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We report our study on the properties of the topological structures present in the QCD medium
around the critical temperature Tc. We use dynamical domain wall fermion configurations on
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of the overlap operator. We show that the properties of the zero modes of the QCD Dirac operator
agree well with that of calorons with non-trivial holonomy. We also show how the zero modes
move around when changing the fermionic boundary conditions, and how the locality of the
solutions also depends on the boundary conditions. This supports the presence of instanton-
dyons in the hot QCD medium around Tc, where the distance between dyons control the shape
and extent of the zero modes.
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1. Introduction

The aim of this work is to identify the topological objects that exist in the vacuum of QCD
with physical quarks near the chiral crossover transition. Topological objects and their interactions
play an important role in describing many features of chiral symmetry breaking and is believed
to provide a possible mechanism for explaining confinement in gauge theories. The topological
objects of interest in this present work are calorons with non-trivial holonomy. The caloron for
the SU(3) color group has been shown to consist of three substructures called instanton-dyons
(dyons for short) [1]. For details of application of a model of instanton-dyons towards explaining
confinement see [2]. Near the crossover temperature Tc ∼ 155 MeV the Polyakov loop has a finite
expectation value or non-trivial holonomy, which means that all three types of instanton-dyons are
expected to exist. These would eventually recombine into instantons at T >> Tc. We will verify if
indeed this is the scenario near Tc.

The topological objects in QCD always have a corresponding fermion zero mode through the
index theorem. An ensemble of topological objects will interact to create near-zero modes with
very small eigenvalues in addition to the exact zero modes. We will use the fermion zero and
near-zero modes to identify the nature and the interactions of the topological objects. This is an
indirect method, but it has the advantage that these modes are not sensitive to the high momentum
fluctuations of the gauge fields. When well separated, each dyon and the associated fermion zero
mode look like a localized peak. Each dyon correspond to a sector on the U(1) circle between two
successive angles µi, as can be seen in Fig. 1, where µi are the angles of the expectation value
of the Polyakov loop ∼ exp[i× diag(µ1,µ2,µ3)]. The fermion zero mode can only sit on one of
the three dyons. Which dyon the zero mode sits on, depends on the boundary phase given by φ

ψ(t +1/T ) = eiφ ψ(t). The i’th dyon is associated with the zero mode if µi < φ < µi+1. Close to
Tc we expect µi ∼ 0, 2π/3 and 4π/3. In order to detect all three dyons we therefore choose the
phases φ = π , π/3 and −π/3 such that they are at the center of the intervals in the phase circle.

Figure 1: The different angles µi that governs the behavior of a caloron with non-trivial holonomy are shown
along with the 3 different boundary phases φ studied in this work. The µi have been positioned such that
〈P〉= 0. The 3 dyons depending on their location in the phase circle are called L, M1 and M2 respectively.

In order to study the topological structure of QCD with physical quarks, we use the 2+1 fla-
vor QCD configurations generated by the RBC-LLNL collaboration using Möbious domain wall
discretization for fermions. The configurations have previously been used in [3]. The lattice size
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is 323× 8 and the quark masses are chosen at the physical values. We use the massless overlap
Dirac operator with different boundary phases φ = π , π/3 and −π/3 and calculate its first five
eigenvalues and eigenvectors ψ using the Kalkreuter Simma Ritz algorithm [4]. We use the over-
lap operator since it has an exact index even on a finite lattice. The quantities of interest are the
eigen density ρ(x) = ψ(x)†

a,iψa,i(x) and chiral density ρ5(x) = ψ(x)†
a,iγ5(i, j)ψa, j(x). Comparing the

exact and near-zero modes to the analytic formula for the fermion zero mode for the caloron with
non trivial holonomy [1, 5] we will verify if these indeed correspond to dyons.

2. Our results: Exact zero modes

We begin by comparing the spacetime profile of the density of a fermion zero mode on a
typical QCD configuration at T = 1.08Tc to the analytic results for a zero mode for confined case
corresponding to a dyon and for a deconfined case corresponding to an instanton. The comparison
is shown in fig. 2. We observe that the height of the dominant peak of the lattice zero mode is
similar to the analytically calculated profile in the confined case for the boundary phase φ = π .
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Figure 2: Fermion zero-mode densities ρ(x,y) (left) and ρ(x, t) (right) calculated from the lattice study (top
panel) compared to the profile corresponding to the confined caloron (middle panel) and deconfined case
(bottom panel). The dominant dyon in the analytic calculation is localized at the origin while the other two
dyons sit at (0.14,0,0)/T and (−0.14,0,0)/T . The axes in the plots are in units of 1/T .

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
1
5
6

Topological structures in finite temperature QCD Rasmus Larsen

log(ρ(x))

x[1/T ]

Figure 3: log(ρ(x)) along the coordinate x for the fermion zero mode (black) obtained from lattice simu-
lation is compared with the analytically calculated caloron for confined (blue) and deconfined (Instanton)
(red). For the analytic calculation, the main dyon sits at the origin, while the other dyons are localized at
(0.14,0,0)/T and (−0.14,0,0)/T respectively. The axes are normalized by temperature T to fit the analytic
formula. The profile shown as a red line is scaled by a constant to fit the two other peak heights.

The profile plots of the same zero modes now in the x-t plane in Fig. 2 contain more interesting
information. If the three dyons are well separated, then the solution is time independent. The closer
the dyons are to each other, the more time dependent the solution becomes. The time dependence
is therefore a good indication for the distance between the dyons. In order to further distinguish
between the zero-mode profiles corresponding to a dyon and an instanton and compare with our
lattice results, we show the density of this mode as a function of one of the space dimensions i.e.
along the x-direction as a log-plot in Fig. 3. We find that the peak corresponding to an instanton
(red line) has a faster falloff as a function of x. This is due to the fact that the falloff of the zero
mode solution depends on the distance from φ to the closest µi, which is largest for the case of an
instanton at φ = π . Also the lattice result is not mirror symmetric along the x-axis, which indicates
that the other dyons are sitting close to one side. The plot also indicate that the actual value of the
Polyakov loop is between 0 and 1, and not at one of the two extremes, as assumed in all these plots.

2.1 Comparing zero modes at different boundary phases

We here show the lattice fermion zero mode profiles at 1.08 Tc as a function x-y at a fixed z
coordinate and summing over the temporal direction, for different boundary phases φ = π , π/3
and −π/3 summarized in Fig. 4. We observe that for all three choices of φ , one peak exists at
the spacetime location where the anti-periodic case (φ = π) has a large peak. Due to several peaks
contributing at φ = π/3 and −π/3, we see that the peak height is much smaller than for the case
φ = π . We also observe that there are cases where the zero mode at a particular location survive
for only one of the boundary phases as observed in the two plots corresponding to z = 19 in Fig. 4.
This implies that the position of the zero-mode peak changes with the temporal boundary condition.
This cannot happen if the zero mode is associated with an instanton with trivial holonomy. Instead
this observation indicates that the zero mode is moving from one dyon to another.
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z = 28 φ = π/3z = 28φ =−π/3z = 28φ = π

z = 19 φ =−π/3 z = 19 φ = π/3 z = 7 φ = π/3

Figure 4: Fermion zero mode density ∑t ρ(x,y, t) at T = 1.08 Tc. For (left top) φ = π , z = 28 , (middle
top) φ = −π/3 , z = 28 , (right top) φ = π/3 , z = 28 , (left bottom) φ = −π/3 , z = 19 , (middle bottom)
φ = π/3 , z = 19 , (right bottom) φ = π/3 , z = 7. The axes are the lattice site along the respective directions.

3. Near-Zero Modes of the QCD Dirac operator

The near-zero modes arise due to the interactions between neighboring topological objects and
their CP-odd partners. This can be seen in the chiral density profiles of the near-zero modes. We
show the profiles for the first near-zero mode of the QCD Dirac operator for two different temporal
boundary conditions in Fig. 5 at two different temperatures T = 1.08 Tc and T ∼ Tc. We find
that only above Tc do we see very well separated peaks corresponding to positive and negative
chiralities, while at Tc we see a large density of peaks of both chiralities close to each other. The
large density of peaks is consistent with chiral symmetry breaking scenario at Tc and gives further
evidence for the existence of dyons explained in detail in [6]. We give here a brief interpretation
of our results. The QCD configurations were generated with anti-periodic boundary condition for
the quarks, hence dyons only in the sector φ = π sector have been affected by fermionic zero mode
attraction. This means that only the anti-periodic sector has a phase transition for chiral symmetry.
This is not the case with the choice of other boundary phases corresponding to other dyons, which
are not affected by the zero mode attraction. The plots therefore indicate that the fermion near-zero
modes at the phases φ = π/3 and −π/3, are associated with different topological object than the
fermion near-zero modes in the anti-periodic sector (φ = π).

Even though near-zero eigenvectors correspond to several closely located peaks, it is still pos-
sible to get some nice comparisons between the analytic model and the closely located dyon-anti-
dyon pairs. We show an example of this in Fig. 6 for the densities ρ(x,y) and in fig. 7 for ρ(x, t)
for a typical configuration at T = Tc.
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T = 1.08Tc φ = π T = 1.08Tc φ = π/3

T = Tc φ = π T = Tc
φ = π/3

Figure 5: Chiral density ∑t ρ5(x,y, t) at certain fixed z plane of the first near-zero mode on the lattice at
T = 1.08 Tc (top) and T = Tc (bottom) as a function of fermion boundary phases φ = π (left) and φ = π/3
(right) respectively. The axes are the lattice site along the respective spatial directions.
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Figure 6: Near-zero mode density ρ(x,y) at T = Tc and φ = π/3 from lattice (left) and analytic (right)
calculations. Lattice units are normalized by temperature T to fit to the analytic result.

4. Summary

In this work we show that the fermion zero and near-zero modes of the QCD Dirac operator
calculated on the lattice near and above Tc correspond very well to the zero modes of the caloron
with non-trivial holonomy i.e. dyons. We provide evidences for it through direct comparison of
the shape of the peaks between lattice and analytic results as the boundary phases of the overlap
operator is changed. Looking at the chiral density, only above Tc at φ = π could we find config-
urations which were composed of a well separated single dyon and anti-dyon pair. At the other
boundary phases studied, corresponding to φ = π/3 and −π/3 above Tc, and all phases at Tc, we
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Figure 7: Near-zero mode density ρ(x, t) at T = Tc and φ = π/3 calculated on lattice (left) and analytic
(right) calculations. Lattice units normalized by temperature T to fit to the analytic result.

found a high density of peaks and valleys. This shows that only for φ = π was there a chiral phase
transition, which in turn means that the topological objects in the two other sectors are different
from that in the anti-periodic case. We also saw that while one large peak tended to be close to the
same position of the exact zero mode for φ = π , we did also see peaks shift to different locations for
the other two boundary phases. This shows that the topological objects move around for different
boundary conditions, another strong indication that the vacuum is composed of dyons. All of these
results support the presence of instanton-dyons in the hot QCD medium around Tc.

Though this method is an indirect method where the presence and nature of topological objects
are studied using the fermion zero modes, we have shown that it is a clean technique which can be
used to identify dyons in QCD, as was also shown earlier in pure gauge theory [7].
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