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We report an exploratory study of the current-current matrix elements that are relevant to the
extraction of moments of the pion light-cone distribution amplitude, employing the method of
introducing a valence relativistic heavy quark. The numerical investigation is carried out in the
quenched approximation with the physical volume L ~ 2.4 fm at two values of lattice spacing
(0.05 and 0.075 fm). We obtain clean signals for the relevant Euclidean hadronic tensor with
reasonable statistics, but observe that the lattice artefacts are non-negligible in our results. The
key conclusion from the analysis hitherto is that although our approach has the potential for
making significant contributions to parton physics, data at finer lattice spacings that are currently
being produced are needed in order to control the continuum extrapolation.
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1. Introduction

Numerical implementation of lattice field theory is normally carried out in Euclidean space.
Therefore it is challenging to apply lattice QCD to extract reliable results in parton physics, which
involves non-perturbative dynamics on the light cone. For this reason, the traditional approach
to extracting various parton distribution functions (PDF’s) and light-cone distribution amplitudes
(LCDA’s) employing lattice QCD relies on the calculation of Mellin moments. These moments
are related to matrix elements of local operators that arise from an operator product expansion
(OPE). Because O(4) Euclidean space-time symmetry is broken by the lattice geometry, these local
operators mix under renormalisation, resulting in power divergences that are difficult to subtract
accurately [1, 2]. This is the reason why lattice-QCD determination of the PDF’s and the LCDA’s
using the above strategy has only been giving results for the first three Mellin moments.

Alternative methods for gaining parton-physics information with lattice QCD have been sug-
gested over the past two decades [3, 4, 5, 6, 7, 8, 9, 10, 11]. These methods involve calculating
hadronic matrix elements of non-local operators, and many of them are presently under intensive
investigation [12]. In this article, we present progress of performing a lattice calculation for the
pion LCDA, employing the proposal of introducing a valence relativistic heavy quark, as detailed
for the quark PDF’s in Ref. [5]. The pion LCDA, ¢ (&), is of importance in understanding hadronic
exclusive decay processes in QCD [13], as well as in extracting information in flavour physics [14].
It is defined as

O (-2 B () = ipus | dE e 50%05(E), (L

with z2 = 0, and #[—z,z] being a light-like Wilson line between —z and z. The variable & rep-
resents the fraction of the pion momentum carried by the valence u quark. The above DA can be
constructed from its Mellin moments, a,,, that are related to local matrix elements in QCD,

I
ar= [ dE & 6x(2).
fr an_1 [pM ... p*" —Traces] = —i(0|dyt™ > (iD*2) ... (iD*})u — Traces|nt (p)), (1.2)

with the Lorentz indices symmetrised. From early [2] to recent [15, 16, 17, 18] lattice calcu-
lations following the traditional approach, only the second moment of this LCDA has been ex-
tracted because of the above issue of power divergence in the operator mixing. Using the strate-
gies in Refs. [6, 8], exploratory results for the &—dependence of ¢r(&) have recently been re-
ported [19, 20].

2. Operator product expansion and the valence heavy quark
Using the method of Ref. [5], it can be shown that the Euclidean hadronic tensor,
Ufg.p) = [ deer OTial, () A7, )7 (). 1

in the continuum limit enables one to extract the moments, a,, defined in Eq. (1.2) without having
to subtract any power divergence. In Eq. (2.1), the Lorentz indices, ¢ and v, are antisymmetrised,
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and the axial current is defined as

Al =P Ry + T RY, 22)

with y being a light-quark and W being the valence heavy-quark fields. We stress that the ap-
(n

proach outlined in Ref. [5] requires the extrapolation of lattice results for U,

(1

uum limit. Furthermore, the hadronic tensor, U,

] (¢, p) to the contin-
v] (¢, p), should be computed in the “unphysical”
regime

(P +am)* < (mw+Aqcp)’, (2.3)

where gy; and pys are the Minkowskian counterparts of ¢ and p. In this regime the analytic contin-

(v ](

uation of U," "' (g, p) to Minkowski space is straightforward. It can be achieved by simply relating

q4 to igo. The above considerations lead to the requirement for the hierarchy of scales

1
AQCD </ q2 é my < ;, 2.4)

where a is the lattice spacing.
Performing an OPE by following the procedure in Ref. [5], one obtains
0 ne2
my e p A ¢"C,(n)
Uy " (p,q) = 2ifn€uvprq” p” x [~
A Teuvp n:(§4m (I’l+ I)QZ
where § = \/p*¢%/0% 1 = p.q/\/P*¢?, 0° = —¢* — m3, the CKV(;) (my, O, 1) are the Wilson co-
efficients, i is the renormalisation scale, and the C2(n) are the Gegenbauer polynomials that arise

] Gy (my. 0. 1) an(w), (2.5

from resumming the target-mass effects. Notice that there is an ambiguity of O(Aqcp) in the defi-
nition of Q. Detailed discussion of this ambiguity and the higher-twist contributions can be found
in Ref. [5]. Also, Eq. (2.5) indicates that the hadronic tensor, U f[\“ v (p,q), is purely imaginary in
Euclidean space.

3. Correlators and simulation details

We consider the following correlators involving the pion interpolating operator, &, and the
current in Eq. (2.2),

C (10, Tyt Pes Bs) = / dxodx @ (o ‘T 48, (e T) Al (B, ) 3(0)| ‘ 0),
Cr (tr3P) /d3x 30| 0% (%, 72) 0}(0)]0), (3.1)

where the subscripts, e and s, in the three-point function stand for “extended” and “sink” points in
the computation of the quark propagators. It is straightforward to demonstrate that using C’; v and
Cy in the limit where 7 . ¢ are all large, one can extract the quantity, Ré‘ V. that is defined as

R (2,4.5) = [ dx e (O[Tl (2.7) A%, 0,0))7(p)). (32)

Thus the hadronic tensor in Eq. (2.1) can be obtained by performing the Fourier transform of
Rg“ v (1,4, p) in the temporal direction,

Tmax .
Ufap) = [ drent R (2.3, 5), (33)
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Figure 1: Imaginary part of bare R[312] (t,4,p) withg = (0,0,2x/L) and p = (0,0,0), at my = 1.3 GeV (left)

and my = 2 GeV (right).

where the integration range, |Tmin, Tmax), 1S constrained by the range of Euclidean time where we
are able to isolate the one-pion state in Cgt Y and C;. Because of the use of the valence heavy
quark, which exponentially localises the signal, we find that the above Fourier transform is well
approximated when Ty, ~ —0.7 fm and Tk ~ 0.7 fm for the results reported here.

Our simulations are performed in the quenched approximation with Wilson gauge action.
Gauge field ensembles are generated at several values of lattice spacing, a, and the finest lattice
is at a—! = 8 GeV!. All these ensembles are tuned to have the same spatial lattice size, L ~ 2.4
fm, with the temporal extent being 2L. Valence fermion propagators are computed employing
non-perturbatively O(a)-improved Wilson action, with values of the clover coefficient determined
using the result of Ref. [22]. Since this is an exploratory investigation, we use the one-loop match-
ing coefficient, Z4, for the axial current in Eq. (2.2) [24], without O(a)—improving it. However,
the quark-field normalisation proposed in Ref. [23] is employed to reduce lattice artefacts.

At this conference, our presentation focuses on calculations from two lattice spacings, a =
0.075 fm (a~! =2.67 GeV) and a = 0.05 fm (a~' = 4 GeV), and at two choices of heavy-quark
masses, my = 1.3 GeV and 2 GeV?. The input bare light-quark mass is tuned such that the pion
mass My = 450 MeV in this exploratory study.

4. Exploratory results

Figure 1 shows results for the imaginary part of bare R[312] (1,4, p) with ¢ = (0,0,2x/L) and
P =(0,0,0), at myp = 1.3 GeV and 2 GeV. The temporal-direction Fourier transforms [Eq. (3.3)]
on these ratios for obtaining the corresponding hadronic tensors are displayed in Fig. 2, where we
are showing the cases of g4 = 0 and g4 = 1.2i GeV. For this choice of the momenta, result of the
OPE for the hadronic tensor is significantly simplified, and in principle allows us to extract the
moments, {a,}, through varying g4. However, we do not attempt such numerical exercise at this
stage, because the lattice artefacts are observed to be non-negligible, as evidenced in Figs. 2 and

'Ensembles with a~! > 2.7 GeV are generated by employing the method proposed in Ref. [21].
2We also have exploratory results at = 0.06 fm (¢~ = 3.33 GeV) for my = 1.3 GeV. They are included in Fig. 3.
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Figure 2: Time-direction Fourier transform for obtaining bare Im[U f[‘lz] (¢, p)] with g = (0,0,2m/L) and
P =(0,0,0) and two choices g4, at my = 1.3 GeV (left) and 2 GeV (right).
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Figure 3: Imaginary part of U\'? (g, p) for § = (0,0,27/L), j = (0,0,0) and my = 1.3 GeV, at a = 0.05,
0.06, 0.075 fm (¢~ = 4.0, 3.33, 2.67 GeV, respectively), with 3 choices of g4. One-loop Z, is used.

3. Notice that we also include the exploratory results from the a = 0.06 fm lattice in Fig. 3. As
stressed earlier in this article, our strategy requires reliable extrapolation of the hadronic tensor to
the continuum limit.

We have also examined Rglz] (t,4,p) and U Alz] (p,q) at non-vanishing pion momentum. In this

case, the lattice data are expected to be noisy. To address this, we have investigated the technique
of momentum smearing [25] for the pion interpolating operator, 0. Results of the study for two
choices of the pion momentum, j = (0,0,27/L) and p = (0,2n/L,27/L), at the current-injected
momentum g = (0,0,27/L) are presented in Figs. 4 and 5. Plots in these figures show that mo-
mentum smearing is advantageous already for these low values of |j|, although its implementation

requires separate computations for the light quark and anti-quark propagators. We will make use
of this technique in our future work on the pion LCDA.
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Figure 4: Bare R\ (7,, ) with § = (0,0,27/L) and my = 1.3 GeV at j = (0,0,27/L) (left) and j =

(0,2m/L,27 /L) (right). Black circle is for the usual gauge invariant Gaussian source and sink, red square is
for the momentum smearing with momentum +0.7p for quark and anti-quark.
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Figure 5: Bare Im{U, “'(¢, p)]with § = (0,0,27/L) and my = 1.3 GeV at p = (0,0,2x/L) (left) and p =
(0,2m/L,27 /L) (right). Black circle is for the usual gauge invariant Gaussian source and sink, red square is
for the momentum smearing with momentum +0.7p for quark and anti-quark.

5. Conclusion and outlook

In this article, we report progress of our exploratory investigation of the pion LCDA using the
strategy of introducing a valence heavy quark in the current-current correlator. This strategy allows
us to extract higher moments for this LCDA. We find that reasonably good signals can be obtained
for the relevant Euclidean hadronic tensor. Although this demonstrates a promising future of this
approach, we observe that lattice artefacts can still be non-negligible in the regime 0.05 fm S a <
0.075 fm. Since our method requires reliable continuum extrapolation, it is necessary to have data
at finer lattice spacings for this task, as will be studied in the near future.
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