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1. Introduction

Nucleon form factors are key quantities in hadron physics as they give us information about
the internal structure of the nucleon. More specifically, the interaction of a nucleon with external
currents acquires a momentum-transfer dependence, described by the form factors, because the
nucleon is not a point-like particle. In this work, we focus on the axial form factor GA(Q2) and the
induced pseudoscalar form factor GP(Q2), which parameterize the nucleon matrix element of the
axial vector current 〈

N, ppp′,s′
∣∣Aµ(x)

∣∣N, ppp,s
〉
= ūs′(ppp′) Ãµ(q) us(ppp)eiq·x , (1.1)

Ãµ(q) = γµγ5GA(Q2)+ γ5
qµ

2mN
GP(Q2) , (1.2)

where p and p′ are the four-momenta of the initial and final nucleon, and Q2 =−q2 =−(p′− p)2.
These form factors are not only accessible in experiments [1] but also from a first-principles cal-
culation using Lattice QCD, which is our chosen approach. Lattice QCD is a powerful tool for
form factor calculations as it allows disentangling contributions from different quark flavors. Here,
we focus on the contributions of the u, d and s quarks corresponding to quark-disconnected dia-
grams. The techniques to study the connected contributions of the u and d valence quarks, the only
contributions required for the iso-vector form factors of the nucleon, are already well-established
in the Mainz Lattice group [2]. Combining the connected and disconnected contributions to the
axial vector form factors will enable us to determine the weak neutral current (WNC) axial form
factor GZ

A(Q
2), obtained at leading order from the iso-vector contribution GA(Q2) and the strange-

quark contribution Gs
A(Q

2) using SU(3) flavor symmetry [9]: GZ
A(Q

2) = −GA(Q2)+Gs
A(Q

2). In
addition, we will construct the flavor non-singlet induced pseudoscalar form factor G8

P(Q
2) =

Gu+d
P (Q2)−2Gs

P(Q
2). Here, the light-quark contribution Gu+d

P (Q2) contains connected and discon-
nected quark contributions whereas the strange-quark contribution Gs

P(Q
2) is solely disconnected.

These quantities are of importance since it has been seen that the WNC GZ
A(Q

2) gives a main con-
tribution to ν p and ν̄ p differential cross sections [11], while G8

P(Q
2) can be used to obtain the

η-nucleon coupling gηNN , if the η decay constant f 8
η is known [10].

2. Extracting form factors from Lattice QCD

The starting point to extract form factors from Lattice QCD is the nucleon three-point function

CN
3,Aµ

(qqq,z0; ppp′,y0;Γν) = ∑
yyy,zzz

eiqqqzzze−ippp′yyy (Γν)βα

〈
Nα(yyy,y0)Aµ(zzz,z0)N̄β (0)

〉
G (2.1)

with a nucleon interpolator Nα(x), a flavor-diagonal axial vector current Aµ(x) and a projector Γν .
For the projector we consider

Γ0 =
1
2
(1+ γ0) , Γi =

1
2
(1+ γ0) iγ5γi , i ∈ {1,2,3} , (2.2)

where Γ0 projects the nucleon to the correct parity, and Γi additionally polarizes the nucleon spin
along the i-axis. Applying the spectral decomposition to the nucleon three-point function and only
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taking the ground-state into account, which means that z0,(y0− z0)� 0, one arrives at

CN
3,Aµ

(qqq,z0; ppp′,y0;Γν) = f (ppp′,qqq,y0,z0) T
(

Ãµ ,Γν ,qqq, ppp′
)
. (2.3)

The function f contains nucleon overlap factors, time dependencies and kinematic factors. To
eliminate the first two, we construct a ratio of nucleon three-point and two-point functions [13]

RAµ
(qqq,z0; ppp′,y0;Γν)=

CN
3,Aµ

(qqq,z0; ppp′,y0;Γν)

CN
2 (ppp′,y0;Γ0)

√
CN

2 (ppp′,y0;Γ0) CN
2 (ppp′,z0;Γ0) CN

2 (ppp′-qqq,y0-z0;Γ0)

CN
2 (ppp′-qqq,y0;Γ0) CN

2 (ppp′-qqq,z0;Γ0) CN
2 (ppp′,y0-z0;Γ0)

,

(2.4)
so that the spectral decomposition of the ratio yields for the ground-state

RAµ
(qqq; ppp′;Γν) =

1
4
√
(Eppp′−qqq +mN)(Eppp′+mN)Eppp′Eppp′−qqq

T
(

Ãµ ,Γ,qqq, ppp′
)
, (2.5)

T
(

Ãµ ,Γν ,qqq, ppp′
)
= tr

[
Γν

(
Eppp′γ0− ippp′γγγ +mN

)
Ãµ(qqq)

(
Eppp′−qqqγ0− i(ppp′−qqq)γγγ +mN

)]
. (2.6)

The function T can be calculated for all combinations of a component of the axial vector current
Aµ(x) and a component of the projector Γν . Each combination leads to a kinematic prefactor for
the axial and induced pseudoscalar form factor MA

νµ , MP
νµ . Eq. (2.5) then takes the form

RAµ
(qqq; ppp′;Γν) = MA

νµ(qqq, ppp′) GA(Q2)+MP
νµ(qqq, ppp′) GP(Q2) . (2.7)

The individual prefactors can be grouped to form a matrix M for each combination of qqq and ppp′ that
correspond to the same value of Q2. Similarly, we can form a vector RRR from the data for the ratios.
Now we can define the (generally overdetermined) system of equations

M GGG = RRR, M =

MA
1

...
MA

N

MP
1

...
MP

N

 , GGG =

(
GA(Q2)

GP(Q2)

)
, RRR =

 R1
...

RN

 , (2.8)

which connects our lattice results for the ratios on the right-hand side to the analytical expectation
from the spectral decomposition on the left-hand side. It can be solved for the form factors by
minimizing the least-squares function [2]

χ
2 = (RRR−MGGG)T C−1 (RRR−MGGG) , (2.9)

where the covariance matrix C is approximated from the lattice data of the ratios. Before we
actually solve the system in Eq. (2.8), two steps are done to reduce the system size N and increase
the statistical precision. We first drop all non-contributing equations (MA = 0 & MP = 0) and then
average equivalent contributions1. For the number of independent equations over our considered
range of Q2 values we find: N ∈ {4,5,8,9,10,11,12,13,14,18,19,21,22,25,26,28,34}. Note

1Example of two equivalent contributions:

Γ1,A2, pppa = (1 0 0)T ,qqqa = (0 1 0)T , ppp′a = (1 1 0)T

Γ3,A2, pppb = (0 0 1)T ,qqqb = (0 1 0)T , ppp′b = (0 1 1)T

}
⇒MA

12(qqqa, ppp′a) = MA
32(qqqb, ppp′b) & MP

12(qqqa, ppp′a) = MP
32(qqqb, ppp′b)
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that we perform the averaging procedure already for the nucleon three-point functions, with the
additional constraint that the momenta for the nucleon states at the source and the sink are related
by spatial symmetry [12]. Furthermore, we average the nucleon two-point functions over equivalent
momentum classes. We then calculate the ratios from these averaged correlation functions. As the
left-hand side of the system of equations corresponds to the ground-state contribution, we perform
fits to the asymptotic behavior or employ the summation method (see e.g. [13, 14]) to isolate the
ground-state contribution, also in the lattice data, before solving for the form factors.

3. Simulation

3.1 Ensembles

In this work we use CLS N f = 2+1 O(a)-improved Wilson fermion ensembles [3]. The gauge
sector is described by the tree-level improved Lüscher-Weisz gauge action. These ensembles have
open boundary conditions in time to prevent the problem of topological freezing, and approach the
physical values of the quark masses along a tr M = const trajectory, where M is the quark mass
matrix. The subset of ensembles and configurations we have processed for this project so far is
shown in Tab. 1. We employ the improved local axial vector current

A f
µ(zzz,z0)

Imp. = f̄ (zzz,z0)γ5γµ f (zzz,z0)+acA ∂µ

(
f̄ (zzz,z0)γ5 f (zzz,z0)

)
, (3.1)

where we distinguish between the light and the strange quarks, f ∈ {l,s}, as the up and down
quarks are degenerate on our ensembles. A non-perturbative determination of the improvement
coefficient cA has been done in [4]. As motivated in the introduction, we focus on the disconnected
contributions. For this we need the flavor-singlet renormalization constant Z0

A, which has not been
determined yet, and thus we present unrenormalized (bare) results in Sec. 4. The three-point func-
tion corresponding to the disconnected contribution factorizes into separate traces for the quark
loop and the nucleon two-point function

CN,l/s
3,Aµ

(qqq,z0; ppp′,y0;Γν) =
〈
L

l/s
Aµ

(qqq,z0) ·C N
2 (ppp′,y0;Γν)

〉
G
. (3.2)

These are the two main building blocks, described in more detail in the next two subsections.

β a [fm] N3
s ×Nt mπ [MeV] mK[MeV] Ncfg Nmeas

H105 3.40 0.086 323×96 280 460 1020 391680

N203 3.55 0.064 483×128 340 440 772 345856

N200 3.55 0.064 483×128 280 460 856 383488

D200 3.55 0.064 643×128 200 480 278 124544

Table 1: The processed gauge ensembles for this work. Ncfg denotes the number of gauge configurations.
The last column corresponds to the total number of measurements for the ratio in Eq. (2.4).
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3.2 Nucleon two-point function

The nucleon two-point function is given by

CN
2 (ppp′,y0;Γν) = ∑

yyy∈Λ

e−ippp′yyy (Γν)βα

〈
Nα(y)N̄β (0)

〉
, (3.3)

Nα(x) = εabc

(
ua

β
(x) (Cγ5)βγ

db
γ (x)

)
uc

α(x) . (3.4)

All quark propagators have been Wuppertal smeared [5] at the source and the sink. We employ the
truncated solver method [6, 7] to increase the statistical precision of the nucleon two-point functions
at moderate cost. The trick is to first obtain a biased estimate with a large number of low-precision
solves for the quark propagator and then add a bias correction from a much smaller subset of high-
precision solves. We placed the sources for the nucleon two-point functions on seven timeslices
for each ensemble. The seven timeslices were evenly distributed around the middle of the time
extent. These were separated by seven timeslices on which no sources were placed. The number of
high-precision solves on each timeslice was NHP

src = 1, except for H105, where we used NHP
src = 4.

For all ensembles, the number of low-precision solves on each timeslice was NLP
src = 32. Both the

forward and the backward-propagating nucleon two-point functions from all source positions were
included, except for the first (last) timeslice on H105, where we omitted the backward (forward)
propagation. This is due to the arising boundary effects as H105 has a smaller temporal lattice
extent than the other three ensembles.

3.3 Quark loop

The calculation of the quark loop requires an all-to-all propagator, which can be stochastically
estimated with noise vectors η

Ll/s
Aµ
(qqq,z0) =−∑

zzz∈Λ

eiqqq·zzz
〈

tr
[
Sl/s(z;z) γ5γµ

]〉
G
=−∑

zzz∈Λ

eiqqq·zzz
〈

η
†(z) γ5γµ sl/s(z)

〉
G,η

. (3.5)

Here we use hierarchical probing [8], which augments the series of noise vectors ηn by a set of
Hadarmard vectors hn, where each element of a noise vector is multiplied with the Hadamard
vectors to obtain an improved estimate of the quark loop. We employ four-dimensional noise
and Hadamard vectors and use two independent noise vectors with 512 Hadamard vectors each.
Thus, we perform a total of 1024 inversions per gauge configuration and flavor for the quark loop
calculation.

4. Results

In Fig. 1 we show the strange axial form factor for a particular non-vanishing Q2 as a function
of the source-sink separation y0 used for the plateau fit and also include a band visualising the
summation method result. For both ensembles excited-state contamination is visible but we find
agreement between the plateau fits and the summation method at large enough y0. In the following,
we only consider the summation method results in order to have tidier plots. The Q2-dependence
of the disconnected axial vector form factors for the light and the strange quarks on the ensemble
with a = 0.086fm and mπ = 280MeV are shown in Fig. 2. The results for the induced pseudoscalar
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form factor have been multiplied with (Q2 +m2
π) in order to remove the pion pole. The curves are

z-expansion fits to fifth order with Gaussian priors for all coefficients ak with k ≥ 2. Both the axial
and the induced pseudoscalar form factor are found to be non-vanishing and negative.
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Figure 1: Comparison of plateau fits at different source-sink separations y0 and the summation method for
two ensembles at mπ = 280MeV (left: a = 0.086fm, right: a = 0.064fm).
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Figure 2: The disconnected contribution of the light and strange quarks to the axial form factor (left) and
the induced pseudoscalar form factor (right) for the ensemble with a = 0.086fm and mπ = 280MeV.

Lastly, the pion mass dependence at fixed lattice spacing and the lattice spacing dependence at fixed
pion mass of the strange axial vector form factors is illustrated (Fig. 3). At this level of statistics,
we find the strange axial vector form factors to depend only mildly on the pion mass and the lattice
spacing. In future work, we will include more ensembles into this analysis and attempt a continuum
extrapolation. Furthermore, the investigation of disconnected contributions to the electromagnetic
form factors is planned.
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Figure 3: Pion mass dependence at a lattice spacing of a = 0.064fm (top) and lattice spacing dependence at
a pion mass of mπ = 280MeV (bottom) of the strange axial vector form factors.
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