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calculations based on standard Monte Carlo methods suffer from the sign problem. As a promis-
ing approach to this issue, the complex Langevin method (CLM) has been pursued intensively.
In this work, we investigate the applicability of the CLM in the vicinity of the deconfinement
phase transition using the four-flavor staggered fermions. In particular, we look for a signal of the
expected first order phase transition within the validity region of the CLM.
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1. Introduction

Exploring the phase diagram of QCD at finite density and temperature is important due to
its relevance to the heavy-ion collision physics and the determination of the equation of state for
neutron stars. However, lattice QCD simulations based on conventional Monte Carlo algorithms
suffer from a severe sign problem in the finite density region.

To overcome this problem, the complex Langevin method (CLM) [1, 2] has been investigated
intensively in recent years. Basically, it is an extension of the stochastic quantization to theo-
ries with a complex action. In this framework, the expectation value of holomorphic observables is
computed by solving the complex Langevin equation, which describes the stochastic time-evolution
of the complexified dynamical variables. This procedure does not rely on the probabilistic inter-
pretation of the Boltzmann weight e−S, and hence it is free from the sign problem. However, the
equivalence to the familiar path integral quantization does not always hold [3, 4] unlike the case
with a real action. Recently, a necessary and sufficient condition for the equivalence based on the
probability distribution of the drift term has been proposed [5]; i.e., the CLM gives correct results
if and only if the probability distribution of the drift term decays exponentially or faster. Because
of this condition, the CLM works in some parameter region of finite density QCD, but not in the
entire region. As we will see in the following, the distribution falls off with a power law in some
region, which implies that the CLM is no longer valid there. Since one can easily monitor the
distribution while generating configurations, it is useful and preferable to judge the validity of the
CLM in this way in actual simulations for each set of parameters.

In this paper we discuss the applicability of the CLM in the vicinity of the deconfinement
transition with Nf = 4 staggered fermions at finite temperature T and finite chemical potential µ .
This transition is known to be of first order at µ = 0 [6], and it is expected to be so also at µ 6= 0
based on the canonical ensemble method [7, 8]. Recently the CLM and the standard reweighting
method have been applied to this theory for comparison [9]. While the deconfinement transition
was accessible by the reweighting method unless µ or the lattice size is not too large, it turned out
to be difficult to access by the CLM for the chosen setup because the simulation becomes unstable
for small β . Motivated by this result, we perform simulations with larger lattice size in the temporal
direction so that the phase transition occurs at larger β , and investigate whether the CLM has an
ability to probe the deconfinement transition in different setups.

The rest of this article is organized as follows. In section 2 we give a brief overview on
the application of the CLM to lattice QCD at finite density. In section 3 we present our results.
Section 4 is devoted to a summary and discussions.

2. Complex Langevin method for finite density QCD

We apply the CLM to lattice QCD on a four-dimensional lattice with the temporal extent Nt

and the spatial extent Ns. Throughout this paper, we set the lattice spacing to unity. The partition
function is given by

Z =
∫

∏
xν

dUxν detM(U ; µ)e−Sg(U) , (2.1)
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where Uxν ∈ SU(3) (ν = 1,2,3,4) are the link variables with x = (x1,x2,x3,x4) being the coordi-
nates of each site. For the gauge action Sg(U), we use the Wilson plaquette action defined by

Sg =−
β

6 ∑
x

∑
µ<ν

tr
(

Ux,µν +U−1
x,µν

)
, Ux,µν =UxµUx+µ̂,νU−1

x+ν̂ ,µU−1
xν , (2.2)

where µ̂ is the unit vector in the µ direction. For fermions, we use the Nf = 4 unimproved staggered
fermion with the degenerate quark mass m, which corresponds to choosing the fermion matrix
M(U ; µ) in (2.1) as

M(U ; µ)xy = mδxy +
4

∑
ν=1

ην(x)
2

(
eµδν4Uxνδx+ν̂ ,y− e−µδν4U−1

x−ν̂ ,νδx−ν̂ ,y

)
, (2.3)

where µ represents the quark chemical potential and ην(x) = (−1)x1+···+xν−1 is a site-dependent
sign factor. The sign problem is caused by the fermion determinant detM(U ; µ) appearing in (2.1).
We impose anti-periodic boundary conditions for the fermionic field in the temporal direction. The
temperature is then given by T = 1/Nt.

The CLM is one of the most promising approaches to overcome the sign problem. In this
method, the link variables Uxµ defined as SU(3) matrices are complexified into SL(3,C) matrices,
which we denote as Uxµ . Then we consider a fictitious time evolution of the complexified variables
given by the complex Langevin equation with stepsize ε

Uxµ(t + ε) = exp

(
i

8

∑
a=1

λa
[
−εvaxµ(U (t))+

√
εηaxµ(t)

])
Uxµ(t) , (2.4)

where λa (a = 1, · · · ,8) are the SU(3) generators normalized by tr(λaλb) = δab. The noise term
ηaxµ(t) is composed of real gaussian random numbers normalized as

〈ηaxµ(s)ηbyν(t)〉= 2δabδxyδµνδst . (2.5)

The drift term vaxµ(U (t)) is defined by the holomorphic extension of

vaxµ(U) =
d

dα
S(eiαλaUxµ)

∣∣∣∣
α=0

(2.6)

defined for the SU(3) link variables with the total action S[U ] = Sg[U ]− logdetM(U ; µ).
A subtle point of the CLM is that it is not guaranteed to yield correct results, and hence one

has to check the reliability of the results after generating configurations. According to the criterion
proposed in ref. [5], the CLM is equivalent to the usual path integral formulation if the probability
distribution of the drift term shows an exponential fall-off. In the case of finite density QCD, we
define the magnitude of the drift term by

v = max
x,µ

√
1
3

8

∑
a=1
|vaxµ(U )|2 . (2.7)

There are actually two cases in which the above criterion is violated. One is the singular drift
problem [10, 11], which occurs because of the appearance of the inverse M−1 in the drift term when
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the fermion matrix M(U ; µ) has near-zero eigenvalues. In order to detect this problem, we probe
the contributions to the drift term from the fermion determinant detM(U ; µ).

The other case which leads to the violation of the criterion is the excursion problem [3, 4],
which occurs when the complexified link variables become too far from unitary matrices. In order
to detect this problem, it is useful to probe the unitarity norm defined by

N =
1

12NV
∑
xµ

tr
(
UxµU †

xµ −1
)
, (2.8)

which measures the deviation of the complexified link variables from SU(3). Here we defined
NV = NtN3

s , which represents the volume of the four-dimensional Euclidean space.
As important observables, we consider the Polyakov loop, which is defined by

P =
1

3N3
s
∑
~x

tr
(

U(~x,1),4U(~x,2),4 . . .U(~x,Nt),4

)
, (2.9)

where~x = (x1,x2,x3), and the baryon number density defined by

n =
1

3NV

∂

∂ µ
logZ =

1
3NV

〈
∑
x

η4(x)
2

tr
(

eµM−1
x+4̂,x

Ux4 + e−µM−1
x−4̂,x

U−1
x−4̂,4

)〉
. (2.10)

3. Results

In the previous work [9], the validity range of the CLM was discussed with the maximum
lattice size being 163× 8. There it was found for µ/T = 0.96 with the quark mass m = 0.01, for
instance, that the CLM breaks down at β ∼ 5.15, which prevented the authors from reaching the
transition point, which is slightly below 5.15. Based on this result, we employ a lattice with larger
temporal size Nt = 12, which is expected to shift the transition point to larger β , hoping that the
CLM can see the phase transition within the region of validity. The quark chemical potential is
chosen as µ = 0.1, which corresponds to µ/T = 1.2. We use an adaptive stepsize [12] with the
initial value ε = 5×10−5 and perform the gauge cooling [13] (See refs. [14, 5] for its justification)
to minimize the unitarity norm N at each Langevin step.

3.1 β -dependence at m = 0.01

Here we show our results obtained at m = 0.01 for 5.2 ≤ β ≤ 5.6 on a 203×12 lattice. First
we check the reliability of the CLM. In Fig. 1 we plot the probability distribution of the fermionic
drift term and the history of the unitarity norm. At β = 5.2 and 5.3, we observe that the distribution
of the drift term falls off with a power law and the unitarity norm grows rapidly with the Langevin
time. Therefore, we conclude that the CLM is not reliable for these values of β .

In order to probe the deconfinement transition, we measure the Polyakov loop and the baryon
number density. In Fig. 2 we plot the expectation values of these quantities as a function of β . Fo-
cusing on the reliable data at β ≥ 5.4, we find that both of them decrease gradually as β is lowered,
but they remain significantly away from zero suggesting that the system is in the deconfined phase.
The first order phase transition seems to be hidden in the unreliable region, which is similar to the
situation in ref. [9]. Thus, we find that increasing the temporal size of the lattice does not enable us
to see the deconfinement phase transition.
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Figure 1: The histogram of the fermionic drift term (Left) and the history of the unitarity norm (Right) are
plotted for various 5.2≤ β ≤ 5.6 with m = 0.01 on a 203×12 lattice.
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Figure 2: The real part of the Polyakov loop (Left) and the baryon number density (Right) are plotted
against β for m = 0.01 on a 203×12 lattice. Circles and crosses represent reliable data and unreliable data,
respectively.

3.2 Increasing the quark mass

From Figs. 10 and 11 of ref. [9], we find that the critical β can be shifted to larger values
also by increasing the quark mass, which provides us with another possibility to observe the phase
transition by the CLM. Below we show our results obtained at 0.01≤ m≤ 0.5 with fixed β = 5.4
on a 243×12 lattice.

In Fig. 3 we show the probability distribution of the drift term and the history of the unitarity
norm. At m ≥ 0.2, we find that the distribution of the fermionic drift term falls off with a power
law and the unitarity norm grows rapidly, which implies that the CLM is not reliable there.

In Fig. 4 we show the expectation value of the Polyakov loop and the baryon number density
as a function of the quark mass. Focusing on the reliable data at m≤ 0.1, we find that both of them
decrease with increasing m, but they remain significantly nonzero suggesting that the system is in
the deconfined phase. However, the sharp drop of the baryon number density at m ∼ 0.1 suggests
that the system enters the confined phase slightly above that point. Thus we find that the first order
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phase transition is hidden in the unreliable region here as well.
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Figure 3: The histogram of the fermionic drift term (Left) and the history of the unitarity norm (Right) are
plotted for various 0.01≤ m≤ 0.5 with β = 5.4 on a 243×12 lattice.
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Figure 4: The real part of the Polyakov loop (Left) and the baryon number density (Right) are plotted against
the quark mass m for β = 5.4 on a 243×12 lattice. Circles and crosses represent reliable data and unreliable
data, respectively.

4. Summary and outlook

In this paper we have investigated the validity region of the CLM for lattice QCD at finite
chemical potential using the criterion based on the probability distribution of the drift term. In
particular, we have discussed whether the CLM has an ability to probe the deconfinement transition.
We have performed lattice QCD simulations with four-flavor staggered fermions on lattices with
larger temporal size Nt = 12 than the previous study with Nt = 4,6,8 so that the critical β is shifted
to a larger value. The chemical potential is set to µ = 0.1, which corresponds to µ/T = 1.2. Our
results obtained at m = 0.01 on a 203×12 lattice suggest that the singular drift problem occurs at
sufficiently small β , which seems to hide the phase transition. As another possibility, we have also
increased m at fixed β = 5.4 on a 243× 12 lattice, which showed that the singular drift problem
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occurs before the phase transition is observed. When the singular drift problem occurs, the unitarity
norm shows a rapid growth at the same time. From these results, we speculate that the singular drift
problem occurs in the confined phase quite generally1 unless the quark mass becomes very large.
It would be interesting to see whether the CLM remains applicable in the deconfined phase even at
larger µ and lower T . Simulations in this direction are underway.
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