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Low temperature condensation and scattering data
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We study φ 4 lattice field theory at finite chemical potential µ in two and four dimensions, using
a worldline representation that overcomes the complex action problem. We compute the particle
number at very low temperature as a function of µ and determine the first three condensation
thresholds, where the system condenses 1, 2 and 3 particles. The corresponding critical values
of the chemical potential can be related to the 1-, 2- and 3-particle energies of the system, and
we check this relation with a direct spectroscopy determination of the n-particle energies from
2n-point functions. We analyze the thresholds as a function of the spatial size of the system and
use the known finite volume results for the n-particle energies to relate the thresholds to scattering
data. For four dimensions we determine the scattering length from the 2-particle threshold, while
in two dimensions the full scattering phase shift can be determined. In both cases the scattering
data computed from the 2-particle threshold already allow one to determine the 3-particle energy.
In both, two and four dimensions we find very good agreement of this ”prediction” with direct
determinations of the 3-particle energy from either the thresholds or the 6-point functions. The
results show that low temperature condensation is indeed governed by scattering data.
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1. Introduction

In recent years considerable progress was made with overcoming the complex action problem
at finite density for several lattice field theories. It was possible to exactly map the partition sum
of these systems to a representation in terms of worldlines (and/or worldsheets) where all contri-
butions to the partition sum are real and positive, such that a Monte Carlo simulation can be done
directly in terms of the worldlines (see, e.g., [1, 2, 3, 4] for work on the φ 4 theory studied here).
With the worldline approach it is possible to address new physics questions related to finite density.
An example is condensation of particles at low temperatures, which is the topic of this contribution.

To illustrate the condensation phenomenon we study here, in Fig. 1 we show the results for
the expectation value of the particle number 〈N〉 versus the chemical potential µ . The results
are for φ 4 theory in 2d on a L×Nt lattice with Nt = 400 and three different values of L. The
temperature is very low (T = 1/Nt = 0.0025 in lattice units) and indeed we observe condensation
as a function of µ (details see below). For each of the three values of L the particle number 〈N〉
quickly rises from 〈N〉= 0 to 〈N〉= 1 at some critical chemical potential value µ1(L), then further
to 〈N〉 = 2 at a second critical value µ2(L) and similar for higher particle number sectors. Note
that at zero temperature (Nt = ∞) one expects discontinuous jumps of 〈N〉 which are here rounded
by temperature effects. Nevertheless we can identify the critical values µn(L) and determine their
values as a function of L. The values µn(L) correspond to the values of the chemical potential
where we observe condensation of another particle visible in the step from 〈N〉= n−1 to 〈N〉= n.

In [5] it was shown that at very low temperature the condensation thresholds µn are related to
the physical mass m(L) and the n-particle energies Wn(L) via the relations

m(L) = µ1(L) , Wn(L) =
n

∑
k=1

µk(L) , (1.1)

where we now made explicit, that not only the µn(L), but also the physical mass m(L) and the n-
particle energies Wn(L) depend on the spatial extent L. It has been known since the pioneering paper
[6] that the dependence of the 2- and 3-particle energies W2(L) and W3(L) on the spatial extent L
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Figure 1: The expectation value of the particle number 〈N〉 as a function of the chemical potential µ (in
lattice units). We show the results for the 2d case at Nt = 400 and different values of L.
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can be parameterized in terms of scattering data of the underlying theory. Thus we conclude from
(1.1) that the condensation thresholds µn(L) are governed by the scattering data.

Demonstrating and analyzing the connection between low temperature condensation and scat-
tering data in φ 4 theory in two and four dimensions is the topic of this contribution (see also [7]).

2. Worldline representation and Monte Carlo simulation

The system where we explore the relation between condensation and scattering data is the
complex φ 4 field in d = 2 and d = 4 dimensions. The lattice action is given by

S[φ ] = ∑
x∈Λ

(
η |φx|2 + λ |φx|4 −

d

∑
ν=1

[
eµδν ,d φ

∗
x φx+ν̂ + e−µδν ,d φ

∗
x+ν̂

φx

])
, (2.1)

where η ≡ 2d+m2
b with mb the bare mass parameter. λ is the quartic coupling and µ the chemical

potential. The fields φx are assigned to the sites x of a lattice of size Ld−1×Nt .
At µ 6= 0 the action is complex and the Boltzmann factor e−S[φ ] cannot be used as a probability

in a Monte Carlo simulation. This complex action problem of the conventional representation
(2.1) can be solved by exactly mapping the system to a worldline representation (see, e.g., [3] for a
derivation of the form we use here). In the worldline representation the partition sum reads (β ≡Nt)

Z = ∑
{k}

[
∏

x
δ

(
~∇ ·~kx

)]
eµ β ω[k] B[k] . (2.2)

Z is a sum over configurations of the worldline variables kx,ν ∈Z assigned to the links of the lattice.
They have to obey constraints which have the form of a product over Kronecker deltas δ ( j)≡ δ j,0

at all sites x. At each x the Kronecker deltas enforce ~∇ ·~kx ≡ ∑ν(kx,ν − kx−ν̂ ,ν) = 0, i.e., zero
divergence for kx,ν , and as a consequence the worldline variables kx,ν must form closed loops of
conserved flux. By ω[k] we denote the total winding number of the k-flux around the compact
time direction and the chemical potential couples to ω[k] in the form eµβω[k]. The observable we
need for our analysis is the expectation value of the particle number 〈N〉= ∂ lnZ/∂β µ = 〈ω[k]〉wl ,
where 〈..〉wl denotes the vacuum expectation in the worldline representation.

The configurations of the worldline variables kx,ν come with a real and positive weight factor

B[k] = ∑
{a}

∏
x,ν

1
(ax,ν + |kx,ν |)!ax,ν ! ∏

x
I(sx) with I(sx) =

∫
∞

0
dr r sx+1 e−η r2−λ r4

. (2.3)

B[k] is a sum over configurations ∑{a} of auxiliary link variables ax,ν ∈ N0, and by sx we denote
the non-negative integer combination sx = ∑ν

[
|kx,ν |+ |kx−ν̂ |+2(ax,ν +ax−ν̂)

]
, which appears as

an argument in the integrals I(sx) that come from integrating out the radial degrees of freedom of
the original field variables at site x. They are pre-calculated and stored for the simulations.

All weight factors in the worldline representation are real and positive such that the complex
action problem is solved. Concerning the details of the updates for the worldline variables kx,ν

and the auxiliary variables ax,ν we refer to [8, 9]. In 4d we use lattices with Nt = 320 and 640,
and L between 3 and 10 at coupling values of η = 7.44 and λ = 1.0, with a statistics of 2× 105

configurations. In 2d the corresponding parameters are Nt = 400, L between 2 and 16 with η = 2.6,
λ = 1.0 and a statistics of 4×105.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
1
5
9

Low temperature condensation and scattering data Oliver Orasch

3 4 5 6 7 8 9 10
L

0.0

0.2

0.4

0.6

0.8

1.0

1.2

spectroscopy

condensation

fit

prediction for W
3

m

W
2

W
3

Figure 2: The physical mass m(L) and the 2- and 3-particle energies W2(L) and W3(L) for the 4d case as a
function of the lattice extent L (figure from [7]). We show the results determined from the condensation steps
(blue squares) and compare them to the results from spectroscopy (black diamonds). The full red curves are
the fits of m and W2 with (3.1) and (3.2). The dashed maroon curve is the function W3 from Eq. (3.3) when
using the scattering length a from the fit of W2 as input.

3. Analysis of the 4d case

After computing 〈N〉 as a function of µ we identify the steps where 〈N〉 transits from 〈N〉 =
n−1 to 〈N〉= n (compare Fig. 1). To determine the corresponding critical values µn we fit the data
for 〈N〉 in the vicinity of the steps with the logistic function 〈N〉=[1+exp(−an[µ−µn])]

−1+n−1.
Using (1.1) we then compute m(L), W2(L) and W3(L) from the critical values µn(L).

In Fig. 2 we show the results for m(L), W2(L) and W3(L) determined from the critical chemical
potential values µn(L) as squares. To test the relations (1.1) and the reliability of our determination
of the critical values µn(L), we computed m(L), W2(L) and W3(L) also in a spectroscopy analysis
based on 2n-point functions calculated at µ = 0 in the conventional representation (2.1). The
corresponding results are shown as diamonds in Fig. 2 and coincide almost perfectly with the data
from the condensation steps. This cross check confirms the interpretation of the critical chemical
potential values as combinations of multi-particle energies.

The next step is to invoke the finite volume relations for m(L) [10], the result [6, 11] for the
2-particle energy W2(L) (using the notation of [13]) and the results [12, 13, 14, 15, 16] for the 3-
particle energy W3(L) (the numerical constants I and J are given by I =−8.914,J = 16.532):

m(L) = m∞ +
A

L
3
2

e−L m∞ , (3.1)

W2(L) = 2m+
4πa
mL3

[
1− a

L
I

π
+

(
a
L

)2 I 2−J

π2 +O

(
a
L

)3
]
, (3.2)
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W3(L) = 3m+
12πa
mL3

[
1− a

L
I

π
+

(
a
L

)2 I 2+J

π2 +O

(
a
L

)3
]
. (3.3)

Up to order 1/L5 only three parameters are needed to describe the data: the infinite volume mass
m∞, the amplitude A and the scattering length a. Fitting the data for m(L) with the relation (3.1)
we find a value of m∞ = 0.168(1) in lattice units. For fitting W2(L) we use (3.2), with the mass
parameter m on the rhs. replaced by the corresponding values m(L). This gives rise to a value of
a = −0.078(7) for the scattering length in lattice units and a value of am∞ = −0.013(1) for the
dimensionless product of a and m∞. The functions (3.1) and (3.2) with the fit values for m∞, A and
a are shown as full red curves in Fig. 2 and describe the data for m(L) and W2(L) very well (with
the exception of the smallest L where higher corrections in 1/L would be necessary).

Having determined the mass and the scattering length, no further parameters are necessary to
describe W3(L) with (3.3). Inserting the fit value for a and again using m(L) in the rhs. of (3.3), we
thus get a ”prediction” for the data W3(L). This prediction is shown as a dashed curve in Fig. 2 and
obviously describes the data for W3(L) very well (again with the exception of the smallest L).

This concludes the discussion of the 4d case and our results confirm the relations (1.1) of the
condensation thresholds to multi-particle energies, which in turn are described by scattering data.
Thus we have quantitatively established the connection of condensation and scattering data.

4. Analysis of the 2d case

Also in the 2d case we determined the critical values µn(L) from fitting the steps of 〈N〉
and then computed m(L), W2(L) and W3(L) using the relations (1.1). We cross-checked these
results with a spectroscopy calculation in the conventional representation and again found very
good agreement between the condensation and the spectroscopy results.

The next step is the finite volume analysis of m(L), W2(L) and W3(L). As before the mass
m(L) can be described with a 2-parameter ansatz, which in 2d reads m(L) = m∞ +Ae−m∞ L/

√
L .

For analyzing the 2-particle energy W2(L) we follow the approach [17] that is applicable to short
range potentials. Outside the interaction range the wave function is a 2-particle plane wave ψ =

e−ix1 p1 e−ix2 p2 with momenta p1 and p2. The corresponding energy is W2(L) = ∑
2
j=1

√
m(L)2 + p2

j .
We rewrite the wave function ψ by using the center of mass coordinate (x1 +x2)/2 and the relative
coordinate r = x1− x2. The energy values W2(L) determined from the condensation steps corre-
spond to vanishing total momentum p1 + p2 = 0, and we set p1 = p = −p2. For vanishing total
momentum the wave function then has the form ψ = e−ipr and the 2-particle energy is given by

W2(L) = 2
√

m(L)2 + p2 . (4.1)

For finalizing the connection between the 2-particle energy and the scattering data we need to
invoke the quantization for the momenta p in a finite box of size L. This condition is obtained from
the boundary condition for ψ which connects the wave function at r = 0 to its value at r = L and
reads e−i pL = e i2δ (p). It expresses the fact that the plane wave solution is correct only outside the
interaction range, and that when connecting r = 0 with r = L one has to take into account the phase
shift δ (p) that is picked up when the two particles interact. Thus we obtain

δ (p) = − pL
2

. (4.2)
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Figure 3: Lhs.: The scattering phase shift δ (p) versus p. We compare the results from the condensation
threshold (blue squares) to reference data from spectroscopy (black diamonds). Rhs.: The 3-particle energy
W3 as a function of L. We show the results of the direct determination from the condensation thresholds
(blue squares) and compare it to a prediction based on δ (p) determined from W2.

The two equations (4.1) and (4.2) constitute the connection between scattering data and W2(L).
We can use the numerically determined values for W2(L) to compute from (4.1) the corresponding
relative momenta p, and then use these to compute the scattering phase shift δ (p). We show the
corresponding results in the lhs. plot of Fig. 3 and compare the data from a determination based on
the condensation thresholds to those from a determination based on standard spectroscopy.

Before we discuss W3(L), we stress that at fixed couplings the phase shift is only a function of
the lattice size L: the momentum p determined from (4.1) depends only on the lattice size L, i.e.,
we have p = p(L). Thus the phase shift from (4.2) is given by δ (p(L)) =− p(L)L

2 ≡ δ (L).
Similar to the 4d case we now use the scattering data determined from W2(L) to ”predict”

W3(L) and thus the third critical chemical potential value µ3(L). The approach is a generalization
of the strategy [17] we have followed for analyzing W2(L). Again we make a plane wave ansatz
ψ = e−ix1 p1 e−ix2 p2 e−ix3 p3 for three particles which describes the system when all three particles are
sufficiently remote from each other. The corresponding energy is W3(L) = ∑

3
j=1

√
m(L)2 + p2

j .

As before we introduce the center of mass coordinate (x1 + x2 + x3)/3, as well as the relative
coordinates r2 = x2− x1 and r3 = x3− x1. Using these to parameterize ψ and demanding total
vanishing momentum p1 + p2 + p3 = 0, we find ψ = e−ir2 p2 e−ir3 p3 and p1 = −p2− p3. This 3-
particle wave function has to obey two quantization conditions of the form (4.2) that contain p2

and p3. Using the fact that the phase shift is only a function of L we can determine p2 and p3 as
p2 = p3 =−2δ (L)/L. Inserting these values and p1 =−p2− p3 into W3(L) = ∑

3
j=1

√
m(L)2 + p2

j

we obtain our prediction for W3(L). The corresponding values are shown as red circles in the rhs.
plot of Fig. 3. We compare them to the results of a direct determination from all three condensation
thresholds. The results agree very well and we conclude that the structure of the condensation
thresholds µn(L) can indeed be correctly described with the scattering data of the theory.

We remark that the 2- and 3-particle energies W2(L) and W3(L) can be analyzed with a different
approach [18, 19], where one uses the exact solution for the scattering phase shift which depends on
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a single parameter, the amplitude V0 of the point-like interaction. This parameter can be determined
from W2(L) and subsequently used for δ in the 3-particle quantization conditions to determine the
two independent momenta p2 and p3 needed to compute W3(L).

5. Concluding remarks

In this contribution we have shown for a simple scalar field theory in two and four dimensions
that low temperature condensation is governed by the scattering data of the theory. This relation
is expected to be a general non-perturbative feature, but in order to study it on the lattice usually a
complex action problem has to be solved, which so far has been achieved for only a few systems.
However, there exist interesting theories which are already free of the complex action problem.
Examples are lattice field theories based on the gauge group SU(2), and more interestingly, QCD
with isospin chemical potential where the condensation of pions is expected to be related to pion
scattering data. For these systems an analysis along the lines sketched here should be possible.
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