j.physletb.2016.12.024
https://arxiv.org/abs/1508.00886

