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1. Introduction

The phase diagram of strongly interacting matter at finite temperature T and baryon chemical
potential µ is a very active field of research. Knowledge of the different phases has important appli-
cations for determining the QCD equation of state, as well as understanding the phase transitions
that quarks and gluons go through. There are planned (FAIR, NICA) and ongoing experimental
investigations (RHIC, LHC) of QCD under different thermodymic conditions.

The theoretical study of the QCD phase diagram requires the use of non-perturbative methods,
since perturbation theory is only applicable at high T or µ , where quarks are asymptotically free.
Traditionally, QCD is simulated via Monte Carlo methods in Euclidean spacetime. The addition of
a baryon, or quark, chemical potential makes the action complex, leading to a complex probablity
weight – this is known as the sign problem. In situations where the sign problem is mild, i.e., the
phase of the weight does not change much, Taylor expansions or methods such as reweighting can
be applied. For a review, see [1]. However, when µ/T & 1 an exponentially hard overlap problem
prevents the obtention of reliable results.

2. Complex Langevin

One promising technique to circumvent the sign problem is the complex Langevin method.
This method is based on stochastic quantisation [2], where the dynamical variables evolve in a
fictitious time dimension θ according to a Langevin equation. Quantum expectation values are
recovered as averages over θ after the system reaches its stationary state.

Specialising for SU(3) gauge fields, the Langevin equation reads

Uxµ(θ + ε) = exp
[
Xxµ

]
Uxµ(θ) , (2.1)

Xxµ = iλ a(−εDa
xµS [U(θ)]+

√
ε η

a
xµ(θ)) , (2.2)

with Uxµ(θ) being the gauge links at Langevin time θ , Xxµ the Langevin drift, λ a are the Gell-Mann
matrices, ε is the step size, which is chosen adaptively [3], ηa

xµ are white noise fields satisfying

〈ηa
xµ〉= 0 , 〈ηa

xµη
b
yν〉= 2δ

ab
δxyδµν , (2.3)

S is the QCD action and Da
xµ is defined as

Da
xµ f (U) =

∂

∂α
f (eiαλ a

Uxµ)

∣∣∣∣
α=0

. (2.4)

The complex character of the method comes into play, since S is complex, by allowing the
gauge links to take values in the complex extension of SU(3), namely the group SL(3,C) [4–7]. To
ensure convergence, the action and observables must be holomorphic functions [8], and therefore
the substitution U†→U−1 is necessary, since they are the same on SU(3).

An issue arises from the fact that SL(3,C) is not compact: the simulation might follow an
unstable trajectory and converge to a wrong limit [9–11]. We monitor the distance from SU(3),
given by the unitarity norm

d =
1

3Ω
∑
x,µ

Tr
[
Ux,µU†

x,µ −1
]
≥ 0 , (2.5)
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with Ω = N3
s ×Nτ being the lattice 4-volume, and use gauge transformations to reduce it, with

the gauge cooling technique [12–14]. Gauge cooling, despite being necessary, is not sufficient to
keep d fully under control [15]. In order to remedy this situation, we have proposed the method of
Dynamic Stabilisation [16]. It consists of a modification of the Langevin drift,

Xxµ → Xxµ + iαDSλ
aMa

x , (2.6)

such that i) d does not exceed a given threshold; ii) the SU(3) part of the Langevin drift is not
changed. One possible implementation is

Ma
x = iba

x

(
∑
c

bc
xbc

x

)3

, ba
x = Tr

[
λ

a
∑
ν

UxνU†
xν

]
. (2.7)

A comparison between simulations using gauge cooling, gauge cooling and dynamic stabilisation,
and reweighting in QCD in the limit of heavy quarks (HDQCD) [4, 17] is seen in fig. 1(left). On
the right hand side, we show the unitarity norm d. Note that the region where the Polyakov loop
converges to the wrong limit coincindes with d being of order 0.1.
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Figure 1: Left: Polyakov loop as a function of Langevin time for different simulations. Right: Langevin
time history of the unitarity norm. Instabilities for the simulation with only gauge cooling start when the
unitarity norm reaches O(0.1).

3. Testing dynamic stabilisation in HDQCD

In the heavy-dense approximation of QCD (HDQCD), quarks can only evolve in the Euclidean
time direction. This greatly simplifies the fermion determinant, but preserves a silver blaze problem
at T = 0 and the sign problem at real chemical potential. The QCD action with fermions integrated
out reads

S = SYM− lndetM(U,µ) , (3.1)

with SYM being the Wilson gauge action and the fermion determinant,

detM(U,µ) =∏
~x

{
det
[
1+(2κeµ)Nτ P~x

]2
det
[
1+
(
2κe−µ

)Nτ P−1
~x

]2
}
, (3.2)
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being a function of the Polyakov loop and its inverse,

P~x = ∏
τ

U4(~x,τ) , P−1
~x =

0

∏
τ=Nτ−1

U−1
(~x,4̂)

. (3.3)

In fig. 2 we analyse the dependency of the Polyakov loop on αDS for a situation where HDQCD
exhibits a severe sign problem, with volume Ω = 83× 20, β = 5.8 κ = 0.04 and µ = 2.45. We
compare the results with simulations using only gauge cooling. In one case, we included all points
in the analysis (marked as d > 0.03), and in the other we stopped the analysis when the unitarity
norm became larger then 0.03. Both situations are shown as coloured bands in fig. 2. We found a
wide region in the DS parameter where both real and imaginary parts of the Polyakov loop agree
with the gauge cooling results restricted to d < 0.03.
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Figure 2: Real and imaginary parts of the Polyakov loop as functions of αDS. The bands are results from
gauge cooling (GC) with and without a cut in the unitarity norm of d < 0.03.

In fig. 3 we investigate the contribution of the DS term in the same situation studied above. On
the left panel, we consider the ratio of the DS to the total drift As the drifts are complex, we study
their absolute values. For the total drift, we consider |X | and |M| separately, in order to have a ratio
between 0 and 1. The results for the average of |M|/(|X |+ |M|) show that the DS contribution is
never above 7% of the total drift even for the largest value of αDS considered. The panel on the
right of fig. 3 shows histograms of the DS drift for different values of β . We can see that the DS
contribution becomes smaller at finer lattices.

4. Staggered quarks

We have employed the complex Langevin method, augmented with gauge cooling and dy-
namic stabilisation to study QCD with dynamical fermions. The Langevin drift has the form

Xxµ = λ
a (Da

xµSYM−Tr
[
M−1Da

xµM
]
+ iαDSMa

x
)
, (4.1)

with M being the fermion matrix. In order to evaluate the term stemming from the quark action, we
employ a bilinear noise scheme for the trace [18], and conjugate gradient for M−1. Potential issues
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Figure 3: Left: Ratio of the DS and total drifts as a function of αDS. Right: Histograms of the DS drift for
different values of the inverse coupling.

caused by poles in M−1 have been investigated in [19]. One consequence of using the bilinear noise
scheme is that even for µ = 0 the drift is real only on average, and therefore an imaginary part can
appear during the simulation. This can cause the simulation to diverge. An alternative, exact way
of evaluating the fermion contribution has been studied in [20]. We study whether DS is able to
allow for convergence to the right limit to happen, without projecting the system back to SU(3).
This convergence is checked against results from Hybrid Monte-Carlo (HMC) simulations1. The
simulations were carried out with four flavours of staggered quarks, volumes of 64, 84, 104 and
124, inverse coupling β = 5.6 and mass m = 0.025.

Figure 4 (left) shows the chiral condensate as a function of αDS resulting from Langevin sim-
ulations, for a volume of 64. The grey band indicates the result from HMC. Good agreement is
observed for all αDS, despite the finite Langevin step size. The extrapolation to zero Langevin step
size can be seen in fig. 4 (right), for the volume of 124. Since we used a first order discretisation
scheme for the Langevin evolution, the step size corrections are linear in ε [21]. This is confirmed
by the linear fit provided. Excellent agreement is seen between the error bands from Langevin and
HMC simulations.
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Figure 4: Left: Average chiral condensate as function of αDS condensate at µ = 0 and volume of 64. Right:
Extrapolation of the Langevin step size to zero for the average plaquette at µ = 0 and V = 124.

Our results for the average plaquette and chiral condensate, extrapolated for zero step size, for

1We thank Philippe de Forcrand for providing us with these results.
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ψψ Plaquette
Volume HMC Langevin HMC Langevin

64 0.1203(3) 0.1204(2) 0.58246(8) 0.582452(4)
84 0.1316(3) 0.1319(2) 0.58219(4) 0.582196(1)

104 0.1372(3) 0.1370(6) 0.58200(5) 0.58201(4)
124 0.1414(4) 0.1409(3) 0.58196(6) 0.58195(2)

Table 1: Average plaquette and chiral condensate obtained from Langevin and HMC simulations of four
flavours of staggered fermions at β = 5.6, m = 0.025 and µ = 0 in four different lattice volumes.

all studied volumes is shown in table 1, as well as the results from the HMC simulations. Excellent
agreement has been found for both observables in all four volumes considered.

We show in fig. 5 a qualitative study of staggered fermions at finite µ , with N f = 2, β = 5.6,
V = 123 and mass m = 0.025 for different temperatures, Nτ = 2 and 4. The pion and nucleon
masses are mπ ≈ 0.42 and mN ≈ 0.93, respectively [22]. At high temperatures, the inversion of the
fermion matrix is numerically cheap and converges quickly.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 1 2 3 4 5 6 7 8 9

3
2
mπ mN

〈ψ
ψ
〉

µ/(mN/3)

Nτ = 2
Nτ = 4

Figure 5: Chiral condensate as function of the chemical potential, in units of the nucleon mass. Lines of
pion (left) and baryon (right) condensation are indicated.

5. Summary

We report on results of our method of dynamic stabilisation applied to complex Langevin
simulations. In situations where the distance from the unitary manifold exceeds O(0.1) instabilities
have been observed to cause simulations to converge to wrong limits. Dynamic stabilisation (DS)
has been constructed to act as force added to the Langevin drift that keeps the system from exploring
too far in the SL(3,C) manifold.

We have shown that by employing DS and tuning its control parameter, it is possible to get
correct convergence for QCD simulations both in the limit of heavy quarks and light quarks at zero
chemical potential. In the case of HDQCD, we have shown that DS only adds a small contribution
to the Langevin drift. For QCD with fully dynamical quarks, we have found excellent agreement
with HMC results at zero chemical potential after extrapolating the Langevin step size to zero.
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