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1. Introduction

Understanding the internal structure of nucleons remains an important challenge in hadronic
physics, despite the significant advances made in this area over the last years. The recent 12 GeV
upgrade at JLab and a future electron-ion-collider will make it possible to access the inner structure
of hadrons experimentally, in more detail than ever before. However, the interpretation of the
resulting data will be more productive if it is accompanied by a complete and detailed theoretical
understanding. Within quantum chromodynamics (QCD), information on the internal structure of
hadrons is mainly encoded in parton momentum distributions of the hadron constituents, the quarks
and gluons, such as transverse momentum dependent distributions and collinear parton distribution
functions (PDFs).

Lattice QCD has the potential to provide first principles, non-perturbative, and fully-systematic
predictions of the x-dependence of PDFs that will shed new light into hadron structure. In the last
decade, several ideas has been proposed to achieve this. Some of these require the evaluation of
matrix elements of non-local operators, for example two quark fields connected by a Wilson line
[1, 2, 3] or two currents separated in space [4, 5, 6] (for a full review, see, for example, [7]).

There has been an intense effort dedicated to investigating all possible systematic uncertainties
that arise in these kinds of calculations, with the possible exception of finite-volume effects. We
can interpret the finite volume as a modification to the infrared scales of the theory. Thus finite-
volume effects are naturally determined using hadrons as degrees of freedom since quarks cannot
propagate long distances. This is nicely illustrated with a simple example: a nucleon, N, in a
finite box of size L. If we impose periodic boundary conditions, the finite-volume artifacts can be
understood to arise from the interactions of the hadron with its mirror images. For instance, if we
approximate the long distance part of the two-nucleon potential by a Yukawa potential with just 7
exchanges, the finite-volume correction to the mass of the nucleon can be estimated by

(L) — my(o0) ~ /d3x Yn (X)V (X) Y (X + Le) ~ e el (1.1)

where yy(x) is the nucleon wavefunction. This is sufficient to find the now-standard result that
scale mzL encodes the finite-volume artifacts in the energies of stable states [8].

For the case of a matrix element of two currents separated in space, we a priori expect substan-
tial finite-volume artifacts. In a finite and periodic volume, the matrix elements would have to be
periodic with respect to the separation, &, of the currents. This is in contrast to the infinite-volume
expectation that this matrix element would decay with respect to the separation. In this case, there
are two IR length scales, the box size L and the nonlocality of the operator &, so we expect finite-
volume artifacts that depend on both, and it is important to understand in which combination these
enter.

In this work, we study and quantify the finite-volume artifacts associated with these matrix
elements in the framework of a toy theory. The full details of this analysis are given in Ref. [9].

2. Toy model and set up

In order to quantify the finite-volume corrections to QCD observables computed in lattice
QCD, we should work in the framework of a low-energy effective field theory (EFT), with hadrons
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Figure 1: (a) Feynman rules for the toy theory used in this work. The lighter particle, @, is denoted by
dashed lines, while the heavier particle, J, is denoted by the solid lines (b) The leading-order contribution
to the matrix element . (§,p) with ¢ external states.
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Figure 2: Contribution to the matrix element at next-to-leading-order when j is the external state

as degrees of freedom. Here we consider a scalar field theory, inspired by chiral perturbation theory
(xPT), intended to capture the basic features of the finite-volume artifacts.

This EFT contains two scalar particles. One, ¢, plays the role of the pion in QCD, and the
other, x, is analogous to the nucleon or a heavy meson. These particles have pole masses m, and
my respectively, satisfying my < my. The states ¢ and ) couple via a momentum-independent
vertex defined diagrammatically in Fig. 1(a). We can then write the renormalized external current
in terms of these fields,

1 1 1 1
I ()= 520809" + 52082 0° + 571082010 1 Zupo8uooX 90+ QD)

This generates the remaining Feynman rules shown in Fig. 1(a).

Having defined the EFT, we can set up the general approach to determine finite-volume cor-
rections contributing to the matrix elements of non-local operators. In this case the operator is
composed of two identical currents, ¢ (x), separated spatially by &. The matrix element is defined
in the infinite-volume as:

(&) = (P .7 (0,8) 7(0)p), (2.2)

where |p) is a single-particle state, either a ¢ or a ), with momentum p. The contribution of any
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Figure 3: Infinite- and finite-volume behavior of matrix elements of spatially separated currents, from the
tree-level result derived with pions as external states. Subfigure (a) ilustrates the dependence of the matrix
elements on the separation of the currents. For m;& < 1, indicated by the shaded region, high-energy scales
are sample so that the effective field theory is expected to break down. Subfigure (b) shows the relative
difference between finite- Mo [| M. Finally, subfigure (c)
shows the finite-volume matrix element, .#;, as a function of L, together with its infinite-volume limit for a
fixed separation .

diagram, d, to .#,,(€,p) can be written in Euclidean space as,

iq: d
%ogd)(g7p):/ elqg Dé)(pE;QEJClEa,knE), (23)
qE ke kn—1.E
where Dl(,fd) (PE.qE k1 £, ,ky ) is the usual integrand that one would construct with Euclidean

Feynman rules'. Then, we can write a general expression for the finite-volume artifacts related
to the matrix elements of spatially nonlocal currents. Using the Poisson summation formula, the
finite-volume residue for diagram d reads

d d
&0 =2, (€. p) - M E.p), 24)
= Y[ D (K, 2.5)
Mez3n/{o0} 7 Ke
where M = {n,my,--- ,m,_; } and the notation under the sum indicates that the only point omitted
is when all three vectors vanish. Finally we have introduced K = {qg,ki g, - ,kn—1E}.

3. Results

3.1 Light external states

First, we focus on the case of matrix elements, .# (€, p), with the lightest particle @ as the ex-
ternal state. In this case the leading contribution to Eq. (2.2) is given by the leading-order diagram,
Fig. 1(b). Using Eq. (2.5), we reach

1
5.4, (&.p) =g / ia-(E-+iln) . (3.1)
(p,;) qE (PE+qE)* +mG
Here we have introduced the notation |, w=1 (dz%ﬁ .
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This integral can be solved analytically and written in terms of a modified Bessel function [9],

2
Me8e . Ky (my|& + Ln|)
8.4, (§,p) = e * (32)
L 472 r;;) |E + Ln|
From the asymptotic behavior of K7, it is easy to see that the dominant finite-volume effect is given
by the n = —§ term. This term scales as
m 2 Ky (me|L — m2 2 . —mg(L—E)
5.4 (& p) = 250 ;-int ! (mglL—81) | Mo8p , ipg e ., (33
4m IL—¢] 442732 [me(L—&)]¥

where the arrow indicates the asymptotic limit. As a result, we conclude that the overall volume
scaling is by
e—m(p(L—é )

g

This is one of our key results, since it introduces a new scale parameterizing the size of finite-

540 (&, p) o (3.4)

volume corrections, and it is related to the size of the operator. From Eq. (3.4) we can read the
infinite-volume prediction of this diagram by replacing |L — &| with £. In particular this implies
that the diagram diverges in the limit |§| — 0, as illustrated in Fig. 3. This is because our EFT
is written in terms of hadrons and is only accurate for long distances & > m(;l. Thus, we require
mg& 2 1, to guarantee that the finite- and infinite-volume matrix elements are accurately described
by the EFT.

The plots in Fig. 3 illustrate how to better understand Eq. (3.4). First, we note in Fig. 3(a) that
the infinite-volume matrix element decays as a function of &, while its finite-volume counterpart is
periodic and the difference between these two objects grows exponentially as & approaches L. This
behavior can be observed also in Fig. 3(b), where the finite-volume residue shows deviations of
order ~ 10% for & ~ L/4 when mzL = 4. The plot in Fig. 3(c) complements these results, showing
the finite-volume dependence of the matrix element on the size of the box for a fixed &. In this
example, for a box of size of mzL = 4, there is a systematic uncertainty of ~ 100%. However,
these effects can be removed by performing a fit of the matrix elements to a decaying exponential
in L at fixed &.

3.2 Heavy external states and general result

Now, we focus on the case of matrix elements with the heavy particle, ¥, in the external states.
The leading-order contribution in this case is given by diagram 1(b), but exchanging the ¢ particle
by a yx particle. This gives,

2 2,2 o (L
my8y e Ki(my|L—&J) migs, ., e m(l=E)
5.0 (& p) = KoL pE x . "i8x ,-ipt ‘

e = e IL—E] o2’ Ty (L— &R

(3.5)

This contribution is of order & (e*ml (Lfé)) and is negligible in our power counting because
my > mgy and myL > 1. Thus, in order to get the leading finite-volume corrections to a matrix
element containing a ) external state we need to consider next-to-leading-order corrections coming
from diagrams in Fig. 2. The detailed calculation of these can be found in Ref. [9]. We find that, for
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heavy external states, the finite-volume corrections scale as the standard exponential factor e oL,
but with a & dependent pre-factor that can also enhance the corrections.

In general, the leading finite-volume effects for matrix elements of spatially separated currents
can be written in a compact way with two leading terms with the relevant scales encoding the

finite-volume artifacts,
S.M, = P,(E,L)e M%) L p(E L)e ™" 4. (3.6)

where M represents the mass of the external state, and P, and P, are polynomial prefactors with
terms scaling as L™ /|L — &|" and the ellipsis represents subleading exponentials. In the case of a
pion external state, the first term scales as e "x(L=8) and is expected to dominate the volume effects
as soon as & becomes a non-negligible fraction of L. In the case of a heavy meson or nucleon, in
which M > my, the second term is the dominant, assuming & < L .

4. Concluding remarks and impact in ongoing studies

We have presented a study showing the first steps toward the understanding of finite-volume
artifacts in matrix elements of spatially non-local operators. For this, we considered a toy EFT
that involves two scalar particles, one light particle analogous to the pion and a heavier particle
analogous to a nucleon or heavy meson. The results of this work are summarized by Eq. (3.6),
where there are two terms that dominate the finite-volume artifacts. The first term in Eq. (3.6)
introduces a new scale, |L — &|, which encodes the finite-volume effects related to the size of the
operator involved in the matrix element. The second term contains the usual scale dependence in
the exponential, e ""#L, but has a potentially enhanced & dependent pre-factor.

There are several ongoing studies extracting PDFs from the lattice. These include investiga-
tions with two spatially separated currents [5, 10] as well as studies using quark fields connected
by a Wilson line [12, 13, 14, 15, 16, 17]. The mzL values used in these studies vary over a wide
range and, going forward, it will be important to check on a case by case basis to what extent
finite-volume effects are relevant. In order to do so in a more systematic, quantitative way, one
would need to use yPT (as suggested, for example, in Ref. [11]). This will be more challenging for
studies using a Wilson-line-based operator, where the mapping to a Y PT description of the operator
can be understood following Ref. [18].
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