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1. Introduction

The axion [1, 2] is a hypothetical light scalar particle that could explain the origin of dark
matter and solve the strong CP problem at the same time. It is introduced via the Peccei-Quinn
mechanism [3, 4] that explains why the CP violating θQCD term in the QCD Lagrangian is small.
The corresponding particle on the other hand could be a candidate for dark matter in the Universe.
In the last years, the high-energy physics community has put a lot of effort on the QCD axion, both
in experiment and theory.

Given the interest on axions, theoretical predictions of its properties would be valuable. Ac-
cording to the Peccei-Quinn theory, dark-matter axion production is sensitive to the temperature
dependence of the QCD topological susceptibility

χ(T ) =
∫

d4x 〈q(x)q(0)〉= 1
βV

〈
Q2〉 (1.1)

up to temperatures of about 7 Tc [5], where

q(x) =
1

64π2 εµνρσ Fa
µν(x)F

a
ρσ (x) (1.2)

is the topological charge density and Q =
∫

d4x q(x) the topological charge.
At low temperatures, the value of the topological susceptibility is well established [6], while

at high temperatures lattice calculations become very challenging. The main problem is that topo-
logically non-trivial configurations, the so-called instantons, become very rare as the temperature
increases. Therefore, sampling topological sectors with standard lattice techniques that rely on
stochastic approaches fails at high temperatures. Another problem is topological freezing, which
describes a deficiency of update algorithms that tend to get stuck in topological sectors.

There has been a lot of recent progress in studying topology at high temperatures [7–13]. One
way [9, 13] to get to high temperatures is to start at a small temperature where instantons are not
rare and differentially work up to high temperatures by studying fixed topological ensembles. As
an alternative, we study topology directly at a given temperature by ameliorating the sampling
problem using a reweighting approach. For simplicity, we constrained ourselves to the quenched
approximation for developing this method, but we see no conceptual problems in applying the
same technique to the unquenched case. Indeed, a very similar approach was recently applied to
Nf = 2+1 QCD [14]. We first presented the method described here in Ref. [15], where the reader
can find more details.

2. Reweighting Method

The difficulty that arises when measuring the topological susceptibility at high temperatures is
twofold. On the one hand, the quantity is physically small, meaning that almost all configurations
have trivial topology and a canonical sample has very little topological information. On the other
hand, typical update algorithms tend to get stuck in topological sectors at fine lattices, preventing
tunneling between topological sectors. The reweighting technique we developed has its roots in
Refs. [16–18]. In the following, we summarize the basic ingredients of reweighting.
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In the path-integral representation, the expectation value of an observable O is given as

〈O〉=
∫

DUe−SW[U ]O[U ]∫
DUe−SW[U ]

, (2.1)

where SW is the standard Wilson action and U denotes the gauge links. In lattice gauge theory, this
quantity is approximated by generating lattice configurations distributed according to the probabil-
ity distribution

dP(U) =
e−SW[U ]DU∫
DUe−SW[U ]

. (2.2)

In this way, Eq. (2.1) turns into

〈O〉lat =
1
N

N

∑
i=1

Oi, (2.3)

where i = 1, . . . ,N runs through the sample configurations.
The idea of reweighting is to rewrite Eq. (2.1) as

〈O〉=
∫

DUe−SW[U ]+W (ξ )e−W (ξ )O[U ]∫
DUe−SW[U ]+W (ξ )e−W (ξ )

(2.4)

and create a sample of configurations according to the now modified probability distribution

dPrew(U) =
e−SW[U ]+W (ξ )DU∫
DUe−SW[U ]+W (ξ )

(2.5)

that depends on the so-called reweighting function W (ξ ). In this way, we can artificially modify
the weight of configurations with non-trivial topology. In order to compensate for this modified
weight, we need to redefine the lattice expectation value as

〈O〉= ∑
N
i Oie−W (ξi)

∑
N
i e−W (ξi)

. (2.6)

Note that Eqs. (2.1) and (2.6) form a mathematical identity if the algorithm tends to Eq. (2.5) and
N → ∞. The reweighting approach is therefore correct for any choice of the reweighting func-
tion. However, the particular choice is important to improve statistics in the case of topology at
high temperatures as described in the next subsection. In the following, we use the HMC algo-
rithm to update our configurations and implement the reweighting part in an additional Metropolis
accept/reject step in terms of the change of W after the standard Metropolis step in terms of the
change of the Hamiltonian. For more details of the specific implementation we refer to Ref. [15].

2.1 Reweighting Variable

The key ingredient in the reweighting approach is the reweighting function W (ξ ) depending
on the reweighting variable ξ . The idea is to enhance the number of topologically non-trivial
configurations by giving them a larger weight, i.e., a large W (ξ ). Consequently, the reweighting
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variable ξ needs be able to distinguish between different topological sectors. A natural choice
would therefore be the topological charge

Q =
1

64π2 εµνρσ ∑
x

F̂a
µν(x)F̂

a
ρσ (x), (2.7)

where for the discretized field strength tensor we use an O
(
a2
)

improved version. However, the
topological charge is badly contaminated by UV fluctuations that add large contributions to the
topological charge. In order to remove those, some amount of gradient flow [19,20] is applied and
we define the reweighting variable as

ξ = Q′ ≡
∣∣∣∣

1
64π2 εµνρσ ∑

x

(
F̂a

µν(x)F̂
a

ρσ (x)
)

t ′

∣∣∣∣, (2.8)

where t ′ denotes a small amount of gradient flow. With small in this context we mean that UV
fluctuations are removed, while dislocations, which are small concentrations of topological charge
that are the intermediate steps between Q = 0 and Q = 1, are still present. Note that at high
temperatures instantons are highly suppressed such that it is sufficient to only regard the Q = 1
sector. Consequently, Q′ distinguishes between Q = 0 configurations, intermediate configurations
with non-integer Q (dislocations), and Q = 1 configurations (instantons or calorons). Note that we
here use the absolute value in the definition of Q′ making use of the symmetry Q→−Q.

2.2 Reweighting Function

In order to build the reweighting function, we perform a separate Markov chain where we
change W after each trajectory. A second, completely independent Markov chain is then used with
W fixed to extract physics information.

In this first, preparatory Markov chain, we first need to define the topological sectors that we
want to include in the reweighting sample. As already discussed, at high temperatures it is adequate
to only regard the Q = 1 sector and we define the reweighting interval Ωrew = {Q′ ∈ [0,1]}. The
reweighting interval is further divided into Nint subintervals 0 < Q′1 < Q′2 < · · · < Q′int = 1 and W
is discretized on those points. Between the interval borders, W is kept piecewise linear, starting
with a constant function W (Q′) ≡ 1. We then perform the reweighted HMC updates described
above. After each update, we assume that the current value of Q′ is oversampled, because the
algorithm managed to actually visit this Q′. Consequently, it should become less probable to visit
configurations with this Q′ again and W is lowered close to the Q′ of the current configuration. A
sketch of this procedure is shown in Fig. 1. For more details, we refer to Ref. [15].

In Fig. 2, the resulting reweighting function is shown for two different high temperatures above
critical. Both functions show local minima close to Q′ = 0 and Q′ = 1 indicating the presence of
topological sectors. In the intermediate Q′ range, the W function remains large so as to enhance
tunneling events between sectors. Notice that exp[−(W (Q′ ' 1)−W (Q′ ' 0))] provides an ap-
proximate estimate for the relative suppression of the Q = 1 sector compared to the Q = 0 sector
and that this suppression is – as expected – much more severe for the higher temperature.
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Figure 1: Sketch of how the reweighting function is built for Nint = 5. The red points indicate the measure-
ment of Q′ and the orange points the edges of the corresponding interval. The dashed line shows W before
the update, the solid line shows the updated W .
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Figure 2: Left: W (Q′) at 2.5 Tc. Right: W (Q′) at 4.1 Tc.

3. Results and Conclusions

Ultimately we apply this strategy to SU(3) pure gauge theory at two high temperatures, namely
2.5 and 4.1 Tc. We use lattices with three different lattice spacings using Nτ = 6,8,10 and aspect
ratios of about 2.5. For calculating the topological susceptibility via Eq. (1.1), we need to determine

〈
Q2〉≡ ∑i e−W (Q′i)θ

(
Q2

i (t)−Q2
thresh

)

∑i e−W(Q′i)
, (3.1)

where Qi(t) is the topological charge after a large amount t of gradient flow such that all UV
fluctuations and dislocations are “flowed away", and Qthresh is a threshold to decide whether the
configuration is an instanton or not. We then compare different flow depth and different thresholds.

Fig. 3 shows the continuum extrapolation at both temperatures for different choices of flow
depth and Qthresh. We see that at coarse lattices the different topology definitions do not agree very
well, while at finer lattices they do. Also in the continuum limit, the different choices give the same
result. The continuum extrapolation is performed in the logarithm of the susceptibility because it
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Figure 3: Left: linear continuum extrapolation in the logarithm of the susceptibility for two different flow
depth t and two different thresholds Qthresh at T = 2.5 Tc. Right: the same at T = 4.1 Tc.

is proportional to the exponential of the caloron action which has O
(
a2
)

lattice corrections:

χ ∝ exp
(
−
[
1−O

(
a2T 2)]S

)
. (3.2)

From this, a linear extrapolation in the logarithm of the susceptibility is well justified [21]. Our
continuum extrapolated results are (using the t = 2.4a2 results with Qthresh = 0.7)

χ(T = 2.5 Tc)

T 4
c

= 2.22×10−4 e±0.18,

χ(T = 4.1 Tc)

T 4
c

= 3.83×10−6 e±0.21
(3.3)

and agree well with the existing literature [8, 12].
In conclusion, we developed a reweighting approach to measure the topological susceptibility

at high temperatures on the lattice. This method allows us to enhance tunneling between topological
sectors where standard lattice techniques fail, and lets us measure the topological susceptibility
directly also at high temperatures. We presented continuum extrapolated results for SU(3) pure
Yang-Mills theory and see no conceptual problems for applying the same methods to QCD with
fermions. Indeed, a similar technique was recently applied to Nf = 2+1 QCD [14].
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