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We present preliminary numerical results on the connected piece of the quasi-PDF of pion as
determined using Wilson-Clover valence fermions on HISQ ensembles. We discuss its non-
perturbative renormalization in RI/MOM scheme with and without removal of the divergent self-
energy part, and compare its running with expectation from perturbation theory. We also discuss
the matching of pion QPDF to PDF, and various systematic effects associated with it.
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1. Introduction

For hard scattering processes involving hardons, such as the deep inelastic scattering of leptons
on hadrons, the total cross-section becomes a convolution of the perturbatively calculable partonic
cross-section and the universal, non-perturbative parton distribution function [1]. In the light-
cone gauge, the parton distribution function has the familiar interpretation of the probability of
finding a parton with a fraction x of the energy of a fast moving hadron. Until recently, the PDFs
were obtained through global fits to the experimental data [2, 3, 4, 5]. Naively, one cannot use the
standard lattice Monte Carlo to determine the PDFs since it involves quark and anti-quark operators
separated along the light-cone, which therefore has a sign problem associated with it. Recently,
the computation of PDFs using quasi-PDF, which involves equal-time Euclidean correlations of
spatially separated quark-antiquark pair, of fast moving hadron and then matching to PDF using
large momentum effective theory approach has been proposed to be a solution [6, 7]. It is the
aim of this Lattice proceeding to present our preliminary determination of the PDF of pion using
the qPDF approach as well as to discuss various systematic effects associated with this procedure.
Recently, a global fit analysis of pion PDF was obtained in [8]. The reader can refer to [9] for the
qPDF determination of valence PDF of pion using different lattice spacing, ensemble and matching
procedure than what is used here.

Below, we outline the steps involved in the quasi-PDF approach and note the different places
which can potentially lead to systematic effects that need to be controlled in the extraction of PDF:

1. First, one computes the bare quasi-PDF using the three-point to two-point function ratio
given by

qΓ(z,Pz;∆t) =
〈π̂†

S (Pz,∆t)OΓ(z)π̂S(Pz,0)〉
〈π̂†

S (Pz,∆t)π̂S(Pz,0)〉
, (1.1)

where π̂S(Pz, t) is the pion operator inserted at time-slice t with the spatial momentum (0,0,Pz)

and smeared using a method S, ∆t is the source-sink separation and the bilocal qPDF operator
with Dirac structure Γ is given by

OΓ(z;τ) = u(x)ΓWx,x+zẑu(x+ zẑ), (1.2)

where W is the Wilson from x to x+ zẑ. There is both a connected and a disconnected piece
to the above matrix element. Here, we only focus on the connected part of this. The presence
of finite ∆t is one systematic effect in the calculation. This is discussed in more detail in the
accompanying Lattice proceeding.

2. Then, one renormalizes the bare quasi-PDF using nonperturbative renormalization (NPR)
procedure. Here, we use the RI-MOM renormalization condition with /p projection [10]

qR
γt
(z,Pz; pR,∆t) = Zγt γt (z, pR)qγt (z,Pz;∆t) (1.3)

with the renormalization constant Z(z, pR) determined using the following condition imposed
on the amputated quark qPDF, Λ(z, p) using external quark states at momentum p = pR:

Tr
(
/pRΛ(z, pR)

)
= 12pR

t e−ipR
z z. (1.4)
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In the case of Γ = γz, one should also take care of mixing between the bare Γ = γz and
Γ = 1 qPDFs [11]. The running of the renormalized quark qPDF is simply the dependence
of the renormalized amputated quark qPDF Λ(z, p; pR) on p, with p slightly away from pR.
Any mismatch between the nonperturbative and 1-loop perturbative running could be another
source of systematic error.

3. The renormalized real space qPDF qR
γt
(z,Pz; pR,∆t) is Fourier transformed to q̃γt (x,Pz; pR,∆t),

where x is the momentum fraction of Pz. That is

q̃γt (x,Pz; pR,∆t) = 2E(Pz)
∫

∞

−∞

dz
4π

qR
γt
(z,Pz; pR,∆t)e−ixPzz, (1.5)

where E(Pz) is the energy. In order to take the Fourier transform, the data has to be interpo-
lated by a continuous curve. More importantly, one has actual data for the real space qPDF
only over a certain finite range of z. In this case, the absence of data for larger z and what
one does to take care of this could lead to further systematic uncertainties.

4. The final step is the matching of the Fourier transform of the renormalized qPDF to PDF at
a factorization scale µ [6, 12]. For this, we convolute q̃(x) with the matching coefficient. In
principle, the effect of this procedure should completely remove any dependence on pR and
transmute it to a dependence on µ .

We present results using the a=0.06 fm, HISQ sea quark ensemble generated by the HotQCD
collaboration. On this, we use 1-HYP smeared Wilson-clover valence quarks to determine
the qPDF. More details on the measurement techniques is given in another proceeding ac-
companying this one.

2. Effectiveness of perturbation theory to describe NPR
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Figure 1: Renormalization constants ZΓΓ′ including (left) and without including (right) the linearly divergent
self-energy contribution from the Wilson line connecting the quark and anti-quark. In the two panels, the
data for the diagonal Zγz,γz as well as the mixing with the scalar Zγz,1 are shown. The solid symbols are for
their real parts while the open ones for their imaginary parts.

The only non-perturbative ingredient that is supposed to go into the PDF computation is the
projection to pion state itself, which is taken care of by using the pion source and sink at large
separations. The other computations, including the renormalization of the real space qPDF in
the presumably relevant range of |z| < 1 fm and the subsequent matching should be perturbative.
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The subtlety with regard to the renormalization constant is the presence of divergent self-energy
contribution, ec|z|, in the bare Wilson line Wx,x+zẑ connecting the quark and anti-quark. This should
not be problem for perturbative calculation since this multiplicative factor should cancel between
the NPR Z-factor and the bare qPDF. However, we check that what remains after the subtraction
of the self-divergent piece is O(1) as one would expect from perturbative calculation. For the
one-level HYP smeared link, we use the nonperturbatively determined value c = 0.1586 [13]. In
Figure 1, we show the the diagonal renormalization factor Zγz,γz as well as the offdiagonal Zγt ,γt as a
function of z. The red points are the real parts while the blue ones are the imaginary parts. In the left
panel, we show the entire renormalization factor. In the right panel, we show the renormalization
factors after multiplying by e−c|z|. As one can see, the renormalization factor after the subtraction
of the divergent piece, Zγzγze

−c|z|, is surprisingly close to one even for distances upto 1 fm. We see
a similar behavior for Zγt γt as well.
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Figure 2: Comparison of quark qPDF to perturbation theory. Refer text below for explanation.

In order to see if we see a quantitative agreement of the Z factors with perturbative calculation,
we look for the running of

ζ (z; p) =
Tr(/pΛR(p; pR))

Tr(/pΛR(pR; pR))
−1, (2.1)

where ΛR(p; pR) is the amputated qPDF with momentum p and renormalized at momentum pR.
The term Tr(/pΛR(pR; pR)) is the free field value by the renormalization condition. Since the cor-
responding expression for ζ from perturbation theory is simpler when pR

z = pz, we study this case
here. In Figure 2, we show the real and imaginary parts of ζ (z; p) as a function of z for p =

(0.86,0.86,1.61,0.86) GeV with the renormalization condition set at pR = (1.28,1.28,1.61,1.28)
GeV. The three curves are the corresponding 1-loop perturbative results with the strong coupling
αS determined at 2pR, pR and pR/2 respectively in order to quantify the uncertaintly in the scale
to be used in the 1-loop calculation. While the agreement between the data and the curves is good
for the imaginary part for |z| < 0.5, only a qualitative agreement is seen in the case of the real
part. However, this p dependence is only sub-leading in the case of the real part, and hence this
disagreement might not be an issue given other uncertainties.

3. qPDF and PDF of pion

In Figure 3, we show the bare qPDF (open symbols) and the corresponding renormalized
qPDF (filled symbols) as a function of z. The red points are the real parts and the blue ones are the
imaginary parts. The effect of renormalization is to lift the exponentially suppressed bare qPDF at
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Figure 3: The real space qPDF is shown as a function of z. The real and imaginary parts are shown using
red and blue points respectively. The open symbols are for the bare qPDF and the solid ones are for the
renormalized qPDF.

larger z. This effect is more significant in the imaginary part than in the real part of qPDF. We have
data for qPDF from z/a =−15 to 15 in the above plot which ranges from -1 fm to 1 fm in physical
units.
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Figure 4: Cubic interpolation and extrapolation to zmax/a = 20 (top-left) and zmax/a = 24 (bottom-left) are
shown. The corresponding Fourier transform of qPDF and the matched PDF at µ = 3.2 GeV are shown in
the right panels. The description of the plots is in the text below.

In order to take the Fourier transform, we interpolate the real and imaginary parts of qR(z)
using cubic spline. To quantify the effect of qR(z) at larger z where we do not have data currently,
we extend the spline to an arbitrary value of |z| = zmax, at which point we set the spline and its
derivative to 0. By varying the value of zmax, we quantify the effect of large distance part of qPDF
on the extracted PDF. It is the expectation that the large distance behavior of qPDF should not affect
the short distance physics of PDF. The top-left panel of Figure 4 shows the real space real and
imaginary parts of qPDF, and the cubic interpolation (bands) which is extended upto zmax/a = 20.
The right panel shows the Fourier transform of the interpolation shown on the left, using dashed
lines. The PDF obtained by applying the matching formula to the ’dashed lines’ is shown using the
blue 1-σ error bands. The corresponding plots for zmax/a = 24 is shown in the bottom panels. The
effect of the extrapolation is mainly to increase the error in q̃(x) and matched PDF p(x) without
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affecting the central values. This is reassuring that the unknown long distance contribution of qPDF
does not play a significant role. However, this could still be specific to the way we are taking care
of the long distance behaviour of q(z). It needs to be seen if this independence of long distance
physics is seen with other models of extrapolation to larger |z|.
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Figure 5: Matched valence PDF of pion. In all the panels, the bands are the 1−σ error bands for the PDF
while the dashed curves of the same color are the corresponding q̃γt (x) used to obtain the PDF. (Left) The Pz

dependence of PDF is shown. (Center) The dependence of PDF on the renormalization scale for the qPDF
is shown. (Right) The dependence on source-sink separation ∆t is shown.

Now we focus on the matched PDF that we obtain at a scale µ = 3.2 GeV using perturba-
tive matching with the strong coupling αS(µ) = 0.234. The first systematic is the approach to
Pz → ∞ limit. We use Pz =0.86 GeV, 1.29 GeV and 1.72 GeV, which are smaller compared to
the lattice spacing of 3.28 GeV and much larger compared to the pion mass of 0.3 GeV. In the
leftmost panel of Figure 5, we show q̃

(
x,Pz; pR

z = 1.28GeV, pR
⊥ = 2.21GeV

)
and the matched PDF

p(x,µ = 3.2GeV), at different Pz with every other parameter held fixed. There seems to be con-
vergence by looking at the consistency between the Pz = 1.29 and 1.72 GeV results for the PDF. It
is also reassuring that the matched PDF vanishes for x > 1. For |x| < ΛQCD/Pz, the long distance
non-perturbative effects would become important. For the largest momentum ΛQCD/Pz ≈ 0.1. In
the middle panel of Figure 5, we show the dependence of the matched PDF on the renormalization
scale of the qPDF. The different bands correspond to different renormalization points (pR

z , pR
⊥) as

specified. The matching procedure should remove any pR dependence present in q̃(x). A mild pR

dependence is seen in the matched PDF data at the largest momentum consistent with the expec-
tation. In the rightmost panel of Figure 5, we show the effect of source-sink separation ∆t on the
matched PDF at fixed values of Pz GeV, pR and zmax. There is a tendency for the data in the range
x > 1 to move closer to zero while the data in the range 0 < x < 0.5 to increase as the source-sink
separation is increased from 8 lattice units to 12, thereby moving towards the phenomenological
expectation.

4. Conclusion

We presented results on the non-perturbative renormalization constants and showed that they
are of order 1 after the removal of the self energy divergence of the Wilson line even upto quark anti-
quark separations of 1 fm. But, on a quantitative level, a slight disagreement with the perturbative
prediction of the running of the quark qPDF was seen. Perhaps, this slight disagreement is not of
consequence given other sources of uncertainties. Then, we presented the fourier transform of the
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connect part of the pion quasi PDF and its mild dependence on the behaviour of qPDF for distances
greater than 1 fm. Finally, we presented the matched PDF of pion and discussed its dependence on
the pion momentum, the renormalization scale of the qPDF and the source-sink separation.
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